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Abstract

This paper deals with the analysis and simulation of a general single degree of freedom (sdof) oscillatory system with
idealised linear viscous damper and dry friction. For dry friction modelling the phenomenological macro-slip approach is
employed, described in mathematical form either by the signum function approach or by the physically correct stick—slip
approach assuming switching phenomena on a short time scale. Both approaches are illustrated first using a steady-state
harmonic acceleration excitation with constant amplitude and then a stationary random acceleration excitation,
corresponding to a field-measured excitation in a vehicle. The differences in the two approaches are highlighted, indicating
that the physically correct stick—slip approach describes the friction phenomenon better than the standard signum
approach. The signum approach is prone to false numerical oscillations completely distorting the acceleration response
signal in comparison to measured suspension system response. The acceleration transmissibility response is analysed in
respect to the dry friction force magnitude, employing stationary random excitation. A sdof oscillatory system without
viscous damping, subjected to both stationary random acceleration and harmonic acceleration is analysed, too. It is shown
that such a system can be used without serious practical problems; however, no implications on its performance from the
analysis under harmonic constant amplitude acceleration excitation can be made.
© 2007 Elsevier Ltd. All rights reserved.

1. Introduction

The analysis of translatory oscillatory systems is an essential part of machine dynamics and the starting
point of further studies in engineering vibrations. The essential form of such an oscillator is a combination of
mass m, linear mass-less spring with spring constant k, and an idealised viscous damper with resistance
proportional to the relative velocity, described by the damping constant b as schematically illustrated in
Fig. 1a. The mathematical treatment of such a system is well known—it is described by a linear second-order
ordinary differential equation with constant, time-invariant coefficients. This equation has to be solved for the
mass m absolute displacement variable x and its time derivatives X, X for given initial conditions and imposed
excitation acting in the direction of free system movement (for systems illustrated in Fig. 1 in the horizontal
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Fig. 1. Schematic layout of the analysed horizontal single degree-of-freedom oscillatory system: (a) a frictionless oscillatory system and
(b) the same horizontal system including dry friction.

direction). The external excitation can be either a time variable force F(¢) acting on the mass m or a kinematic
excitation in form of absolute displacement u(¢) and its derivatives () or ii(t) acting on the oscillatory system
support, as is the case analysed here. The equation of motion is then

mx +ky(x —u)+b(x—1u)=0 (1)

which can be re-written using the time-dependant relative displacement x, = x—u and its time derivatives Xx,, X,
as

mx, + kyx, + bx, = —mii. 2)

However, for many real-world mechanical oscillatory systems this description is too simple:

e Structural constraints limit the free travel, i.e. stroke (relative displacement x,) of the oscillating mass.
e Direction of movement is restrained by some sort of guiding mechanism.
e Description of vibratory energy dissipation by a linear, relative velocity-dependant damper is too simple.

Another important issue is the dry friction, ever-present in any mechanical system. The friction element may
be introduced intentionally, to act as the means of vibratory energy dissipation, or more likely, is an unwanted
consequence of the system design or construction. In such oscillatory systems the influence of friction cannot
be neglected [1]. The description by the linear single degree of freedom (sdof) oscillatory system may be an
oversimplification of reality and its analysis may lead to erroneous conclusions. This is specially so for random
kinematic excitation, as is often the case in ground transportation. In this class of problems the variable of
interest is the vibratory acceleration X of mass m rather than the displacement variables. Hence, it is
worthwhile to analyse oscillatory systems in which both a linear damper and a friction element (described by a
general friction force Fy) are present, as depicted schematically in Fig. 1b, especially from the point of view of
the acceleration transmissibility. Then the above-mentioned equations of motion are slightly modified to
become:

mx + k(x —u) + b(x — i) + Fysgn(x — i) = 0, 3)
or
mx, + kyx, + bX, + Frsgn(X,) = —mii. @))
The general damping force F, (or mixed damping force in DenHartog’s notation [2]) is described by
expression:
Fg=0b(x—1u)+ Frsgn(x —u) = bx, + Frsgn(x,), (5)

where (X — @) = X, = v, is the relative velocity between the sliding surfaces.
From a mathematical point of view such an oscillatory system belongs to the class of non-conservative,
nonlinear oscillatory systems. Nonlinear oscillatory systems can be classified by various criteria, such as:

e Oscillatory systems with continuous type of nonlinearity (smooth systems). The mathematical solution is
essentially time-invariant and can be treated by sophisticated analytical methods.
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o Oscillatory systems with discontinuous type of nonlinearity (dry friction, impacts, free-play, etc.), as is the
case here. The discontinuous non-smooth nonlinearity causes a time-dependant change in the system
dynamics [3]. The mathematical solution relies essentially either on the use of a non-smooth discontinuous
function, dependant on a system variable, or on the use of a control variable, for switching between
solutions, respecting the change in system dynamics on a short time scale [4,5]. The solution poses some
mathematical difficulties, especially when real-world time data, sampled at periodic instants of time, have to
be compared with the simulation results, as was the case here. Common stiff differential equations solvers
with variable time step are sometimes not suitable, so other robust methods have to be used.

The most common approximate analytical approaches are either to use the harmonic balance method,
described first in this context fully by Den Hartog [2], or to solve the particular differential equations in
respective time intervals [6-9], which is laborious. Here the simulation approach will be followed,
assuming excitation by vibratory acceleration ii(z), to arrive at solutions that are both viable from the
engineering point of view and realisable by any commercially available simulation software. The aim was to
obtain simulation results (response time courses) which are very close to those measured in the field operating
conditions. This, together with some numerical signal characteristics, was the ultimate measure of model
acceptability.

There are not many recent papers dealing with base excitation of an oscillatory system with both dry friction
and viscous damping, known to the authors, exceptions being [10,11]. There is a paper indicating exploration
of practical viability of semi-active dry friction damping in the automobile suspension [12]; however, no
further results have been published since. Most of the approaches treated in the literature have the objective of
obtaining closed-form solution for harmonic excitation [7,9]. Such an approach may be well justified for
advanced analysis of nonlinear systems; however, it brings little information that is directly applicable for
many practically oriented tasks. Out of papers dealing with the base excited systems Hundal [10] is concerned
with analytical solutions in the frequency band (0, 2 x f;), where fj is the system natural frequency. He derives
conditions governing the transition between the continuous motion and the motion with two stops within each
cycle. He concludes that his results are identical for this case with those obtained by Den Hartog [2].
Schlesinger [11] treats a more complicated system, which describes more realistically a suspension system. He
is concerned mainly with the system transmissibility and particularly with the relative displacement
transmissibility around resonance in relation to the system structure and value of the dry friction, and suggests
ways to reduce the relative displacement. He indicates: ““‘care must be taken in interpreting these
transmissibility curves if the requirement is to reduce acceleration of the supported mass”. He concludes,
without going into explanatory details, that “‘the acceleration isolation can thus be expected to be better than
the displacement isolation shown”, which may be a gross oversimplification.

The most important fundamental theoretical work concerning harmonic excitation was probably that
undertaken by Den Hartog [2] and his findings are widely quoted since. His calculations are supported by
experiments; however, made on a rotary system. It is interesting to note that thereafter the case of mixed
damping is not mentioned at all in the subsequent textbooks [6,13,14].

The treated topic is a specific, rather simple, contact mechanics problem. More details on mathematical
treatment of more general contact mechanics problems are given in Ref. [15], which is a part of a highly
reputed series on this important mechano-mathematical problem.

In analysing an oscillatory system with both viscous damper and dry friction the primary question concerns
the relative contribution of both dissipative terms to the total vibratory energy dissipation and then the
influence of both terms on the typical system response characteristics, e.g. transfer function, time response, etc.
Also of interest is the ratio between the friction force and the mass m inertial force while sticking
(to be described latter). This will be the aim of this paper. One method of those mentioned above, which would
describe the particular case the best, has to be selected and implemented in the simplest and easiest way, while
still accounting for all the major problem features. This paper may assist in comparing simulation methods
applicable to the case described, and in selection of the most appropriate one for modelling response to the
realistic low-intensity random acceleration excitation.

Applications assuming random kinematic excitation in transport industries are reported by Rakheja et al.
[16] and by Gunston [17]. In a recent work of Gunston et al. [18] the MATLAB/Simulink® was used. It was
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concluded that the built-in signum function approach was not satisfactory and a different approach had to be
followed using a more sophisticated switching algorithm.

2. Dry friction models

The first comprehensive scientific work on the dry friction is attributed to Coulomb in 1785; however,
already around 1500 the universal genius Leonardo da Vinci was occupied by the research of dry friction [19].
Despite many years of research, the mathematical description of this phenomenon is not yet fully developed
[1,19]. The phenomenon is not always reproducible, as its extent depends on surface state, lubrication,
asperities, temperature, magnitude of normal force, relative velocity, etc. [1,13,19,20].

Various approaches to this problem are presented in the literature, e.g. [21]:

e The macro- (or phenomenological) approach assumes a single dissipative force acting at the interface
between the sliding surfaces. This approach is often described as a static friction model. One of a more
recent model is that one based on a generalised hysteretic operator model, which enables to include both the
nonlinear stiffness and friction into the damping element description [22,23]. This is the generalisation of
the older Dahl model. This model, as well as the Masing element, together with the Bouc—Wen models are
often used for analysis of oscillatory systems with nonlinearity and hysteresis, as illustrated, for example, in
a recent paper [24].

e The micro-approach takes into account detailed knowledge of characteristics of the sliding surfaces
including roughness, asperities, adhesive phenomena, friction hysteresis, limit cycles, surface lubrication,
other tribological parameters, etc. This approach is often used in the so-called dynamic models. Some of the
models that have been hitherto developed include, for example, the LuGre model, the Leuven model and
the Petrov—Ewins model [1,13,20]. Many more models exist in the literature [15,22,23]. All these models
have in common the assumption of a detailed knowledge of the phenomena associated with the sliding
surfaces. The describing differential equations are nonlinear and complicated and their use requires
knowledge of numerical values of a number of descriptive parameters that have to be established by
measurement under controllable conditions. As a result, it is not practicable to use this approach for
applications in the transport industry with its multitude of operating conditions, loading, environmental
influences, etc. These models are mentioned here for the sake of completeness.

Static friction models are based on a simple relation of the friction force Fto the relative velocity v, between
the sliding surfaces in a phenomenological way. Four basic approaches, according to the notation in Fig. 2,
are described below:

(A) The common Coulomb-type friction characteristics—Fy, which may be mathematically described by
the relay characteristics [1,21,25]:

Fy=Fcesgn(v,), Fe=Fpg=urFy, (6)
Ff ¥ 3
*Fie Fp=const
+F
»
Ve
-Fi
'Ffs

Fig. 2. Friction force Fy courses as function of the relative velocity v,.
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where Fyis the friction force course, F¢ is the Coulomb friction force. This model involves the proportional
relationship between the Coulomb friction force Fc, sometimes denoted as kinetic friction force Fy, and the
normal loading force Fy [13,14] which is usually assumed to be constant. The proportionality constant gy is
the dimension-less kinetic friction coefficient, introduced by Euler around 1765 [19]. The kinetic friction force
Fj., is independent of v,; however for v, = 0 it cannot be determined, i.e. the force Frcan have any value in
interval (—Fp, + Fp).

The signum function sgn(v,) (or sign(v,) in some literature) is often [6,8,14,25] mathematically described as

+1 for v, >0,
sgn(vy) = —1 for v, <0 )

However, different authors define different function values for the argument value v, = 0 [3,6,26]. Note also
that the signum function, as defined by expression (7) has no limit for v, = 0 and is therefore not differentiable
for v, = 0, and hence is not a smooth continuous function.

(B) In reality a larger force is needed to start the sliding motion, i.e. for overcoming the adhesion at zero
relative velocity a larger force Fy is required than when the two surfaces are continuously sliding over each
other [13,14]. The friction force at v, = 0 has to be described as a function of a limit force F;, external to the
dry friction interface. The limit force F; is obtained by analysing the force balance across the interface between
the sliding surfaces, and has to be compared to the static friction force value Fy:

if |FL|<Fp = v, =0. (8)

If this condition is met the system is at standstill in the so-called stick state, indicated in Fig. 2 by the vertical
line segment. If at a certain time instant the adhesion force Fy is overcome by the external force, the oscillatory
systems starts to move abruptly and the relative velocity v, attains some non-zero value. Eq. (6) is valid from
this instant until v, eventually decreases to zero and the system stops again for a certain time interval until the
static friction force is overcome again. This start-slide-stop movement (stick—slip movement) leads to a non-
unique solution of equations describing the motion and poses mathematical difficulties [8,14,25,26]. In
analogy to the above, the static friction coefficient y, is defined as p, = Fg/Fy, and py> ., because Fy > Fy.

(C) Any technical oscillatory system has a limitation on its stroke (relative displacement amplitude x,,) due
to the structure design features, defined as a maximal value x,,,. If at any time instant x,,>> x,,, the structure is
hit hard an impact with high acceleration peaks would occur leading to a possible chaotic behaviour and an
excessive structure loading. In practical systems measures are taken to avoid this situation and soften the end-
stop impact however in this analysis the validity of all formulas will simply be tested against this constraint
without going into a detailed analysis of the influence of the end-stops. Details on the influence of the end-
stops can be found, e.g. in Ref. [27].

(D) In some cases of well-lubricated surfaces the sliding friction force is also dependant on relative velocity.
It exhibits a certain minimum at a relative velocity known as the Stribeck’s velocity vg and then increases with
higher velocities. It is described by a velocity-dependant function f(v,):

Fr=f(v,) if v, #0,
Fr=Fp if v, =0and Fp <|Fgl,
Ff:Fffv sgn(Fy) ifv,:OandFL>|Fﬁ|.

In some simulation approaches the Stribeck’s effect is modelled using a Gaussian distribution function [28]
to account for the discontinuous natural dynamics of the change of the state at the start of the slipping motion
(step transition Fy— Fy or iy — ). It is argued, that the restraining (adhesive) force is a composition of all the
micro-actions across the interface of contacting surfaces and their asperities [4,20]. Obviously these actions
take place consecutively and not abruptly. The Gaussian model introduced by Eq. (10) is a reasonable
continuous approximation of this state change:

2
oy
Fy = Fp+ (Fs — Fno) CXP{ - (g) }

sgn(v,), for v, #0. (10)
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Fig. 3. Illustration of the damping force F ( ) dependence on the relative velocity v,, the Coulomb friction force (— —): (a) general
case without adhesive friction; (b) general case with adhesive friction; (c) friction influence negligible; and (d) viscous damping negligible.

As indicated before, further analysis will deal with an oscillatory system assuming two ways of dissipating
vibratory energy—by a linear viscous damping term and by a dry friction term—Eq. (5). Four different cases
may arise, illustrated in Fig. 3, representing the respective proportion of each dissipating term according to the
dependence of the general damping force F,; on the relative velocity v,.

Obviously, if the friction influence is negligible, e.g. good lubrication can be assumed or the force acting on
the body to be isolated is much larger than that one due to friction, the respective term can be neglected and
the sdof theory fully applies—case of Fig. 3c. The case of Fig. 3d is treated analytically at length in the
literature [2,6,13,14] and will be used as a starting point of the problem analysis.

3. Approaches to the dry friction analysis and modelling
3.1. Introduction

By employing static friction models for the analysis of oscillatory systems, essentially two general
approaches are feasible:

(1) An approximate analytical one, based on the harmonic balance method approach;

(i) A simulation one, employing contemporary simulation software, making use of conditioned switching
between the solutions on a time-scale that is short in comparison to the dominant period of the excitation
signal. The simulation approach enables use to be made of either the signum function approach, described
by Egs. (6) and (7) or a more physically sophisticated approach using the limit force analysis of Egs. (8)
and (6) and possibly also Eq. (10). The merits of both approaches have to be thoroughly assessed in the
context of the specific case to be analysed.

One of the first rigorous approaches to computer simulation of the influence of friction in dynamic systems
was undertaken by Karnopp [29]. He considers the causality issues and introduces a region of small relative
velocity Dv, around zero, indicated by the line segment in Fig. 2. Outside of this region the Coulomb approach
is valid, whereas within this region Fyis determined by other forces acting in the system in such a way that the
Frremains within the region, until a breakaway force (i.e. the static friction force) is exceeded. He illustrates
the advantages of this approach on various examples, using the bond graph approach for designing a
set of appropriate conditions. The same methodology is essentially used in other applications, especially in
rotary drives [4] or in dry friction dampers for turbo-machinery [5]; however, neither is related to the case
analysed here.
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3.2. The harmonic balance method

The harmonic balance method assumes a harmonic excitation by acceleration # (with root mean square
(rms) value ag,) or rather by absolute displacement u with amplitude u, and variable angular frequency w,.
The method is fully explained in standard textbooks—e.g. Refs. [6,13,14,30]. The equivalent damping around
resonance b, of a linear oscillator is introduced, depending on the amplitude of equivalent relative
displacement (,:

_ A

= . 11
¢~ o, (
If the assumed harmonic solution is resolved then in steady state:
-G

Fy nFy
L) = 2 (12a)

e

(o)

where Fy = —muowi = —2may, is the amplitude of an equivalent excitation force (in fact mass m inertial

force amplitude in the stick state) and wy = +/k,/m is the system natural frequency.
The formula can be expressed in a more transparent way:

-1

2
Xra(wx) | |y (&) VIi— K (12b)
\/EaOu/w% @o
with a non-dimensional factor K after [31]:
4 F/k
K=——. 12
2 Fy (12¢)

The factor K will subsequently be termed the Den Hartog’s factor and, except for a multiplicative constant,
it relates the kinetic friction force Fy to the equivalent excitation force Fy. Specifically for the horizontal
oscillatory system of Fig. 1b with a constant normal force Fy = mgy the Den Hartog’s factor K has the form
(g 1s the gravity acceleration) [30]:

4 gy
K=- . 12d
T ﬁaOIl ( )

Eq. (12b) describes the modulus of the frequency response function (FRF) of the relative displacement for
harmonic excitation with constant displacement amplitude in the vicinity of the resonance. However,
expressions (12a) and (12b) are approximate and valid only for K<1, i.e. for Fy> (4/n)Fp=1.273F, i.e. for
the base horizontal acceleration a0u>(2\/2/n)gNuk. In other words, the equivalent excitation force has to be
sufficiently large in comparison to the kinetic friction force to permit the use of Eq. (12b).

For Fy<Fp, or rather for F,<Fy, no movement is possible as the equivalent excitation force would not
overcome the adhesion force. If Fye (Fy, (4/m)Fp)~ (Fp, 1.273F;) the movement is not purely harmonic, but
has one or more stops within one period [2,6,13,31] and is not described by the above approximate formula, as
K>1 and the term under the square root is not real. If the frequency of excitation w, approaches w, the
amplitude of the oscillations at resonance will eventually grow beyond any limits [13,14]. The system behaves
as an undamped one; however, with linearly increasing relative displacement amplitude x,, of the oscillations
[14,30] until the structural limit at x,,, would be reached.

The case with both the viscous and the dry friction damping of Fig. 3a can be solved too, using the
harmonic balance method [2] however the formulas are somehow cumbersome. Other usage of the harmonic
balance method is illustrated for example in Ref. [32].

The Den Hartog’s approach cannot account for the stick—slip phenomenon, which is accounted for by a
procedure illustrated in Refs. [7,9] for therein described specific cases under harmonic excitation. None is
applicable when random excitation is assumed, as often occurs in practice. This is especially so, if the
equivalent excitation force amplitude Foy = v/2mag, would randomly fluctuate below Fy and above (4/m)Fp
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and the relative velocity v, would be low, i.e. if the friction force would be commeasurable with the equivalent
excitation force of the isolated body.

3.3. Use of the signum function

Use of the signum function for the simulation of an oscillatory system as in Fig. 3d is an easy option that is
facilitated by any simulation software. The equation describing the motion has the form (4), repeated here as
follows:

forv,#0: mxX, + k.x, + bX, + Fysgn(X,) = —mii. (13)

For v, = 0 the sgn function is set to zero [3,6,26,33] and thus analysis for v, = 0 is completely omitted.
Sometimes the discontinuous signum function (7) is substituted by a “‘smoothed” continuous function, which
approximates the sgn function with a required degree of accuracy [20,25]:

2 cvy
sgn(v,) ~ —arctan(cv,) ~ tanh(cv,) =~ erf(cv,) ®* ——. (14)
i 1 + clvy|

Constant ¢ in each of the functions describes the numerical “match” between the sgn function and the respective

continuous function used for the approximation. The selection should be governed by the following rules [20]:

e if it were too small the approximation would differ excessively from the sought non-smooth one;
e if it were too large the computation effort is too great and the approximation is not sufficiently smooth.

In Ref. [25] selected numerical values are analysed. It is demonstrated, that a value of ¢ 10° suffices to fulfil
both conditions and the fit with the analytical solution is within 1%. It is suggested that the last formula is
better with regards to the computational speed in attaining the same level of accuracy. In a more recent paper
of the same author [34] the tanh approximation is advocated, as this is an exact representation of the sgn
function in the sense of the so-called non-standard analysis.

Any of the above-mentioned approaches circumvents the problem of solving differential equation (13) with
the discontinuous non-smooth signum function by introducing a continuous smooth function with an
arbitrary large derivative at zero crossing.

3.4. Use of the stick—slip approach

If the stick—slip phenomena are to be accounted for, as indicated by Eq. (8)—case of Fig. 3b, following
approach has to be followed:

1. For v,#0 Eq. (13) is valid;
2. When the v,#0 to v, = 0 transient occurs, the relative movement stops and the force balance condition
across the friction interface has to be tested by the following set of conditions:

(i) Slipping : |v,|>e¢or |[Fr|<Fp, (15a)
(i1) Sticking : |v,|<eand |Fp|<Fj, (15b)
while : F; = mx + kyx, (16)

and ¢ is a sufficiently small number, representing numerically the close vicinity of zero.

Conditions (15) can be expanded further into a more subtle set of conditions, assuming that the oscillatory

system is already in motion:

(a) |v,| >¢, i.e. Eq. (13) holds and no state change occurs.

(b) |v,/<e and concurrently |F,|> Fy. The oscillatory system passes the |v,/ <& margin and continues its
movement without stopping. Eq. (13) holds and no state change occurs.



82 G.J. Stein et al. | Journal of Sound and Vibration 311 (2008) 74-96

(c) v,/ <e and concurrently [Fy| < Fy. The oscillatory systems stops abruptly and state change occurs. The
adhesive forces take over the control of the friction. The system is in a relative standstill at v, = 0 and
from this time instant on the condition [F;|> Fy has to be tested in a loop.

(d) As soon as the condition |F;|> Fy, is met the system starts to move abruptly again. A state change
occurs, |v,] becomes >e¢ and the kinetic friction forces take over. Eq. (13) has to be re-solved with the
actual initial conditions resulting from case (c).

(e) Then the testing of condition |v.|>¢ is to be repeated.

(f) If the oscillatory system starts from rest, the condition |F;| > Fy has to be met first, before any relative
movement is possible.

3. The fulfilment of the constraint x,, < x,)s has to be tested too.
4. For the v, = 0 to |v,|#0 transient, the Gaussian approximation (10) for smoothing the transient may be
used.

This approach follows that one of Karnopp [29], using e~Dv,; however, the bond theory is not applied.
Instead, the operation for the numerical evaluation of the condition v, = 0 is analysed in more detail.

3.5. The determination of the condition v, = 0

The operation of determining when v, reaches zero, or in numerical systems rather the condition |v,| <e, is
generally called ““variable zero-crossing operation” and is facilitated in the standard simulation software by
specific procedures (see e.g. Ref. [33]). The main difficulty for numerical systems with equal time increments is
the need for a precise determination of the time instant, when the zero-crossing occurs, or when |v,| <e, while
the value of ¢ has to be assessed independently. This is very important when processing the real-world data
(as occurring in the ground transportation, for example), commonly sampled at equal time increments. The
standard stiff ordinary differential equations solvers with variable time increment are not applicable, unless the
sampled data set would be re-interpolated in the same way. Another approach is to develop an ordinary
differential equations solver with a fixed time increment, which specifically caters for determining the |v,|<e
condition within the given fixed time increment A¢, as was the case here. In general two methods are feasible:

(1) The close to zero neighbourhood identification method is based on the assumption that the value of v, is
set to zero if |v,| <e. This simple method is limited by the sensitivity to the proper estimation of the variable
&. However, for the random excitation no forward prediction of the v, is feasible, so it is very difficult to
state optimal ¢ beforehand.

(ii) The backward zero-crossing detection method is a common feature of the iterative numerical solutions of
algebraic equations. Detection is done by evaluation of the product of the relative velocities in two
adjacent steps at ¢, ; and ¢;

(a) if vy—1yv,) <0-zero-crossing occurred;
(b) if v,—1)vri) > 0-zero-crossing did not occur.

In the case of positive detection of zero-crossing, the point at #; is rejected and a more precise determination
of the zero-crossing point is further performed using bisection, interpolation or step-size reduction. Both
methods have to be combined.

The step size Atf is crucial for proper simulation of a stiff system of ordinary differential equations in
numerical simulation systems [3,4,25]. In the context of the system analysed here, a fixed equidistant time step
At was used. Increase of Af is advantageous for reducing the duration of the simulation process (reducing
mainly the processing time). On the other hand Af that is too small can rapidly increase numerical error and
the rate of its propagation. Therefore, optimisation of the simulation parameters should always precede
simulation itself [3,4]. The use of a robust Runge—Kutta integration method of the fourth-order yields, in
authors’ experience, acceptable results. An optimal value for As can be determined either analytically or by
trial-and-error method. However, the step size must be always chosen in such a way, that within time interval
of 2At, the excitation signal does not return below the sticking limit. If this happens, false numerical
oscillations, which have no relation to the physical processes at the contact interface, occur, as illustrated
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Fig. 4. Explanation of the step size At.

below. Analytical determination of Az requires evaluation of the following excitation parameters, assuming
harmonic excitation (see Fig. 4):

(a) Maximum excitation frequency fnax = 1/Tmin that should be covered by the simulation, emerging from
analysis of the particular problem. For non-harmonic excitation estimation of an equivalent maximal
frequency is needed, assessed for the particular problem to be analysed.

(b) Estimation of the relative overlap ¢ by which the excitation acceleration amplitude a, 4 at Tp,;/4 exceeds
the limit acceleration a(u,) corresponding to the static friction Fg. This parameter represents the tolerance
to neglected starts in the time history of the simulation, i.e. the tolerance to neglected possible stick = slip
transitions. The value of ¢ depends on the accuracy of i value and should be within 1.001 and 1.100. The
amplitude of the assumed excitation acceleration limit is then a4, = ga(u,). Then the critical maximum
step size At is given by the formula (see also Fig. 4):

[7/2 — arcsin(1/q)] _ [7/2 — arcsin(1/q)]

At<At, =
= “ 27Tfmax Omax

(17)

4. Detailed illustration of the dry friction force simulation approaches
4.1. Introduction

In the following section, an example of the application of both simulation approaches—the signum
approach and the stick—slip approach will be illustrated. But first an important matter has to be noted—due to
the system nonlinearity it has to be decided in advance which system transmissibility characteristics are to be
analysed—either the absolute displacement transmissibility characteristics or the absolute acceleration
transmissibility characteristics. In a linear sdof oscillatory system there is a straightforward relation between
these characteristics, however this is not so for nonlinear systems. As already noted above in respect to
Ref. [11], great care must be taken when inferring from results obtained for the displacement transmissibility
on the behaviour described by the acceleration transmissibility characteristics.

The translational accelerations are most often the measured variables in ground transportation. Hence, in
the following deliberations the acceleration transmissibility characteristics will be analysed, augmented by the
relative displacement transmissibility characteristics. The latter will be used just for testing the condition
Xrq < Xpp to limit the relative displacement (stroke) in relation to the structural constraints, especially around
the natural frequency. This can be an important issue in the ground vehicles and their suspension systems or
suspended driver’s seats.

The example is based on a sdof oscillatory system with both dry friction and viscous energy dissipation, as
depicted on Fig. 1b, equation of motion of which was given above as Eq. (13). Let the mass m = 75 kg, spring
stiffness k, = 7500 Nm~', giving an undamped natural angular frequency wy, = 10.0rads™', i.e. system
natural frequency of fy = 1.592 Hz. Let us assume a linear damping coefficient of value of b = 500 Nsm™'
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(i.e. damping ratio ¢=0.333 and damped natural frequency f;= 1.50Hz). The maximum relative
displacement amplitude x,,, is limited to +25mm. This is a good generic example of a horizontal suspension
system of a contemporary driver’s seat. Two cases will be analysed, further on denoted as “low dry friction”
and “high dry friction” cases, both essentially corresponding to the case depicted in Fig. 3a:
(i) The low dry friction case of Fy = 15N.
(ii) The high dry friction case of Fy = 45N.

These values were chosen, based on the experience, to be representative of driver’ seats [35].

Due to the inherent nonlinearity the standard approach of calculating the frequency response function for the
assumed harmonic excitation with constant acceleration amplitude is not viable. Instead, the ratio of response X
rms value ay, to the excitation i rms value ay, is calculated. This corresponds to the acceleration transmissibility
magnitude for the given excitation signal. Here such ratios are calculated for constant excitation acceleration rms
values ag, = 0.50, 0.75 and 1.0ms™2. A harmonic excitation is used with frequency step of 0.1 Hz in the
frequency band 0.5-10.0 Hz. By the same approach the relative displacement characteristic xo,/ug, corresponding
to the ratio of relative displacement x, rms value x,, to base displacement u rms value uy, is calculated and its
maximum is checked against x,,;, while 1y = v/2aqy / wi, where w, is the excitation angular frequency.

4.2. llustration of the signum approach

The results of the simulation programme employing the signum function approximation by the last formula
of Eq. (14) with constant ¢ = 1 x 10* and fixed integration step A7 = 0.01's, are graphically depicted in Fig. 5
for the low dry friction case and in Fig. 6 for the high dry friction case. For reference, the response curve of a
viscously damped sdof oscillator without dry friction (cf. Fig. 3c) is shown, too. This one is subjected to the
same excitation, which gives a relative displacement at the damped natural frequency f; of 23 mm, i.e. just
below the set maximum of x,;, = 25 mm.

The graphs for the high dry friction force value in Fig. 6 provide a good illustration from which to interpret the
influence of the friction. First, there is a clear difference to the frictionless sdof response at the frequencies above
V2f, ~ 2.25Hz. The dependence of the acceleration transmissibility on the excitation amplitude is much greater
than for the sdof approach with the low dry friction force (Fig. 5). For low excitation amplitude, ag,~0.50ms =,
the acceleration transmissibility value hovers around unity. This indicates that the oscillatory system is at a
standstill and no attenuation of vibration occurs, while Den Hartog’s factor K=~1.08>1. Also, the relative
displacement transmissibility does not reach unity value at higher frequencies, but for ag,~0.50ms™> hovers
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Fig. 5. Curves of (a) acceleration transmissibility and (b) relative displacement transmissibility for sdof oscillatory system with low dry
friction force Fj = 15N for three excitation intensities ao, = 0.50ms 2 ( ), 0.75M 82 (mmm =), 1.00M 8> (mum o mem) and reference
Fp=0N ( ), predicted using the signum function.




G.J. Stein et al. | Journal of Sound and Vibration 311 (2008) 74-96 85

(a) (b)

2 2
18 18t
1.6 | 1.6 t
14 } 14 t
— 12} 12t
S 08| S 08
0.6 0.6 |
04 | 0.4
02 | 0.2
0 — . — 0
0 1 2 3 4 5 6 7 8 9 10 0 1 2 3 4 5 6 7 8 9 10
fIHz] fIHz]

Fig. 6. Curves of (a) acceleration transmissibility and (b) relative displacement transmissibility for sdof oscillatory system with high dry
friction force Fy = 45N for three excitation intensities ao, = 0.50ms ™2 ( ), 0.75m 8% (mmm =), 1.00M 8> (mum o mmm) and reference
Fp=0N( ), predicted using the signum function.

around zero, again indicating system standstill. For the larger acceleration intensities the vibration attenuation
above \/Efo is smaller than would by expected from the analysis of a frictionless sdof oscillatory system.

The acceleration amplification around the damped natural frequency f,, due to the influence of friction
decreases, as expected, which is best seen for the lower dry friction force value (Fig. 5). The decrease of the
amplification (increase in the damping) at f; is dependant on the excitation amplitude and is more pronounced
for the system with the higher dry friction value, F = 45 N. Hence a sdof oscillatory system with dry friction
has better vibration attenuation properties around f; than the sdof system without friction. Also the relative
displacement transmissibility is smaller than that for the frictionless sdof oscillatory system; hence the
constraint x,<Xx,,, is fulfilled.

The influence of the dry friction force on the vibration attenuation properties of the nonlinear system can be
further illustrated by the acceleration transmissibility curve (in log—log representation) for steady-state
acceleration for value ag, = 0.75ms > (Fig. 7) (with K=~0.72<1). Note that even the low dry friction force
value severely decreases the vibration attenuation of the system at frequencies above \/§f0. Moreover, the
figure illustrates the possible margin of vibration attenuation (hatched), which would enable the vibration
attenuation to be improved by reducing the dry friction force. However, no complete removal of the dry
friction is in reality possible, hence a real system would always have worse vibration attenuation properties
above v/2f, o than the frictionless sdof system analysis would indicate.

It is interesting to note the frequency dependence of the maximum of respective dissipative components—
viscous damper force F,; = bv, and friction force |F/|, depicted in Fig. 8. Note, that the friction component is
independent of the excitation frequency, whereas the viscous component F,; is not:

® For the low friction value Fy = 15N (Fig. 8a) the viscous damping term is larger around f; than the
constant friction force Fy. There is an intermittent frequency range, where both terms have approximately
the same magnitude, while with increasing excitation frequency the dry friction term takes over the
vibratory energy dissipation.

® For the high friction value Fy = 45N (Fig. 8b) the constant friction term dominates the whole frequency
range. The viscous damping is pronounced most at f;; however, making only 66% of the former.

4.3. The stick—slip approach

The same parameters were used in a more sophisticated simulation programme, accounting for the
stick—slip phenomena, according to Egs. (15a,b) and (16). The simulation results are shown in Fig. 9 for
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Fig. 7. Nlustration of the dry friction force influence for ag, = 0.75ms ™2 on vibration mitigation properties: Fpe=0N (—), Fp = 15N
(= =), Fp = 45N (=—).
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Fig. 8. Illustration of the dry friction force influence for agp, = 0.75ms ™2 on the relation between maximum values of the two dissipative
), respectively: (a) Fj = 15N and (b) F =45N.

components F; (== ==) and Fj (

Fp = 15N and in Fig. 10 for Fp = 45 N. The respective adhesive friction force Fy, was in both cases assumed
to be larger than Fp by 20%. For reference, the response curve for a viscously damped sdof frictionless
oscillator is shown for the same excitation. The maximum of the limiting force (Eq. (16)) for ag, = 0.50ms ™2
and x, =0mm is 53N, while Fj; = 54N, i.e. the oscillatory system is in permanent sticking state with
K=>~1.08>1, as already noted above. This is clearly seen in Fig. 10b (the bold line); however, not in Fig. 6b
(the bold line) obtained for the signum approach. Hence, the signum approach in the case of permanent
sticking (locked system) provides a result which is not correct. Note that in this state no energy dissipation is
possible. The oscillatory system moves as a rigid body.

The stick—slip model enables calculation of the ratio p defined as the time when the oscillatory system is in
the stick state as a percentage of the total duration of the simulation. The respective values of p for the two dry
friction force values, as a function of frequency, are depicted in Fig. 11, omitting the obvious value of
p = 100% for the permanent sticking state for ag, = 0.50ms ™.

It is seen from Fig. 11 that in the frequency band below system natural frequency fj there is always a region,
where the system remains in a standstill for a while (twice during the oscillation period), as already noted.
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Fig. 9. Transfer function estimates for sdof oscillatory system with low dry friction force Fj = 15N for three excitation intensities
g = 0.50m s~ (), 0.75 M ™2 (e mmm), 1.00 11 S (e @ mm) annd reference Fy = 0N (——), predicted using the stickslip approach.
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Fig. 10. Transfer function estimates for sdof oscillatory system with high dry friction force Fy = 45N for three excitation intensities
g, =0.50ms 2 ( ), 0.75m 52 (mmm =), 1.00M S (mmm © =) and reference Fg=0N( ), predicted using the stick—slip approach.

For the high friction case F; = 45 N there are two limit cases: For the acceleration ag, = 1.00m s~2 there is no
stopping due to the friction, because the equivalent excitation force exceeds the Fy value at v, = 0 and the
mass moves continuously through the ¢ boundary. For ag, = 0.50m s~ the system is in permanent sticking
state. For excitation acceleration ag, = 0.75ms™* the oscillatory system is in a stick state approximately
16.3% of the total simulation time.

It might be interesting to inspect the time history of the response signals in more detail. Fig. 12 shows the
relative displacement Xx,; the relative velocity v, = X,; absolute acceleration a, = X of the oscillating mass m for

two excitation frequencies: 0.5 x fy and 2 x f, while the corresponding frictionless sdof natural frequency is
fo=1.592 Hz, simulation step size At = 0.001s.

From these time courses for harmonic excitation the following observations can be made:

(1) For the sub-resonance domain two stops in each period are visible in the relative velocity v, courses
whereas for the domain above resonance this occurs only for the higher friction case.
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Fig. 11. Frequency dependence of ratio p for different excitation intensities g, = 0.50ms™> (mmmmmm), 0.75mM 5 > (mmm =), 1.00m s>
(e @ mm): (@) Fjpe = 15N and (b) Fp = 45N.

(i1) These stops are visible also in the x, courses and in the response accelerations as the sections
where the response follows the input, preceded by short “hitches” due to the change in friction state
(kinetic to adhesive). There is not much difference between the acceleration courses for both dry friction
values.

(ii1) For the region above the resonance and the low friction case the oscillatory system overshoots the v, = 0
state without stopping, hence no changes in x, and v, are noticeable. However a shift of the order of
2ka/mz0.40ms_2 can be observed in the acceleration time course. This is due to reversing the dry
friction force direction at v, = 0.

(iv) For the region above resonance with the high friction, two stops in one period are observable in the v,
course, but are not noticeable in x, course.

(v) For the region above resonance with the high friction, the vibration dissipation by the dry friction force is
prevailing (see Fig. 8b), hence the acceleration course resembles a rectangular wave with a large content of
higher harmonics rather than a sinusoid. However, a short stop is visible at a point where the acceleration

follows the excitation, as well as the “hitch’ due to the change in the friction state (kinetic to adhesive).
If Fy; = Fy. the “hitch” would not be present.

It can be concluded that the time courses correspond well to the state switching conditions hence the
simulation works as expected. Moreover the response acceleration courses indicate a component with
rectangular time course with large content of higher harmonics, causing harshness in the response, even for the
low-friction case.

Next, the influence of the integration period Af can be illustrated on a numerical example with harmonic
excitation. As already noted the sampling frequency of field measured signals is set independently of the
simulation requirements and cannot be usually changed. Hence the simulation integration period has to follow
the sampling period, if comparison of simulation results to real measured signals is sought. Let us assume
harmonic excitation of the system described above at a frequency 0.5 x fy~0.796Hz and with
apu = 0.55ms 2, i.e. slightly above the stick limit (K~0.98<1). A simulation has been undertaken in turn
with integration time steps Az = 0.01 and 0.001s. The time curves of the response accelerations for both
approaches are depicted in Fig. 13 for Fy = 45N and for F4 = 15N. The parasitic oscillatory phenomenon is
clearly present for Fy = 45N if At = 0.01's, corresponding to the real signal sampling frequency, however not

for At = 0.001s. This would be a proper simulation time step for the signum approach, if no comparison to
measured signal were sought.
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Fig. 12. Time histories of system variables for different excitation frequencies for Fyy = 15N (== ===) and F = 45 N (mmmmm): (a) 0.5 X fo,
(b) 2 x fo, predicted using the stick—slip approach.

5. Comparison of the two dry friction force simulation approaches

In the previous section, the performance of the two approaches to analyse steady-state harmonic excitation
was thoroughly reviewed and some small advantages of the second approach were demonstrated. In this
section, the differences are highlighted in a different way.
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Fig. 13. Time histories of the acceleration responses of an sdof oscillatory system with friction force under harmonic excitation in respect
to different integration steps: (a) At = 0.01s and (b) Az = 0.001s.

In many applications time courses of different variables are less important, while aggregate and statistical
characteristics are preferred, e.g. maximum and minimum values, rms value, crest factors, power spectral
density (PSD), amplitude distribution, etc. Here the acceleration rms values will be used, as explained above.
Moreover, the dry friction value might be much higher than in the previous example, as actually observed [35].

When the signum function method is used, a high friction value in combination with a low v, results in
numerical instability. The numerical instability causes parasitic oscillations in the time interval where v, course
is crossing the zero value. The error appears in the response acceleration and not in the relative displacement.
It can be explained in the following way: the sign output of the signum function for the ith step is determined
by the value in the (i—1)th step. In the vicinity of the zero crossing point the signum function forces the value
for the next step to have the opposite sign and vice versa. If the simulation interval At is too large, or the v,
change is too slow, false oscillations with period 2A¢ occur, even if the real system would stop due to the
friction. In simulation studies this can be circumvented by setting a sufficiently small Az at the expenses of the
simulation time. In analysing real world sampled data, the time interval is set at the time of data acquisition,
and later comparison by simulation means has to follow suit, or the sampled data would have to be re-
sampled. Thus, the choice of simulation interval Az is limited to some extent. If the simulation interval is too
large parasitic oscillations occur when using the signum approach. However, these oscillations do not occur when
using the physically correct stick— slip approach. This will be illustrated in more detail below, based on the field
measured data collected as follows:

Fore-and-aft accelerations were recorded on a driver’s seat below and above the horizontal suspension
system. The seat was mounted in the cabin of an articulated truck, loaded with 22 tones of ballast and driven
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on a highway with a constant speed of 70km. The accelerations were measured using a B&K 4368
accelerometer connected to a B&K 2635 conditioning amplifier and recorded on-board by a Sony 204A DAT
recorder with sampling frequency of 12kHz. The test signal time history, decimated at sampling frequency
100 Hz is shown in Fig. 14.

The difference between both approaches is illustrated firstly by Fig. 15. The same system as described above
is subjected to random input acceleration excitation ag, = 0.35ms ™2, the time history of which is depicted in
Fig. 14. Note false oscillations for Fj; = 45N; a consequence of which is a markedly different acceleration rms
value obtained by evaluating the output signal from the model using the stick—slip approach
(aox = 0.33ms~?), compared with the signum approach, which gives g, = 0.50ms~2. The difference is not
marked for the lower F. = 15N (0.20 versus 0.21 m s72), where virtually no sticking occurs in the time interval
shown. This example illustrates bluntly the principal drawback of the signum method applied to oscillatory
systems in which the equivalent excitation force may fluctuate around the dry friction force.

Furthermore to Fig. 15 it is interesting to explore the influence of dry friction force magnitude on the system
behaviour in more general way, using the aggregate performance description by respective rms values.
In Fig. 16a, the curves that relate the ratios agy/ag, to variable Fy for two different random excitation
intensities ag, = 0.35 and ag, = 0.67ms > are depicted. The selected random excitation time records were
some of those actually measured in the field tests described above, one of them being that one illustrated in
Fig. 14. Also the ratio ag./ay, as a function of the variable Fy for the lower intensity ag, = 0.35m s~ obtained
using the signum approach is depicted by a thin line. Note the large discrepancy between this and the ratio
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Fig. 14. Time history of the random excitation acceleration of the horizontal suspension system.
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Fig. 15. Time histories of acceleration response for an oscillatory system with friction force under random excitation: (a) Fp = 15N,
(b) Fy = 45N; stick-slip model ( ), signum mode] (s m).
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Fig. 16. (a) Acceleration transmissibility for the sdof oscillatory system with dry friction force under random excitation of two intensities,
gy = 0.33ms 2 ( ), doy = 0.67ms 2 (m=m ==) and signum approach for agp, = 0.33ms™2 ( ); (b) corresponding incidence of
sticking p.

calculated by the physically correct model at higher Fj values, which results from the parasitic numerical
oscillations. A similar response would be observed for the higher intensity excitation, but this has been omitted
from the figure for clarity. Both courses start from the same point for Fy. = 0, which corresponds to the ratio
dox/ao, for a sdof oscillator without friction influence.

There is a difference in the system performance, depending on the excitation intensity. The transmissibility
course for the lower intensity excitation approaches the asymptotic limit of unity at a lower dry friction force
value, than does the course for the higher intensity. This is due to more frequent sticking, because the low
intensity excitation at some time instants is not sufficient to excite the system beyond the adhesive force limit.
This is also illustrated in the accompanying Fig. 16b, which shows the ratios p. Note that the eventual
stopping of the oscillatory system with dry friction and consequently vibrating as a rigid body is not indicated
by the frictionless sdof approach at all. Note that for low dry friction force values the sdof system with dry
friction performs marginally better than the frictionless sdof system. The vibration attenuation is better by
some 7.5%. The value of this minimum varies with the excitation and can be controlled to some extent by the
dry friction force magnitude within a small band. This may be a way to improve performance of oscillatory
systems provided that the friction magnitude can be adjusted in a controlled fashion.

As already noted, the ultimate test of each of the approaches is the comparison of simulation results with
those measured in the field conditions. An oscillatory system of the same structure as used in the example;
however, having slightly different parameters and substantially higher friction force, corresponding to that
experimentally measured for a driver’s seat horizontal suspension system [35] was subjected to acceleration
excitation depicted in Fig. 14. An expanded time history segment of duration of 1.5s of measured signal a.(z)
on the isolated mass m (see Fig. 1b) is compared with the simulation result in Fig. 17. The signum approach
was used in Fig. 17a, whereas the stick—slip approach was used in Fig. 17b. The match of the simulated output
acceleration to that one measured in case sub (b) is self-evident and supports the hitherto described confidence
in the developed friction force model and in the programme code used for simulation.

6. Dry friction force influence optimisation in a system without viscous damper

Having developed a physically correct simulation model of an oscillatory system with both viscous and dry
friction dissipative terms, and noting some marginal improvement in vibration attenuation by adjustment of
the dry friction force magnitude a question arises: Would it be possible for a system exposed to low magnitude
random excitation, as sometimes experienced in ground transportation [35], to dispense of the viscous damper
and rely fully on the dry friction for vibration energy dissipation? This approach could have some economic
advantages.
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Fig. 17. Measured ( ) and simulated (=== ===) time histories of acceleration response for real oscillatory system with friction force
under random excitation: (a) signum model and (b) stick—slip model.
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Fig. 18. (a) Acceleration transmissibility for the sdof oscillatory system with dry friction force only under random excitation with
intensities, ap, = 0.33ms™> ( ), g, =0.67ms > (mm==) and signum approach for ag, =0.33ms~> (—); (b) corresponding
incidence of sticking p; (c) absolute maximum values of x, in comparison to x,,,.

In order to investigate this hypothesis, the model treated above and described by Eq. (13) was analysed once
more, assuming b = 0. The equivalent curves to those of Fig. 16 were generated and are shown in Fig. 18,
together with those for max(|x,|)/x,,s as a test of consistency with the stroke limit. From inspection of Fig. 18a
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Fig. 19. Transfer function estimates for sdof oscillatory system with F; = 45N and without viscous damper for three excitation intensities
gy = 0.50m s> ( ), 0.67 M s> (mum mmm), 0.75M 5 (mum @ mem): (@) acceleration transmissibility and (b) absolute maximum values of x,
in comparison to X, .

it can be concluded that the course of both curves for Fy>10N and Fy>20N are very similar to those
of Fig. 16a for a mixed damping oscillatory system. Also the courses of ratio p are nearly identical. The most
important difference is for the dry friction force values below, say, 5-10 N, where the low friction is not
sufficient to damp vibrations and the transmissibility exceeds reasonable limits. The stroke constraint X, is
exceeded as the dry friction force decreases below some 10N, as expected. A minimum in acceleration
transmissibility is observable too, which is approximately coincident with the dry friction force values where
the previous system exhibited a minimum.

A somewhat paradoxical, but important conclusion can be drawn—a sdof oscillatory system with an
appropriate amount of dry friction can be subjected to low intensity random excitation, as occurring in some
real situations, without deterioration in the acceleration attenuation and stroke control in comparison to a
sdof system with both dry friction force and viscous damper. The system performance can be partially
optimised, provided that the intensity of the random excitation is known beforehand and some means of dry
friction force variation can be used, as described e.g. in Ref. [12]. However, no viscous damper is really needed if
shock-less excitation can be reasonably anticipated.

This conclusion cannot be inferred from analysis of a sdof system with dry friction but without viscous
damper if only harmonic analysis is used: The same system as described above was subjected to harmonic
acceleration with RMS values of aq, = {0.50, 0.67, 0.75} ms 2 and a dry friction force value Fg = 45N with
the results illustrated in Fig. 19. The steady-state responses are shown to exceed the stroke limit x,,, in the
region of the resonance. For the lowest acceleration value 0.50 ms™ (K> 1) the static force value of 52N is
not exceeded and hence the system is in a permanent standstill. Response for ag, = 0.75ms 2, calculated
according to the approximate formula Eq. (12b), following the Den Hartog’s theory [3], is indicated in
Fig. 19b by the thin line. Note the good approximation to the simulated response above resonance and in the
vicinity of the resonance. For the sub-resonance region the approximation deteriorates due to the stops, which
are not accounted for by the approximate analytical approach.

7. Conclusions

The paper deals with the analysis and simulation of a general sdof oscillatory system with vibratory energy
dissipation by both an idealised linear viscous damper and a dry friction interface. For modelling of the dry
friction interface the phenomenological approach is employed, described in mathematical form by the
approximate harmonic balance approach, by the signum function approach and by the physically correct
stick—slip approach, assuming switching phenomena within a short time scale. The differences in the last two
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approaches are highlighted, indicating that the physically correct stick—slip approach describes the reality
better than the simpler signum approach. The signum approach is prone to false numerical oscillations that
completely distort the acceleration response signal. These effects are dependant on the relation between the
dry friction force value, the isolated body equivalent excitation force (inertial force in the stick state) and the
relative velocity between the sliding surfaces. This was illustrated on hand of comparison of field
measurements and simulation results. The presented results give confidence in the developed stick—slip model
code. Model analysis in respect to the friction force magnitude has been made, too.

It can be concluded that the simpler model, employing the signum function continuous approximation, is
suitable for oscillatory systems with low inherent dry friction and high equivalent excitation force, whereas the
limit force analysis approach is essential for correct modelling of systems with higher friction and low
equivalent excitation force. The limit force analysis approach describes reality correctly from a physical point
of view, including as it indeed does, also static friction. It is universally applicable for the modelling of any
oscillatory system with dry friction in a generic way, irrespective of the magnitude of the Den Hartog’s factor.
It can accommodate also the cases with variable normal force, such as often encountered in practice, e.g. in
transport industries. Its application circumvents the deeper knowledge of advanced methods of the nonlinear
systems analysis and enables more effective exploitation of available simulation software for a better
understanding of the performance of oscillatory systems.

A sdof oscillatory system without the viscous damper subjected to a stationary random acceleration and to
a harmonic acceleration was analysed, too. It was shown that there is an important difference in the sdof
oscillatory system with dry friction performance, if no viscous damper is installed when subjected to a
stationary random excitation and stationary harmonic excitation with the same acceleration intensity. No
inference from the system behaviour under steady harmonic excitation can be made in respect to the system
behaviour under random excitation. There are even some limited real life cases, occurring in the transport
industries, when the dry friction damping is sufficient and sometimes slightly more effective than a viscous
damper.
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