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Abstract

In this note, the periodic and chaotic responses of two single-degree-of-freedom (SDOF) models are investigated and

some interesting results obtained. The first model (original model) has been developed by Narayanan and Sekar [Periodic

and chaotic responses of an SDOF system with piecewise linear stiffness subjected to combined harmonic and flow induced

excitations, Journal of Sound and Vibration 184 (2) (1997) 281–298] and the second one corresponds to a modified system.

The original model, involving a one-sided clearance (y0) between the mass and the linear spring, is subjected to combined

harmonic (F cosot) and flow-induced excitations. Narayanan and Sekar (1997) has shown that periodic, quasi-periodic

and chaotic motions of this original model may occur in a range of flow velocities for the case: y0 ¼ 0 and F6¼0. In the

present work, numerical calculations are carried out for several other important cases of the original system, showing some

interesting, and sometimes unexpected results. The modified model, in particular, involving both-sided clearances, is

analyzed numerically subsequently. The effect of flow velocity, clearances on the global dynamics of this modified system is

discussed finally.

r 2007 Elsevier Ltd. All rights reserved.
1. Introduction

Because of their importance in engineering, the dynamic responses of bluff bodies with clearance when
subjected to harmonic excitations have been the subject of many investigations. A few examples are given in
Ref. [1]. In particular, many bluff bodies are kept in fluid flow. In these cases, the fluid dynamic forces on the
structure are nonlinear functions of the velocity of the body in the transverse direction. In flow-induced
vibration problems such as aeroelastic flutter, vortex induced and galloping oscillations, and vibrations due to
fluid-elastic instability, the aero/fluid dynamic forces inducing the vibrations are almost invariably non-
conservative and nonlinear functions of the structural motion, leading to a complex and wide variety of
dynamical behaviour characteristic of coupled fluid–structure interaction (FSI) vibrations [2]. Some of the
notable contributions in this area were made by Narayanan and Jayaraman [2,3,4] and Simiu and Cook [5].
ee front matter r 2007 Elsevier Ltd. All rights reserved.
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Fig. 1. Two physical models: (a) the original model with one-sided clearance and (b) the modified model with both-sided clearances.
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For a perspective on the early study associated with the dynamics of bluff bodies in fluid flow, one can see the
book by Blevins [6].

In Ref. [2], the vibrations of a square prism modelled as an single-degree-of-freedom (SDOF) system
(see Fig. 1(a)) with unsymmetrical piecewise linear stiffness were investigated under combined harmonic- and
flow-induced excitations. The fluid flow normal to the motion of the mass introduces a nonlinear damping
force, which is assumed to be characterized by the Blevins [6] square prism model. Thus, the SDOF system
represented in Ref. [2] has shown cumulative effects of two different nonlinearities. The first comes from the
nonlinear damping force induced by the fluid flow, the second from the nonlinearity due to the impact between
the mass and the spring with clearance. Here, it should be stressed that the SDOF system described in
Fig. 1(a), involving a one-sided clearance (y0) between the mass and a linear spring, is subjected to combined
harmonic- (F cosot) and flow-induced excitations. Based on digital simulations, Narayanan and Sekar [2]
have shown that periodic, quasi-periodic and chaotic motions of this SDOF system can be found in a range of
flow velocities for the case: y0 ¼ 0 and F6¼0.

In this note, we will further investigate the SDOF system developed in Ref. [2]. The aims of this work are
twofold. Firstly, we will represent the dynamical behaviour of the SDOF system with zero or non-zero
clearance (y0 ¼ 0 or y0 6¼0) and without external harmonic excitation (F ¼ 0). In this case, the SDOF system
(original system) exactly undergoes a flow-induced vibration. The effect of the clearance and the flow velocity
on the dynamics of this original system will be analyzed in detail. Secondly, we investigate numerically, yet
another modified SDOF system which involving both-sided clearances and subjected to both external
harmonic- and flow-induced excitations. It will be shown that rich dynamics occurs in such a modified model.
The effects of several key system parameters on the behaviour of this modified model will be discussed finally.

2. Background theory

The physical model developed in Ref. [2], which is an SDOF system with one-sided clearance, is shown in
Fig. 1(a). The mass m is restrained by a linear spring of stiffness k1 and a dashpot with c as the coefficient of
linear viscous damping. When the mass displacement exceeds the clearance y0, the mass will impact onto
another linear spring with stiffness k2. Moreover, the mass is assumed to be harmonically excited by an
external harmonic excitation of amplitude F and frequency o. Hence, the equation of motion of the mass
under the cumulative effect of two different nonlinearities is given by

m €yþ c _yþHðyÞ ¼ F cosðotÞ þ FL, (1)

in which FL is the flow-induced force and H(y) represents the nonlinear stiffness function. They have the
following formulations, respectively:

F L ¼
1

2
rSV 2 B1ð _y=V Þ þ B3ð _y=V Þ3

� �
; HðyÞ ¼

k1y; ypy0

k1yþ k2ðy� y0Þ; y4y0

( )
, (2)



ARTICLE IN PRESS
W. Lin, N. Qiao / Journal of Sound and Vibration 311 (2008) 567–578 569
where r is the density of the flow medium, S the area of the prism facing the flow and V the flow velocity,
B1 and B3 are constants, and t represents the time.

As demonstrated in Ref. [2], various periodic motions and chaos can be detected in the original system
described in Eq. (1) for the case: y0 ¼ 0 and F 6¼0. Moreover, the presence of fluid flow in such an SDOF
system results in period-doubling phenomena leading to chaos.

3. The SDOF system described in Ref. [2] with one-sided clearance

In this section, the SDOF system in Fig. 1(a) will be further investigated in detail. The nonlinear equation of
motion for the SDOF system with external harmonic- and flow-induced excitation may be rendered non-
Fig. 2. Bifurcation diagram for the displacement of the original system without external harmonic excitation and e0 ¼ 0: (a) for the range

0oUo0.5 and (b) for a smaller range of U.

Fig. 3. Bifurcation diagram for the displacement of the original system without external harmonic excitation and e0 ¼ 0.01: (a) for the

range 0oUo0.5 and (b) for a smaller range of U.
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dimensional with the aid of the dimensionless quantities:

s ¼ k2=k1; x ¼ y=d; e0 ¼ y0=d; z ¼ c=ðmonÞ; U ¼ rSV=mon,

t ¼ ont; z1 ¼ �B1U=2 z3 ¼ �b
2B3=ð2UÞ; b ¼ rSd=m,

z0 ¼ zþ z1; O ¼ o=on; f ¼ F=ðmo2
ndÞ,

leading to

€xþ z0 _xþ z3ð _xÞ
3
þ hðxÞ ¼ f cos ðOtÞ, (3)

where o2
n ¼ k1=m, h(x) ¼ x when xpe0 and ¼ (s+1)x�se0 otherwise. The number of overdots now indicates

the order of differentiation with respect to the non-dimensional time t. If, however, the SDOF system is
Fig. 4. Phase-plane plots of the original system without external harmonic excitation and e0 ¼ 0: (a) U ¼ 0.03 and (b) U ¼ 0.4.

Fig. 5. Phase-plane plots of the original system without external harmonic excitation and e0 ¼ 0.01: (a) U ¼ 0.03 and (b) U ¼ 0.4.
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subjected to no external harmonic excitation, one obtains

€xþ z0 _xþ z3 _xð Þ
3
þ hðxÞ ¼ 0. (4)

It should be stressed that some of the above non-dimensional quantities introduced here are different from
that described in Ref. [2]. For more details on this aspect one can see Ref. [2]. In what follows of this section,
numerical simulations will be carried out and some typical dynamics of the SDOF system considered will be
shown.

3.1. Without external harmonic excitation for e0 ¼ 0 or e0 6¼0

Here, it should be mentioned that various behaviour of this system has, of course, been studied before by
Narayanan and Sekar [2], but only for the case y0 ¼ 0 and F6¼0. In this short communication, firstly, we will
consider the dynamics of this SDOF system with y0 ¼ 0 (or y0 6¼0) and F ¼ 0. This system is exactly
corresponding to a flow-induced vibration problem.

Solutions of Eq. (4) were obtained by using a fourth-order Runge–Kutta integration algorithm, where a
novel approach for solving dynamical systems with motion dependent discontinuities [7] was also utilized.
Fig. 6. Bifurcation diagram for the displacement of the original system with external harmonic excitation and e0 ¼ 0.0, f ¼ 5, O ¼ 5:

(a) for the range 0oUo10 and (b, c) for two smaller ranges of U.
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The initial conditions employed were xð0Þ ¼ 0:001; _xð0Þ ¼ 0. Based on this integration algorithm, numerical
calculations have produced the bifurcation diagram of Figs. 2 and 3, as the flow velocity (U) is varied in the
range 0pUp0.5, and the values of several other parameters are fixed to be s ¼ 25, z ¼ 0.05, and b ¼ 1.
Fig. 7. Phase-plane plots of the original system with external harmonic excitation and e0 ¼ 0.0, f ¼ 5, O ¼ 5: (a) U ¼ 2.0, (b) U ¼ 4.8, (c)

U ¼ 5.5, (d) U ¼ 5.725, (e) U ¼ 5.795, and (f) U ¼ 8.4.
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The constants B1 and B3, which depend on the geometry of the bluff body, are taken as 2.7 and �31.0,
respectively [6].

It can be seen from Figs. 2 and 3 that the variable parameter is the dimensionless flow velocity U. In Fig. 2,
the clearance between the mass and the spring of k2 is chosen to be zero (e0 ¼ 0); In Fig. 3, however, the
clearance between the mass and the spring of k2 is chosen to be non-zero (e.g., e0 ¼ 0.01). From these two
figures, it can be seen that the system always undergoes a period-1 motion in the range of 0pUp0.5, which is
corresponding to the case f ¼ 0. Here, a result of interest is related to the vibrating amplitudes. As represented
in the bifurcation diagram of Fig. 2, a jump point noted at U ¼ UJ1 occurs. In the vicinity of this jump point,
the vibrating amplitudes of the system change sharply. When UoUJ1 the non-dimensional vibrating
amplitudes of the system are very small (magnitude:10�6). However, if U4UJ1, the vibrating amplitudes of the
system become much larger (magnitude:10�2), which is clearly visible in Fig. 2. The nature of this interesting
Fig. 9. Bifurcation diagram of the original system with external harmonic excitation and e0 ¼ 0.1, f ¼ 5, O ¼ 5: (a) for the range

0oUo10 and (b) for a smaller range of U.

Fig. 8. Poincare maps of the original system with external harmonic excitation and e0 ¼ 0.0, f ¼ 5, O ¼ 5: (a) U ¼ 5.5 and (b) U ¼ 8.4.
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phenomenon is not understood yet. Moreover, if e0 ¼ 0.01, a similar jump point can be detected, which is
denoted at U ¼ UJ2 in Fig. 3. The second result of interest is related to the clearance, e0. From Figs. 2 and 3,
one can obviously see that UJ1 ¼ UJ2. In fact, even with large values of clearance (e.g., e0 ¼ 0.2), the threshold
flow velocity (denoted to be UJi) for the jump point is very close to the value of UJ1. Hence, the global
dynamics of system (4) in the parameter range of flow velocity is not sensitive to e0.
Fig. 10. Phase-plane plots of the original system with external harmonic excitation and e0 ¼ 0.1, f ¼ 5, O ¼ 5: (a) U ¼ 4.82, (b) U ¼ 4.88,

(c) U ¼ 4.90, (d) U ¼ 4.977, (e) U ¼ 4.985, and (f) U ¼ 4.995.
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It is instructive to look at phase-plane portraits associated with several values of U, corresponding to the
dynamical behaviour as discussed in the foregoing. Sample results are shown in Figs. 4 and 5. Here, it is noted
that, no other motions (e.g., period-n (n41), quasi-periodic or chaotic motions) have been detected even with
sufficiently high flow velocities.

3.2. With external harmonic excitation for e0 ¼ 0 or e0 6¼0

To analyze the forced vibrations of the SDOF system shown in Fig. 1(a), solutions of Eq. (3) were obtained
via numerical simulations. In what follows of this subsection, several key parameters are chosen to be s ¼ 25,
z ¼ 0.05, b ¼ 1, f ¼ 5, and O ¼ 5. In this case, the external harmonic excitation is non-zero. It is observed that
system (3) may represent much richer dynamical behaviour than system (4), both for e0 ¼ 0 and e0 6¼0. For
e0 ¼ 0, the oscillations of the mass are periodic for Uo5.48 and are also periodic for U45.92. This clearly
appears in the bifurcation diagrams of Fig. 6(a). However, indeed, at U ¼ Uc1 ¼ 5.48, chaos, followed by a
period-2 motion, arises. Sample results of phase-portrait plots and Poincare maps are shown in Figs. 7 and 8
for various values of U. In this case there are relatively small regions of periodic motions embedded within the
chaotic region; e.g., for 5.794oUo5.802 there is what appears to be a period-4 region. Moreover, in the
vicinity region of U ¼ 8.40, chaotic motion can be detected, as shown in Figs. 7(f) and 8(b).

Similar results can be obtained for the case e0 6¼0. However, the threshold flow velocity for the onset of
chaos is Uc2 ¼ 4.9, which is much lower than that for the case e0 ¼ 0. Moreover, the bifurcation details in the
vicinity of Uc2 are also different. From the expanded version of the bifurcation diagram for a smaller range of
U, a sequence of period-doubling bifurcations is clearly visible (see Fig. 9(b)). It ought to be remarked that
several series of period-doubling bifurcations can be found with increasing U (see the evolution of phase-plane
plots in Fig. 10). Thus, with external harmonic excitation, the effect of clearance, e0, on the global dynamics of
system (3) is significant.

4. Another SDOF system with both-sided clearances

In this section a modified SDOF system shown in Fig. 1(b) will be considered. It can be seen that this
modified system has both-sided clearances. The stiffness of the two springs with clearances is denoted as k3
and k4, respectively. The clearances between the mass and the springs are e3 and e4. In what follows, e3 and e4
may be different from each other in the numerical calculations.

Similarly, by considering the effects of both-sided clearances, the nonlinear equation of motion of this
modified SDOF system can be written as

m €yþ c _yþ GðyÞ ¼ F cosðotÞ þ F L, (5)
Fig. 11. Bifurcation diagram of the modified system with external harmonic excitation and e3 ¼ 0.1, e4 ¼ 0.1, f ¼ 5, O ¼ 5, as U is varied.
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in which

F L ¼
1

2
rSV 2 B1ð _y=V Þ þ B3ð _y=V Þ3

� �
; GðyÞ ¼

k1y; �y4pypy3

k1yþ k3ðy� y3Þ; y4y3

k1yþ k4ðyþ y4Þ; yo� y4

8><
>:

9>=
>;. (6)

Similarly, upon introducing the following non-dimensional parameters:

s3 ¼ k3=k1; s4 ¼ k4=k1; x ¼ y=d; e3 ¼ y3=d; e4 ¼ y4=d; z ¼ c=ðmonÞ,

U ¼ V=ðdonÞ; t ¼ ont; z1 ¼ �bB1U=2; z3 ¼ �bB3=ð2UÞ,

b ¼ rSd=m; z0 ¼ zþ z1; O ¼ o=on; f ¼ F=ðmo2
ndÞ.

Eq. (6) becomes

€xþ z0 _xþ z3 _xð Þ
3
þ gðxÞ ¼ f cosðOtÞ, (7)
Fig. 12. Phase-plane plot, power spectra and Poincare map of the modified system with external harmonic excitation and e3 ¼ 0.1,

e4 ¼ 0.1, f ¼ 5, O ¼ 5, for U ¼ 8.0.
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where

gðxÞ ¼

x; �e4pxpe3

xþ s3ðx� e3Þ; x4e3

xþ s4ðeþ e4Þ; xo� e4

8><
>:

9>=
>;. (8)

Similarly as before, solutions of Eq. (7) were obtained by using a fourth-order Runge–Kutta method, with
the same initial conditions employed in the foregoing. The parameters are selected to be s3 ¼ s4 ¼ 25,
z ¼ 0.05, b ¼ 1, f ¼ 5, and O ¼ 5. Some typical results are summarized in Figs. 11–14. Fig. 11 shows the
bifurcation diagram where the maximum tip displacements are plotted as functions of the flow velocity U. It is
observed that, after the region of period, the system becomes quasi-periodic. Fig. 13 confirms this quasi-
periodic motion via PSD diagram and Poincare map. It ought to be remarked that Figs. 11–13 are obtained
with e3 ¼ e4 ¼ 0.1.

More calculations were performed also when e3 is chosen to be the variable parameter. Similar bifurcation
diagram can be constructed, as shown in Fig. 14. In this case, it is interesting to note that for e3o0.0897, the
system undergoes a period-1 motion; however, for e340.0897, quasi-periodic motion occurs.
Fig. 13. Phase-plane plot, power spectra and Poincare map of the modified system with external harmonic excitation and e3 ¼ 0.1,

e4 ¼ 0.1, f ¼ 5, O ¼ 5, for U ¼ 9.0.



ARTICLE IN PRESS

Fig. 14. Bifurcation diagram of the modified system with external harmonic excitation and U ¼ 9.0, e4 ¼ 0.1, f ¼ 5, O ¼ 5, as e3 is varied.
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5. Discussion

In this short communication, the nonlinear dynamics of the SDOF system described in Ref. [2] and another
modified system, both with and without external harmonic excitation, was explored numerically. Moreover,
this is a multidimensional investigation of the effects of (i) the impact models with springs and clearances and
(ii) the nonlinearity of the type associated with the flow-induced excitation.

The dynamical behaviour was analyzed for two models. For the original model with one-sided clearance,
attention was concentrated on the flow-induced vibrations of this SDOF system, both with and without
external harmonic excitation. In this case, we have also discussed the effect of the clearance (e0 ¼ 0 and e0 6¼0)
on the global dynamics of this one-sided model. Then another modified model with both-sided clearances was
developed and numerically analyzed. The differences of the dynamical behaviour between these two models
can be clearly found. In the parameter range of flow velocity 0oUo10, chaos, followed by a series of period-
doubling bifurcations, arises, for the one-sided model with non-zero clearance. However, for the both-sided
model, only period-1 and quasi-periodic motions were detected in the range 0oUo10. Whether this both-
sided model can represent chaos or not should be further investigated via theoretical and numerical analysis.
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