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Abstract

In this paper a composite triangular shallow shell element has been used for free vibration analysis of laminated

composite skewed cylindrical shell panels. In the present element first-order shear deformation theory has been

incorporated by taking transverse displacement and bending rotations as independent field variables. The interpolation

function used to approximate transverse displacement is one order higher than for bending rotations. This has made the

element free from locking in shear. Two types of mass lumping schemes have been recommended. In one of the mass

lumping scheme the effect of rotary inertia has been incorporated in the element formulations. Free vibration of skewed

composite cylindrical shell panels having different thickness to radius ratios (h/R ¼ 0.01–0.2), length to radius ratios

(L/R), number of layers and fiber orientation angles have been analyzed following the shallow shell method. The results for

few examples obtained in the present analysis have compared with the published results. Some new results of composite

skewed cylindrical shell panels have been presented which are expected to be useful to future research in this direction.

r 2007 Elsevier Ltd. All rights reserved.
1. Introduction

The cylindrical shell panels play an important role in modern engineering. Thus it is not surprising that a
considerable number of literatures have been devoted to the study of the static and dynamic behavior of such
structures.

Over 100 years ago Love developed two-dimensional theory of thin shells. In the last three decades, the
developed refined two-dimensional theories of thin shells include important contribution of Sanders [1],
Flugge [2] and Niordson [3]. Though, in these refined shell theories, the radial stress effect is neglected. The
refined theories by Sanders [1], Flugge [2] and Niordson [3] provide very good results for the analysis of thin
shells.

Initially, relative to the theory of thin shells, the theory of thick shells has received limited attention by the
researchers. With the increase utilizations of thick shells and fiber-reinforced laminated composite shell
structures in various engineering applications, it is important to develop a simple and accurate theory for thick
shells. In thick shell particularly laminated composite shells, the transverse shear deformation may no longer
be neglected.
ee front matter r 2007 Elsevier Ltd. All rights reserved.
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Nomenclature

a length of the square shell panel
E modulus of elasticity of isotropic shell

material
E1 modulus of elasticity of composite mate-

rial along fiber direction
E2 modulus of elasticity of composite mate-

rial perpendicular to fiber direction
G modulus of rigidity
h thickness of the shell panel

L length of the shell panel
R radius of the middle surface of the shell

panel
a skew angle of the shell panel
l dimensionless frequency parameter
n Poisson’s ratio
y subtended angle of the cylindrical shell

panel
r mass density of the shell material
o circular frequency in rad/s
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Qatu [4,5], in his papers has presented the free vibration behavior of isotropic and composite shell panels.
Dynamic and static analysis of open cylindrical shell freely supported along curved edges and having different
boundary conditions along straight edges has been analyzed by Selmane and Lakis [6]. Lee and Han [7] have
discussed the free vibration analysis of isotropic plates and shells using a nine-node degenerated shell element.
In this analysis first-order shear deformation theory has been used. Liu et al. [8] have implemented the element
free Galerkin method for static and free vibration analysis of general shell structures. The formulation has
been verified through numerical example of static and vibration of spatial shell structures. A refined theory for
thick spherical shell has been presented by Voyiadjis and Woelke [9]. The equations given in this paper do not
only incorporate the effects of transverse shear deformation but also account for initial curvature as well as the
radial stress. Hossain et al. [10] have presented an improved finite element model for the linear analysis of
anisotropic and laminated doubly curved, moderately thick composite shell panels. The model has been
developed considering first-order shear deformation theory. Both shallow and deep shells have been
investigated. Kandasamy and Singh [11] have presented a numerical investigation of free vibration of skewed
open cylindrical isotropic shells. In the formulation, first-order shear deformation theory and rotary inertia
have been included. Thin and moderately thick shells have been studied.

In the present work, free vibration of laminated composite skewed cylindrical shell panels has been studied
using the concept of shallow shell method. First-order shear deformation theory has been included in the
present finite element formulation. The effect of rotary inertia has been included in the formulation.
2. Finite element formulation

The formulation is based on shallow shell theory. A typical shell element shown in Fig. 1 has been projected
in the base plane. The location of the nodes 3, 7 and 11 are at the midpoint of the corresponding sides while
nodes 2, 4, 6, 8, 10 and 12 are located at a distance of one third of the length of the corresponding sides from
Fig. 1. A typical shell element projected in the base plane.
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their nearest corner. The coordinates of the nodes 13, 14, 15 and 16 are (1/2, 1/4, 1/4), (1/4, 1/2, 1/4), (1/4, 1/4,
1/2) and (1/3, 1/3, 1/3), respectively. The degrees of freedom at nodes 1–12, (except 3, 7 and 11) are u, v, w, yx

and yy. It is only w at nodes 3, 7, 11, 13, 14 and 15. The centroidal node has u, v, yx and yy as degrees of
freedom.

The displacements (u, v and w) and rotations of the normal (yx and yy) have been taken as independent field
variables and they may be expressed as

u ¼ ½P1�fZg, (1a)

v ¼ ½P1�fbg, (1b)

w ¼ ½P2�fgg, (1c)

yx ¼ ½P1�fmg (1d)

and

yy ¼ ½P1�flg, (1e)

where

½P1� ¼ L3
1 L3

2 L3
3 L2

1L2 L2
2L1 L2

2L3 L2
3L2 L2

3L1 L2
1L3 L1L2L3

� �
,

½P2� ¼ ½L
4
1 L4

2 L4
3 L3

1L2 L3
2L1 L3

2L3 L3
3L2 L3

3L1 L3
1L3 L2

1L
2
2

L2
2L

2
3 L2

3L2
1 L2

1L2L3 L1L
2
2L3 L1L2L2

3�,

fZg ¼ ½a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 �T

fbg ¼ ½a11 a12 a13 a14 a15 a16 a17 a18 a19 a20 �T

fgg ¼ ½a21 a22 a23 a24 a25 a26 a27 a28 a29 a30 a31 a32 a33 a34 a35�T,

fmg ¼ ½a36 a37 a38 a39 a40 a41 a42 a43 a44 a45�T

and

flg ¼ ½a46 a47 a48 a49 a50 a51 a52 a53 a54 a55�T.

Now the above Eqs. (1a)–(1e) may be substituted appropriately at the different nodes of the element (Fig. 1)
appropriately which will give the relationship between the unknown coefficients of the above polynomials
(Eqs. (1)) and the nodal degrees of freedom as

fdeg ¼ ½A�fag or fag ¼ ½A��1fdeg, (2)

where

fag ¼ ½a1 a2 ����� a55�,

fdeg
T ¼ ½u1 v1 w1 yx1 yy1 u2 v2 w2 yx2 yy2 w3 u4 v4 w4 yx4 yy4 u5

v5 w5 yx5 yy5 u6 v6 w6 yx6 yy6 w7 u8 v8 w8 yx8 yy8 u9 v9

yx9 yy9 u10 v10 w10 yx10 yy10 w11 u12 v12 w12 yx12 yy12 w13 w14

w15 u16 v16 yx16 yy16�

and the matrix [A] having an order of 55� 55 contains the coordinates of the different nodes. As the rotations
of the normal yx and yy are independent field variables and they are not derivatives of w, the effect of shear
deformation can be easily incorporated as follows:

fx

fy

( )
¼

yx � qw=qx

yy � qw=qy

( )
, (3)
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where fx and fy are the average shear strain over the entire plate thickness and yx and yy are components of
rotation of the normal.

The generalized stress strain relationship of a laminated plate may be written as

fsg ¼ ½D�f�g, (4)

where

fsgT ¼ ½Nx Ny Nxy Mx My Mxy Qx Qy�, (5)

f�g ¼

qu=qxþ w=Rx

qv=qy

qu=qyþ qv=qx

�qyx=qx

�qyy=qy

�qyx=qy� qyy=qx

qw=qx� yx

qw=qy� yy

8>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

9>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>;

(6)

and

½D� ¼

A11 A12 A16 B11 B12 B16 0 0

A21 A22 A26 B21 B22 B26 0 0

A61 A62 A66 B61 B62 B66 0 0

B11 B12 B16 D11 D12 D16 0 0

B21 B22 B26 D21 D22 D26 0 0

B61 B62 B66 D61 D62 D66 0 0

0 0 0 0 0 0 A55 A54

0 0 0 0 0 0 A45 A44

2
666666666666664

3
777777777777775

. (7)

The rigidity matrix [D] constitutes of the contributions of its individual layers. Using the material properties
and fiber orientation of the individual layers it can be easily obtained following the steps available in any
standard text on mechanics of fiber reinforced laminated composites.

Now the field variables as expressed in Eqs. (1) may be substituted in Eq. (6) to express the strain
vector {e} as

f�g ¼ ½C�fag. (8)

With the help of Eq. (2), the strain vector {e} in the above Eq. (8) may be expressed in terms of nodal
displacement vector {de} as

f�g ¼ ½C�½A��1fdeg ¼ ½B�fdeg. (9)

Once the matrices, [B] and [D] are obtained, the element stiffness matrix [Ke] can be easily derived using the
virtual work technique and it may be expressed as

½Ke� ¼

Z
A

½B�T½D�½B�dxdy. (10)
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In a similar manner, the consistent mass matrix of an element can be derived and it may be expressed with
the help of Eqs. (1)–(2) as

½Me� ¼ rh

R
A
½A�1�T½Q1�

T½Q1�½A
�1�dxdyþ

R
A
½A�1�T½Q2�

T½Q2�½A
�1�dxdy

þ
R

A
½A�1�T½Q3�

T½Q3�½A
�1�dxdyþ

h2

12

R
A
½A��T½Q4�

T½Q4�½A�
�1qxqy

þ
h2

12

R
A
½A��T½Q5�

T½Q5�½A�
�1qxqy

0
BBBBB@

1
CCCCCA, (11)

where

Q1

� �
¼ P1 N1 N2 N1 N1½ �; Q2

� �
¼ N1 P1 N2 N1 N1½ �,

Q3

� �
¼ N1 N1 P2 N1 N1½ �; Q4

� �
¼ N1 N1 N2 P1 N1½ �

and

Q5

� �
¼ N1 N1 N2 N1 P1½ �.

In the above equations [N1] and [N2] are null matrices of order 1� 10 and 1� 15, respectively. The first two
terms of the mass matrix in Eq. (11) is associated with in-plane movements of mass, third term indicates
transverse move of mass (which is usually found to contribute the major inertia) while the last two terms
are associated with rotary inertia and their contribution becomes significant only in a shell having higher
thickness ratio.

Though the consistent mass matrix presented in Eq. (11) indicates all the contributions including rotary
inertia it cannot be used. With this mass matrix the degrees of freedom at internal nodes (which contains
sufficient amount of mass) cannot be eliminated but it is desired to eliminate these quantities for the
improvement of computational elegance. The above problem has been avoided by using a lumped mass matrix
where the mass of an element is to be distributed at the external nodes only. In this context two different mass
lumping schemes have been recommended, which are as follows.

In the first lumping scheme, the mass of an element me has been taken at the degrees of freedom w of all the
external nodes. Thus the mass matrix contains twelve non-zero elements at twelve diagonals and their
summation is equal to the mass of the element. The distribution of mass of an element at these twelve degrees
of freedom has been made in proportion to the diagonal elements of the consistent mass matrix (Eq. (11)). The
idea is similar to that of Hinton et al. [12] except that the mass at some of the nodes has not been taken in the
present case. This mass lumping scheme has been defined as LS12 and it is as follows:

mwl
ii ¼

miiP
mii

meðI ¼ 3; 8; 11; 14; 19; 24; 27; 30; 35; 40; 43; 46Þ,

where mwl
ii are the ith diagonal elements corresponding to w of the proposed lumped mass matrix and mii is the

ith diagonal element of the consistent mass matrix [Me].
In the second lumping scheme (LS9RI), the effect of rotary inertia (as well as in-plane effect) has been taken

into account, which will be mass contributions in addition to those (mwl
ii ) taken in the previous case (LS12). In

this lumping scheme the external nine nodes containing the degrees of freedom of u, v, w, yx and yy have been
considered. Similar technique has been followed to get it at the external nodes as follows:

mul
ii ¼

miiP
mii

me ði ¼ 1; 6; 12; 17; 22; 28; 33; 38; 44Þ,

mvl
ii ¼

miiP
mii

me ði ¼ 2; 7; 13; 18; 23; 29; 34; 39; 45Þ,
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mwl
ii ¼

miiP
mii

me ði ¼ 3; 8; 11; 14; 19; 24; 27; 30; 35; 40; 43; 46Þ,

myxl
ii ¼

h2

12

miiP
mii

me ði ¼ 4; 9; 15; 20; 25; 31; 36; 41; 47Þ

and

m
yyl
ii ¼

h2

12

miiP
mii

me ðI ¼ 3; 8; 11; 14; 19; 24; 27; 30; 35; 40; 43; 46Þ,

where the use of (h2/12) can be justified with the expression of the consistent mass matrix as presented
in Eq. (11)

Following any one of the above two lumping schemes, the mass matrix can be formed, which will be
diagonal matrix having zero mass at the degrees of freedom of the internal nodes. With such a mass matrix, it
is easy to perform the static condensation of the internal nodes of the element.

In this stage, the order of [Ke] and {Me} is fifty-five, which is reduced to forty-eight by eliminating the
degrees of freedom of the internal nodes (w13, w14, w15, u16, v16, yx16 and yy16) through static condensation.

The stiffness matrix and mass matrix having an order of forty eight in their final form has been evaluated for
all the elements and they have been assembled together to form the overall stiffness [K] and mass matrix [M],
respectively. Once [K] and [M] are obtained, the equation of motion of the plate may be expressed as

½K� ¼ o2½M�. (12)

After incorporating the boundary conditions in the above equation it has been solved by simultaneous
iterative technique [13] to get frequency o for first few modes.

3. Results and discussions

Numerical example of composite skewed cylindrical shell panels are solved by the proposed composite
shallow shell element. Isotropic skewed cylindrical shell panels and a laminated composite shell panels are
solved and compared with the published results to validate the present finite element formulation.

3.1. Isotropic skewed cylindrical shell and composite shell panels

An isotropic open cylindrical shell fixed along the curved edges (Figs. 2 and 3) and other two straight edges
free is analyzed for three different values of thickness to radius ratio h/R (0.01, 0.1 and 0.2). The analysis is
x

yL
R

θ

Fig. 2. Cylindrical shell panel with dimensions.
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Fig. 3. Three dimensional and top view of skewed cylindrical shell panels.

Table 1

Comparison of the first five frequency parameter l ¼ oROr/E for isotropic skew cylindrical shell panel fixed at the curved edges with

a ¼ 451, y ¼ 601 and L/R ¼ 4.0

h/R Source Mode number

1 2 3 4 5

0.01 LS12 (8� 3)a 0.024 0.040 0.059 0.062 0.088

LS12 (10� 4) 0.024 0.040 0.059 0.061 0.086

LS12 (13� 5) 0.024 0.040 0.059 0.061 0.085

LS9RI (8� 3) 0.025 0.041 0.052 0.065 0.089

LS9RI (10� 4) 0.024 0.040 0.060 0.063 0.088

LS9RI (13� 5) 0.024 0.040 0.059 0.062 0.087

Kandasamy and Singh [11] 0.024 0.040 0.059 0.062 0.084

0.1 LS12 (8� 3) 0.078 0.117 0.212 0.240 0.374

LS12 (10� 4) 0.087 0.117 0.212 0.240 0.375

LS12 (13� 5) 0.087 0.117 0.212 0.240 0.375

LS9RI (8� 3) 0.084 0.117 0.203 0.239 0.363

LS9RI (10� 4) 0.084 0.116 0.203 0.237 0.362

LS9RI (13� 5) 0.084 0.115 0.202 0.236 0.361

0.2 LS12 (8� 3) 0.127 0.208 0.335 0.413 0.626

LS12 (10� 4) 0.127 0.208 0.334 0.414 0.628

LS12 (13� 5) 0.127 0.208 0.334 0.415 0.629

LS9RI (8� 3) 0.122 0.204 0.316 0.389 0.403

LS9RI (10� 4) 0.121 0.202 0.315 0.388 0.401

LS9RI (13� 5) 0.121 0.202 0.315 0.388 0.400

aPresent analysis based on mesh division 8� 3 using the mass lumping scheme LS12, which is similarly applicable for other mesh

divisions and mass lumping scheme.
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performed considering skew angle a ¼ 451, subtended angle y ¼ 601 and L/R ¼ 4.0. The first five natural
frequencies obtained with both the mass lumping schemes (LS12 and LS9RI) are presented in Table 1 for
different mesh division with those of Kandasamy and Singh [11]. For h/R ¼ 0.01 the present results are very
close to the solution of Kandasamy and Singh [11]. Kandasamy and Singh [11] analyzed the problem using
Rayleigh–Ritz method.

A cantilever square symmetric cross ply (0/90/0) shell panel (cylindrical, spherical and saddle type) having
thickness ratio h/a ¼ 0.01 is analyzed using both the mass lumping schemes (LS12 and LS9RI). The first five
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Table 2

First five frequency parameter l ¼ (oa2Or/E1)/h for cantilever composite (0/90/0) square shell panel fixed at one curved edge with,

E1 ¼ 138.0GPa, E2 ¼ 8.96GPa, G12 ¼ 7.1GPa, n12 ¼ 0.3, h/a ¼ 0.01and a/R ¼ 0.5

Shell type Sources Mode number

1 2 3 4 5

Saddle Ry/Rx ¼ �1.0 LS12 (6� 6) 1.4875 1.5759 5.9754 7.1698 11.388

LS12 (8� 8) 1.4929 1.5779 6.0322 7.2178 11.517

LS12 (10� 10) 1.4981 1.5823 6.0606 7.2465 11.574

LS9RI (6� 6) 1.4495 1.5434 5.8940 6.7969 11.002

LS9RI (8� 8) 1.4579 1.5476 5.9560 6.8451 11.166

LS9RI (10� 10) 1.4630 1.5502 5.9833 6.8749 11.237

Chakraborty et al. [14] 1.4643

Cylindrical LS12 (6� 6) 1.8542 2.4407 4.5910 6.3239 7.8281

LS12 (8� 8) 1.8625 2.4482 4.6023 6.3581 7.9762

LS12 (10� 10) 1.8644 2.4512 4.6066 6.3744 8.0486

LS9RI (6� 6) 1.8564 2.4632 4.5530 6.4833 7.7880

LS9RI (8� 8) 1.8638 2.4594 4.5588 6.4435 7.9454

LS9RI (10� 10) 1.8647 2.4541 4.5599 6.4243 8.0232

Chakraborty et al. [14] 1.8649

Spherical Ry/Rx ¼ 1.0 LS12 (6� 6) 1.5540 1.9399 4.9618 6.9401 8.4938

LS12 (8� 8) 1.5587 1.9465 5.0073 7.0205 8.5955

LS12 (10� 10) 1.5622 1.9515 5.0302 7.0591 8.6425

LS9RI (6� 6) 1.5248 1.8895 4.9247 6.5370 8.2449

LS9RI (8� 8) 1.5297 1.9012 4.9632 6.6148 8.3616

LS9RI (10� 0) 1.5323 1.9068 4.9819 6.6519 8.4142

Chakraborty et al. [14] 1.5361

S. Haldar / Journal of Sound and Vibration 311 (2008) 9–1916
natural frequencies obtained are presented in Table 2 with those of Chakraborty et al. [14]. The present results
obtained by mass lumping scheme LS9RI are very close to the solutions of Chakraborty et al. [14].

From Tables 1 and 2, it is seen that for thin isotropic shell both the proposed mass lumping schemes are
equally good. As thickness to radius ratio increases effect of rotary inertia also increases. Therefore, for thin
isotropic shells both the mass lumping schemes are recommended whereas for thick isotropic shells and
composite shells of any thickness mass lumping scheme LS9RI is recommended.

Both the above examples are given for validation of the present element, formulation and proposed mass
lumping schemes.

3.2. Laminated composite skewed cylindrical shell panels

Laminated composite skewed cylindrical shell panel fixed along one curved edges (Figs. 2 and 3) and other
three edges free is analyzed for h/R ¼ 0.01. The analysis is performed considering skew angle a ¼ 451,
subtended angle y ¼ 601 and L/R ¼ 4.0. Both symmetric and anti-symmetric cross ply having different
layer numbers are investigated. The first five natural frequencies obtained by the mass lumping scheme
LS9RI are presented in Table 3 for different mesh division. From Table 3 it is seen that for same thickness
ratio as number of layer increases frequencies also increase for anti-symmetric ply and it is reverse for
symmetric ply.

Four layer anti-symmetric angle ply skewed composite cylindrical shell panel fixed along one curved edge
and other three edges free having different fiber orientations is analyzed. Effect of different L/R ratios (1, 2
and 4) and fiber orientation angles is investigated in this example. The analysis is performed considering skew
angle a ¼ 451, h/R ¼ 0.1 and subtended angle y ¼ 30o. The first five natural frequencies obtained using mass
lumping scheme LS9RI is presented in Table 4 considering mesh divisions 20� 3. From Table 4 it is seen that
frequency is maximum for lamination scheme 15/�15/15/�15 in all the cases.



ARTICLE IN PRESS

Table 3

First five frequency parameter l ¼ (oROr/E)/h for cantilever skew composite cylindrical shell panel fixed at one curved edge with a ¼ 451,

y ¼ 601, h/R ¼ 0.01 and L/R ¼ 4.0, E1/E2 ¼ 40, G23 ¼ 0.5E2, G13 ¼ G13 ¼ 0.6E2 and n12 ¼ 0.25

Lamination schemes (deg.) Source Mode number

1 2 3 4 5

For anti-symmetric lamination

0/90 LS9RI (10� 4) 1.442 3.428 6.366 9.506 12.944

LS9RI (13� 5) 1.436 3.426 6.387 9.525 12.985

LS9RI (16� 6) 1.433 3.426 6.404 9.566 12.995

0/90/0/90 LS9RI (10� 4) 1.478 3.508 6.704 10.694 14.952

LS9RI (13� 5) 1.473 3.508 6.726 10.753 15.024

LS9RI (16� 6) 1.470 3.508 6.741 10.813 15.126

0/90/0/90/0 LS9RI (10� 4) 1.484 3.523 6.770 10.908 15.242

90/0/90/0/90 LS9RI (13� 5) 1.481 3.522 6.791 10.970 15.329

LS9RI (16� 6) 1.479 3.522 6.806 11.031 15.435

For symmetric lamination

0/90/0 LS9RI (10� 4) 1.595 3.737 6.837 8.900 9.975

LS9RI (13� 5) 1.590 3.734 6.853 8.809 9.809

LS9RI (16� 6) 1.588 3.734 6.869 8.775 9.734

0/90/0/90/0 LS9RI (10� 4) 1.568 3.730 7.020 10.833 14.936

LS9RI (13� 5) 1.563 3.731 7.043 10.862 14.989

LS9RI (16� 6) 1.560 3.731 7.059 10.894 14.999

0/90/0/90/0/90/0 LS9RI (10� 4) 1.539 3.653 6.942 10.942 15.200

LS9RI (13� 5) 1.534 3.654 6.964 10.988 15.257

LS9RI (16� 6) 1.532 3.654 6.980 11.032 15.310

Table 4

First five frequency parameter l ¼ (oROr/E)/h for cantilever skew composite cylindrical shell panel fixed at one curved edge with y ¼ 301,

h/R ¼ 0.1 and a ¼ 451. E1/E2 ¼ 40, G23 ¼ 0.5E2, G13 ¼ G13 ¼ 0.6E2 and n12 ¼ 0.25

L/R Lamination scheme (deg.) Mode number

1 2 3 4 5

4 15/�15/15/�15 0.355 1.741 1.968 2.348 5.304

30/�30/30/�30 0.214 0.990 1.303 3.008 3.597

45/�45/45/�45 0.119 0.550 0.737 2.046 3.240

60/�60/60/�60 0.084 0.408 0.521 1.431 2.452

2 15/�15/15/�15 1.448 4.446 6.460 7.960 12.810

30/�30/30/�30 0.966 4.077 4.955 6.812 12.444

45/�45/45/�45 0.561 2.373 3.226 6.902 8.442

60/�60/60/�60 0.384 1.768 2.258 5.679 6.597

1 15/�15/15/�15 5.583 11.981 19.574 22.676 23.865

30/�30/30/�30 4.314 11.687 15.155 20.024 23.221

45/�45/45/�45 2.782 9.606 11.432 16.711 21.868

60/�60/60/�60 1.876 7.411 8.956 14.910 17.473
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The effect of skew angle (a) on free vibration of four layer symmetric cross ply (0/90/90/0) skewed
cylindrical shell panel fixed at one curved edge and other three edges free is investigated in this example. Shells
having h/R ¼ 0.01, 0.1 and 0.2 and y ¼ 60o and 30o are analyzed. The first five natural frequencies obtained
are presented in Table 5 considering mesh divisions 16� 3 for y ¼ 30o and 20� 5 for y ¼ 60o. It is seen that as
skew angle increases natural frequencies also increase.
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Table 5

First five frequency parameter l ¼ (oROr/E)/h for cantilever skew composite (0/90/90/0) cylindrical shell panel fixed at one curved edge

with L/R ¼ 4.0. E1/E2 ¼ 40, G23 ¼ 0.5E2, G13 ¼ G13 ¼ 0.6E2 and n12 ¼ 0.25

y (deg.) Skew angle (a) (deg.) h/R Mode number

1 2 3 4 5

60 15 0.01 1.399 3.438 6.390 11.404 14.047

30 1.412 3.402 6.462 10.892 13.950

45 1.482 3.479 6.723 10.097 13.494

15 0.1 0.501 0.784 2.103 2.628 2.920

30 0.503 0.796 2.137 2.651 2.943

45 0.521 0.814 2.210 2.723 3.009

15 0.2 0.389 0.708 1.054 1.978 2.444

30 0.397 0.716 1.077 2.000 2.459

45 0.402 0.727 1.135 2.062 2.478

30 15 0.01 1.042 1.461 5.008 5.779 10.289

30 1.045 1.475 5.045 5.795 10.389

45 1.057 1.491 5.048 5.840 10.436

15 0.1 0.381 1.256 1.343 2.253 4.094

30 0.383 1.259 1.356 2.269 4.090

45 0.387 1.259 1.383 2.306 4.067

15 0.2 0.362 0.670 1.047 1.904 2.836

30 0.363 0.676 1.053 1.917 2.894

45 0.367 0.689 1.061 1.947 2.979

Table 6

First five frequency parameter l ¼ (oROr/E)/h for cantilever skew composite cylindrical shell panel fixed at one curved edge with L/R ¼

4.0, y ¼ 301, h/R ¼ 0.1 E1/E2 ¼ 40, G23 ¼ 0.5E2, G13 ¼ G13 ¼ 0.6E2 and n12 ¼ 0.25

Skew angle (a) (deg.) Lamination scheme (deg.) Mode number

1 2 3 4 5

15 0/90 0.188 1.098 1.159 1.366 2.979

0/60 0.192 1.148 1.290 1.477 3.082

0/45 0.202 1.205 1.375 1.658 3.242

0/30 0.225 1.313 1.431 1.853 3.552

0/15 0.293 1.402 1.555 2.025 4.061

30 0/90 0.190 1.078 1.194 1.386 2.949

0/60 0.196 1.150 1.315 1.509 3.087

0/45 0.207 1.212 1.399 1.700 3.251

0/30 0.231 1.313 1.462 1.907 3.536

0/15 0.300 1.391 1.578 2.101 3.980

45 0/90 0.195 1.064 1.239 1.427 2.919

0/60 0.203 1.157 1.354 1.564 3.101

0/45 0.215 1.225 1.440 1.765 2.264

0/30 0.240 1.316 1.510 1.985 3.514

0/15 0.311 1.374 1.615 2.199 3.892
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Same cylindrical shell panel having various fiber orientation angles is analyzed considering h/R ¼ 0.1,
L/R ¼ 4.0 and y ¼ 30o. The analysis is performed considering skew angle a ¼ 15o, 30o and 45o. The first five
natural frequencies obtained using mass lumping scheme LS9RI is presented in Table 6 considering mesh
divisions 16� 3. From Table 6 it is seen that frequency is maximum for lamination scheme 0/15 in all
the cases.
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4. Conclusions

A triangular composite shallow shell element is used for free vibration of composite skewed cylindrical shell
panels. The effect of shear deformation is incorporated in the element formulation in such a way that there is
no shear locking problem. As there is no suitable results for free vibration of composite skewed shell panels,
the present formulation is tested with published isotropic skewed cylindrical shell panel and composite shell
panel. The first two examples show that the present element formulation is very effective for both isotropic
and composite shell panels. The proposed mass lumped schemes are very efficient and one of them is
recommended for free vibration of both thick and thin shells. Analysis is performed for free vibration of
composite skewed cylindrical shell panels having different length to radius ratios, skew angles, thickness to
radius ratios, fiber orientation angles and number of layers. It is expected that these new results for free
vibration of skewed composite cylindrical shell panels will be useful in future research.
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