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aDepartment of Mechanical Engineering, Celal Bayar University, 45140 Muradiye, Manisa, Turkey
bDepartment of Genetics and Bioengineering, Fatih University, 34500 B. C- ekmece, Istanbul, Turkey

Received 31 March 2007; received in revised form 2 October 2007; accepted 2 October 2007

Available online 5 November 2007
Abstract

The transverse vibrations of simply supported axially moving Euler–Bernoulli beams are investigated. The beam has a

time-varying axial velocity with viscous damping. Traveling beam eigenfunctions with infinite number of modes are

considered. Approximate analytical solutions are sought using the method of Multiple Scales, a perturbation technique.

A detailed analysis of the resonances in which upto four modes of vibration involved are performed. Stability analysis

is treated for each type of resonance. Approximate stability borders are given for the resonances involving only two modes.

For higher number of modes involved in a resonance, sample numerical examples are presented for stabilities.

r 2007 Elsevier Ltd. All rights reserved.
1. Introduction

Band-saws, chains, conveyer belts, fiber textiles, magnetic tapes, paper sheets, aerial tramways, pipes
transporting fluids, threadlines are some technological examples of problems classified as axially moving
continua. Either a string model or a beam model can be used to analyze such systems. Linear and nonlinear
models exist in the literature. For a review of the vast literature, see papers by Ulsoy et al. [1], Wickert and
Mote [2] and Chen [3]. The axially moving strings and beams in transverse motions were investigated and the
effect of tension was included by Wickert and Mote [4]. Wickert [5] included the nonlinear stretching effects
for a moving beam and analyzed both the subcritical and supercritical speed range for a traveling beam. Using
a similar model, Chakraborty et al. [6] investigated the free and forced responses of a traveling beam.

While most of the studies deal with the constant velocity problem, some papers addressed the influence of
speed variation on the vibrations. Mote [7] investigated the problem of an axially accelerating string with
harmonic excitation at one end; he replaced the variable coefficients by their time averaged values and
investigated stability by Laplace transform techniques. Pakdemirli et al. [8] used Floquet theory to determine
stability of a string moving with harmonically varying velocity. A constant acceleration–deceleration type
periodic velocity case has also been investigated [9]. Using the asymptotic approach of Krylov, Bogoliubov
and Mitropolsky, Wickert [10] developed the amplitude and phase modulations for an accelerating string.
ee front matter r 2007 Elsevier Ltd. All rights reserved.

v.2007.10.003

ing author. Tel.: +90 236 2412146; fax: +90 236 2412143.

esses: mpak@bayar.edu.tr, pakdemirli@yahoo.com (M. Pakdemirli).

www.elsevier.com/locate/jsvi
dx.doi.org/10.1016/j.jsv.2007.10.003
mailto:mpak@bayar.edu.tr,
mailto:pakdemirli@yahoo.com


ARTICLE IN PRESS
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Pakdemirli and Ulsoy [11] used the method of multiple scales to predict stability of a string moving with a
harmonically varying velocity. Traveling string eigenfunctions are not orthogonal to each other and this
appears as a serious problem in discretization. To eliminate the problem, Wickert and Mote [12,13] transferred
the equations of motion into a first-order system and selected suitable orthogonal basis functions to discretize
the equations. In the direct perturbation method, however, the method of multiple scales is applied directly to
the partial differential equation and this method does not require transformation of the equations or the
selection of an orthonormal basis (see Ref. [11] for comparisons of both approaches). Öz and Pakdemirli [14]
and Öz [15] extended the analysis in Ref. [11] to beams for different end conditions.

Recently, some papers investigated the transition behavior from string to beam for axially moving
materials. Since the flexural stiffness term, which contains the highest order derivative is small compared to
other terms, the problem is essentially a boundary layer problem. Öz et al. [16] constructed an outer solution
for a variable speed beam using the method of multiple scales. This solution does not satisfy the moment
conditions at the ends. Pellicano and Zirilli [17] constructed a boundary layer solution for constant velocity
case using a linear and nonlinear model. Pakdemirli and Özkaya [18] used the method of multiple scales and
found a boundary layer solution for constant velocity case.

Variable axial transport velocity problem has been addressed in some recent work [19–28]. Viscoelastic
string and beam models with harmonically varying axially transport velocity were considered by Chen et al.
[19,20], Chen and Yang [21,22], Yang and Chen [23], Chen [24] and Chen and Yang [25]. Comparison of
different mathematical models, comparison and employment of different numerical and analytical techniques
were discussed in the mentioned papers. Simply supported beam with torsional springs at the supports were
considered in Ref. [25]. In all papers addressing speed fluctuations, parallel to the applications, the mean speed
was taken to be of order 1 and the variations in the speed to be of order e, e representing a much smaller
quantity than 1. On the other hand, Suweken and Horssen [26,27] considered a type of harmonic variation in
which the mean speed and variations in velocity were both of the same order and small. This selection has
limited practical application. Moreover, stationary string eigenfunctions used throughout the analysis have
poor convergence properties. For a vanishing mean velocity, they might be used as was done in Refs. [26,27]
but for a large mean velocity, traveling eigenfunctions are much better. The truncation to finite number of
modes were addressed in detail claiming that the truncation leads to incorrect solutions. Truncated mode
solutions can be considered as solutions valid if all resonant modes are taken into account and non-resonant
modes ignored. For this to happen, the system should be non-conservative and in real systems one always have
a damping mechanism which enables decaying of non-resonant modes. In axially moving strings, the natural
frequencies appear as integer multiples of each other yielding infinitely many resonance conditions. The
problem was addressed in a recent paper by Ponomavera and Van Horssen [28]. Their system was conservative
without damping and the mean velocities are of order 1 compared to the velocity fluctuations which are of
order e. Some calculations for the amplitudes of vibrations were presented for the infinite mode interaction
case but as expected, no applicable solution was presented for the general case of infinite mode resonances.
They also mentioned that extracting more information from their system of equations (i.e. Eqs. (33) and (34))
remains an open subject for future research. For the beam problem considered here, frequencies are not exact
multiples of each other and resonances are not expected to be as rich as the string case. However, special care
has to be taken in identifying all resonant modes and this requires information and therefore numerical
calculation of a large number of modes. Some comments on this issue will be given in the subsequent chapters.

In this work, we generalize our previous work (with emphasis to Ref. [14]) with finite number of modes to an
analysis which can be applied to infinite number of modes. To better represent real systems, a damping term is
also included to deviate the system form a conservative one to a more realistic non-conservative one. Mode
interactions are studied in detail. In addition to the principal parametric resonances, sum- and difference-type
resonances of the previous work [14], more interactions involving upto four different modes are considered.
Mode interactions depend on the specific numerical values of the modes which are functions of mean velocity
and flexural stiffness and it is shown that under certain conditions, the modes that are not excited through
some mechanism of the fluctuation frequency decay in time. For some specific parameters, resonances
involving more than four modes may appear. This requires numerical calculation of infinite number of modes
which is practically impossible because modes are also affected by the mean velocity and stiffness of the
system. Instead, the analysis is limited to four mode interactions at most and parameters such as fluctuation
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frequency and mean velocity are selected to avoid higher number of mode interactions. A detailed stability
analysis corresponding to each class of interaction is given. Numerical examples of different cases are
presented.

Finally, vibrations of pipes excited by conveying fluids problem is mathematically similar to the axially
moving continua problem. A review of the vast literature is beyond the scope of this work. The reader is
referred to the comprehensive review paper by Paidoussis and Li [29]. When the fluid velocity is harmonically
varying with time about a constant mean velocity, and the pipe stiffness cannot be ignored, the problem
becomes similar to the problem considered here. See Semler and Paidoussis [30] for example.

2. Equations of motion

The equations of motion for a moving beam with variable axial transport velocity u(t) is [14]

€uþ m̄ð _uþ uu0Þ þ 2u _u0 þ _uu0 þ ðu2 � 1Þu00 þ v2f uiv ¼ 0, (1)

where u denotes the transverse deflection, dot denotes derivative with respect to time (t) and prime denotes
derivative with respect to the spatial derivative (x). The equation of motion is in dimensionless form.
Dimensionless quantities are defined through the relations

u ¼
u�

L
; x ¼

x�

L
; t ¼ t�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P=rAL2

q
; u ¼

u�ffiffiffiffiffiffiffiffiffiffiffiffi
P=rA

p ; vf ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EI=PL2

q
, (2)

where variables with asterisk denote dimensional ones. P is the axial tension force, r the density, A the cross-
sectional area, L the length and EI the flexural rigidity and m̄ the damping coefficient of the beam.

Simply supported beams will be considered throughout the analysis (see Fig. 1)

uð0; tÞ ¼ 0; uð1; tÞ ¼ 0; u00ð0; tÞ ¼ 0; u00ð1; tÞ ¼ 0. (3)

For speed variation, a harmonic model with small fluctuations about a constant mean velocity is assumed

u ¼ u0 þ �u1 sin Ot, (4)

where eu1 is the amplitude and O is the frequency of fluctuations. e is a small parameter to ensure that
harmonic variations are small compared to the mean velocity u0. Note that the second term in the model
(i.e. Eq. (1)) is the damping term to make the system non-conservative. In axially moving materials due to
the combination of axial velocity and vertical displacement rate, the damping model is usually chosen as
given above.

3. Perturbation solution

In this section, an approximate solution will be sought using a special perturbation technique, namely the
method of multiple scales [31,32]. This method will be applied directly to the partial differential equation
(Direct perturbation method). Direct perturbation method has advantages over the discretization–perturba-
tion method [33–38]. In higher order schemes and for finite mode truncations, the method yields better
approximations to the real problem. For the special case considered here, the advantage is that, there is no
need to cast equation of motion into a convenient first-order form where orthogonality of traveling string
eigenfunctions is achieved as was done by Wickert and Mote [12,13].
x

u

υ(t)

Fig. 1. Schematics of an axially moving simply supported beam.
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In the direct method, one assumes an expansion of the form

uðx; t; �Þ ¼ u0ðx;T0;T1Þ þ �u1ðx;T0;T1Þ þ � � � , (5)

where T0 ¼ t and T1 ¼ et are the usual fast and slow time scales of the Method of Multiple Scales. Time
derivatives are defined as

d

dt
¼ D0 þ �D1 þ � � � ;

d2

dt2
¼ D2

0 þ 2�D0D1 þ � � � , (6)

where Di ¼ q=qTi. For the light damping in such systems m̄ ¼ �m can be selected. Substituting Eqs. (4)–(6) into
the partial differential system (1) and (3), seperating terms at each order of e, one has

Oð1Þ : D2
0u0 þ 2u0D0u

0
0 þ ðu

2
0 � 1Þu000 þ v2f uiv

0 ¼ 0,

u0ð0; tÞ ¼ u0ð1; tÞ ¼ u000ð0; tÞ ¼ u000ð1; tÞ ¼ 0, ð7Þ

Oð�Þ : D2
0u1 þ 2u0D0u01 þ ðu

2
0 � 1Þu001 þ v2f uiv

1 ¼ �2D0D1u0 � mðD0u0 þ u0u00Þ

� 2u0D1u
0
0 � 2u1 sin OT0D0u00 � u1O cos OT0u

0
0 � 2u0u1 sin OT0u

00
0,

u1ð0; tÞ ¼ u1ð1; tÞ ¼ u001ð0; tÞ ¼ u001ð1; tÞ ¼ 0. ð8Þ

At order 1, including all modes of vibration, the solution is

u0 ¼
X1
m¼1

ðAmðT1Þe
iomT0cmðxÞ þ AmðT1Þe

�iomT0 c̄mðxÞÞ, (9)

where om represent the natural frequencies. The mode shapes cm were calculated previously [14,15]

cmðxÞ ¼ c1 eib1mx �
ðb24m � b21mÞðe

ib3m � eib1mÞ

ðb24m � b22mÞðe
ib3m � eib2mÞ

eib2mx �
ðb24m � b21mÞðe

ib2m � eib1mÞ

ðb24m � b23mÞðe
ib2m � eib3mÞ

eib3mx

(

þ �1þ
ðb24m � b21mÞðe

ib3m � eib1mÞ

ðb24m � b22mÞðe
ib3m � eib2mÞ

þ
ðb24m � b21mÞðe

ib2m � eib1m Þ

ðb24m � b23mÞðe
ib2m � eib3m Þ

" #
eib4mx

)
, ð10Þ

where bim are eigenvalues. The eigenvalues were obtained previously by using the following frequency
equation and support condition [14,15]:

v2f b
4
im þ ð1� u20Þb

2
im � 2omu0bim � o2

m ¼ 0; i ¼ 1; 2; 3; 4; m ¼ 1; 2 . . . , (11)

½eiðb1mþb2mÞ þ eiðb3mþb4mÞ�ðb21m � b22mÞðb
2
3m � b24mÞ þ ½e

iðb1mþb3mÞ þ eiðb2mþb4mÞ�ðb22m � b24mÞðb
2
3m � b21mÞ

þ ½eiðb2mþb3mÞ þ eiðb1mþb4mÞ�ðb21m � b24mÞðb
2
2m � b23mÞ ¼ 0. ð12Þ

Contrary to the string case, natural frequencies of beam case treated here can only be calculated
numerically. The frequencies and resonance conditions are discussed in the numerical analysis section.
Eqs. (10)–(12) can be retrieved from the ones presented in Ref. [25] in the limiting case of vanishing torsional
springs.

At order e, inserting Eq. (9) into Eq. (8) and arranging, one has

D2
0u1 þ 2u0D0u

0
1 þ ðu

2
0 � 1Þu001 þ v2f uiv

1

¼
X1
m¼1

D1Amð�2iomcm � 2u0c
0
mÞe

iomT0

�
� mAmðiomcm þ u0c

0
mÞe

iomT0

þ �u1omc
0
m �

u1O
2

c0m þ iu0u1c
00
m

� �
Ame

iðOþomÞT0

þ u1omc̄
0

m �
u1O
2

c̄
0

m þ iu0u1c̄
00

m

� �
Ame

iðO�omÞT0

�
þ cc, ð13Þ
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where cc stands for complex conjugates of the preceeding terms.
A solution of the form given below can be proposed

u1 ¼
X1
n¼1

ðY nðx;T1Þe
ionT0 þW nðx;T0;T1Þ þ ccÞ. (14)

Substituting this solution into Eq. (13) and rearranging yields

X1
n¼1

½�o2
nY n þ 2u0ionY 0n þ v2f Y iv

n þ ðu
2
0 � 1ÞY 00n �e

ionT0

þD2
0W n þ 2u0D0W

0
n þ v2f W iv

n þ ðu
2
0 � 1ÞW 00

n þ cc

¼
X1
m¼1

D1Amð�2iomcm � 2u0c
0
mÞe

iomT0

�
� mAmðiomcm þ u0c

0
mÞe

iomT0

þ �u1omc
0
m �

u1O
2

c0m þ iu0u1c
00
m

� �
Ame

iðOþomÞT0

þ u1omc̄
0

m �
u1O
2

c̄
0

m þ iu0u1c̄
00

m

� �
Ame

iðO�omÞT0

�
þ cc. ð15Þ

No assumptions for mode truncations are made in obtaining the above equation. Infinite modes are taken in
the analysis. Therefore Eq. (15) posseses all possible resonances inherited in the system. This equation forms
the basis of our analysis. Under some assumptions for mode interactions, the equation seperates and
simplifies. As will be mentioned later, resonances depend on the numerical values of natural frequencies and
the numerical value of velocity fluctuation frequency O. Four distinct cases with some subcases can now be
considered and with regard to the specific selection, different equations are retrieved. Upto four mode
interactions will be considered in the subsequent analysis. Higher number of mode interactions might be
possible depending on the numerical value of fluctuation frequency and natural frequencies but numerical
and stability analysis of such complex interactions will not be considered in this analysis and will be left to
further studies.

3.1. No resonance case (O+omD/ on, O�omD/ on)

For this specific choice, seperating Eq. (15) into secular and non-secular terms and imposing the solvability
condition [31] on the secular terms yields evolution equation of complex amplitudes

2D1An þ mAn ¼ 0. (16)

The solution is

An ¼ A0e
�ðm=2ÞT1 . (17)

This solution indicates that all modes that are not parametrically excited would decay in time. Details of
solvability calculations on a similar problem can be found in Ref. [11].

3.2. Sum-type combination resonances only (O+omD/ on, O�omffion)

In this case Offiom+on and the resonances are only sum-type combination resonances. To express the
nearness of fluctuation frequency to the sum of any nth and mth modes, one may select

O ¼ om þ on þ �s, (18)

where s is a detuning parameter. For this choice, similar calculations with the previous case yields the
solvability conditions:

D1An þ
m
2

An þ k3mnAme
isT1 ¼ 0, (19)



ARTICLE IN PRESS
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D1Am þ
m
2

Am þ k4mnAne
isT1 ¼ 0, (20)

where the coefficients k3mn and k4mn are defined as follows:

k3mn ¼ �

R 1
0 ðu1omc̄

0

m � ðu1O=2Þc̄
0

m þ iu0u1c̄
00

mÞc̄n dx

2
R 1
0 ðioncn þ u0c

0
nÞc̄n dx

, (21)

k4mn ¼ �

R 1
0
ðu1onc̄

0

n � ðu1O=2Þc̄
0

n þ iu0u1c̄
00

nÞc̄m dx

2
R 1
0 ðiomcm þ u0c

0
mÞc̄m dx

. (22)

Note that k4mn ¼ k3nm. A special subcase is discussed below.

3.2.1. Special sum-type resonances (principal parametric resonances) (O+onD/ on, O�onffion)

When m ¼ n, then Offi2on and a special type of sum-type resonance namely the principal parametric
resonance occurs. For this degenerate case, the nearness of fluctuation frequency to twice a natural frequency
is expressed as

O ¼ 2on þ �s (23)

and Eqs. (19)–(22) reduce to

D1An þ
m
2

An þ k0nAne
isT1 ¼ 0, (24)

where

k0n ¼ �

R 1
0 ðu1onc̄

0

n � ðu1O=2Þc̄
0

n þ iu0u1c̄
00

nÞc̄n dx

2
R 1
0 ðioncn þ u0c

0
nÞc̄n dx

. (25)

3.3. Difference-type combination resonances only (O+omffion, O�omD/ on)

For this special case, one may assume that there is only a combination resonance of difference-type between
the nth and mth modes, that is Offion�om. Without loss of generality one may assume on4om and the
nearness of fluctuation frequency to the difference of any two modes may be expressed as

O ¼ on � om þ �s. (26)

With reference to Eq. (15), for this special choice, the solvability conditions are obtained:

D1An þ
m
2

An þ k5mnAme
isT1 ¼ 0, (27)

D1Am þ
m
2

Am þ k6mnAne
�isT1 ¼ 0, (28)

where the coefficients are defined as follows:

k5mn ¼ �

R 1
0 ð�u1omc

0
m � ðu1O=2Þc

0
m þ iu0u1c

00
mÞc̄n dx

2
R 1
0 ðioncn þ u0c

0
nÞc̄n dx

, (29)

k6mn ¼ �

R 1
0
ðu1onc

0
n � ðu1O=2Þc

0
n � iu0u1c

00
nÞc̄m dx

2
R 1
0 ðiomcm þ u0c

0
mÞc̄m dx

. (30)

3.3.1. Special difference-type resonances (O+onffion, O�onD/ on)

When m ¼ n, then Offi0 and a special type of difference-type resonance occurs. This case corresponds to
very slow changes in axial transport velocity. For this degenerate case, the vanishing fluctuation frequency can
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be expressed as

O ¼ �s (31)

and Eqs. (27)–(30) reduce to

D1An þ
m
2

An þ ðk7n cos sT1 þ k8n sin sT1ÞAn ¼ 0, (32)

where

k7n ¼

R 1
0 u1Oc

0
nc̄n dx

2
R 1
0 ðioncn þ u0c

0
nÞc̄n dx

, (33)

k8n ¼

R 1
0 ðiu1onc

0
n þ u0u1c

00
nÞc̄n dxR 1

0 ðioncn þ u0c
0
nÞc̄n dx

. (34)
3.4. Sum- and difference-type combination resonances together (O+opffioq, O�omffion) (m 6¼n 6¼p 6¼q)

In a more general case, sum- and difference-type resonances both occur simultaneously and four different
modes are involved in the resonances. The nearness of fluctuation frequency to those modes are then expressed
as follows:

O ¼ on þ om þ �s1 ðsum typeÞ,

O ¼ oq � op þ �s2 ðdifference typeÞ. ð35Þ

Complex amplitudes Am and An are coupled. Complex amplitudes Ap and Aq are also coupled. But there is
no coupling between (m,n) and (p,q) pairs. Therefore stability can be investigated independently. Section 3.2
and 3.3 equations apply for each case. The equations are:

D1An þ
m
2

An þ k3mnAme
is1T1 ¼ 0,

D1Am þ
m
2

Am þ k3nmAne
is1T1 ¼ 0,

D1Aq þ
m
2

Aq þ k5pqApe
is2T1 ¼ 0,

D1Ap þ
m
2

Ap þ k6pqAqe
�is2T1 ¼ 0. ð36Þ

This is the general case. Several degenerate subcases exist which needs special treatment.

3.4.1. n ¼ q case (O�omffion, O+opffion)

Note that for coupling between (m,n) and (p,q) modes n ¼ q condition will lead to O�omffiO+op or
opffi�om which cannot occur since natural frequencies are always postive numbers.

3.4.2. m ¼ q case (O�omffion, O+opffiom)

In this case Offiom+on and Offiom�op can be written. For a given O value, this case is impossible also.
Equating Offiom+onffiom�op yields onffi�op which is impossible.

3.4.3. n ¼ p case (O�omffion, O+onffioq)

In this case, Offiom+on, Offioq�on can be written. The equations are:

D1An þ
m
2

An þ k3mnAme
is1T1 þ k6nqAqe

�is2T1 ¼ 0,

D1Am þ
m
2

Am þ k3nmAne
is1T1 ¼ 0,

D1Aq þ
m
2

Aq þ k5nqAne
is2T1 ¼ 0. ð37Þ



ARTICLE IN PRESS
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3.4.4. m ¼ p case (O�omffion, O+omffioq)

In this case, Offiom+on, Offioq�om can be written. The equations are:

D1An þ
m
2

An þ k3mnAme
is1T1 ¼ 0,

D1Am þ
m
2

Am þ k3nmAne
is1T1 þ k6mqAqe

�is2T1 ¼ 0,

D1Aq þ
m
2

Aq þ k5mqAme
is2T1 ¼ 0. ð38Þ

This case is indeed similar to the case given in Section 3.4.3. Interchanging m with n yields exactly the same
equations.

3.4.5. m ¼ n case (O�onffion, O+opffioq)

In this case, Offi2on, Offioq�op can be written. The equations are:

D1An þ
m
2

An þ k3nnAne
is1T1 ¼ 0,

D1Aq þ
m
2

Aq þ k5pqApe
is2T1 ¼ 0,

D1Ap þ
m
2

Ap þ k6pqAqe
�is2T1 ¼ 0. ð39Þ

Note that Ap and Aq are uncoupled from An.

3.4.6. p ¼ q case (O+opffiop, O�omffion)

In this case Offi0, Offion+om is obtained. However, this case is impossible and hence discarded.

3.4.7. n ¼ p ¼ m case (O�onffion, O+onffioq)

This case is a further subcase of 3.4.3 and has to be treated seperately. In this case, Offi2on, Offioq�on can
be written. The equations are:

D1An þ
m
2

An þ k3nnAne
is1T1 þ k6nqAqe

�is2T1 ¼ 0,

D1Aq þ
m
2

Aq þ k5nqAne
is2T1 ¼ 0. ð40Þ

Based on the equations derived in this section, a stability analysis will be performed in the next section. Note
that n ¼ m ¼ q, n ¼ p ¼ q, m ¼ p ¼ q cases all lead to impossible choices and discarded.

4. Stability analysis

In the previous section, some possible resonance cases involving upto four mode interactions and
corresponding equations in terms of the evolution of complex amplitudes are given. The corresponding
stability analysis for each case will be developed in this section in the same order.

4.1. No resonance case (O+omD/ on, O�omD/ on)

As indicated previously, the complex amplitudes decay in time and there is no instability.

4.2. Sum-type combination resonances only (O+omD/ on, O�omffion)

For sum-type resonances only, the equations to be referred are Eqs. (19) and (20) in Section 3.2.
A transformation of the complex amplitudes would be helpful:

An ¼ Bn e
isT1=2; Am ¼ Bm eisT1=2. (41)
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M. Pakdemirli, H.R. Öz / Journal of Sound and Vibration 311 (2008) 1052–10741060
Inserting the above transformations into Eqs. (19) and (20) yields

D1Bn þ
m
2
þ i

s
2

� �
Bn þ k3mnBm ¼ 0,

D1Bm þ
m
2
þ i

s
2

� �
Bm þ k3nmBn ¼ 0. ð42Þ

Determining stability with regard to Bn would be equivalent to determining the stability with regard to An.
One may introduce the below forms for Bn and Bm as

Bn ¼ bne
lT1 ; Bm ¼ bme

l̄T1 , (43)

where bn and bm are real now. Substituting Eq. (43) into Eq. (42), one gets the following matrix equation:

lþ
m
2
þ i

s
2

� �
k3mn

k3nm lþ
m
2
� i

s
2

� �
2
64

3
75 bn

bm

" #
¼

0

0

	 

. (44)

Determinant of the coefficient matrix should be zero for non-trivial solutions and equating the determinant
to zero gives the eigenvalues

l1;2 ¼ �1
2
m� 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�s2 þ 4k3mnk3nm

q
. (45)

If k3mnk3nmp0, the system is always stable, and if k3mnk3nm40 then the stability boundaries are determined
by the following equation:

s ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�m2 þ 4k3mnk3nm

q
(46)

or

O ¼ om þ on � �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�m2 þ 4k3mnk̄3nm

q
. (47)

A similar relation without damping term was obtained previously [14]. If n ¼ m is selected in Eq. (47), the
special case of principle parametric resonances discussed in Section 3.2.1 will be obtained.
4.3. Difference-type combination resonances only (O+omffion, O�omD/ on)

The corresponding complex amplitude evolution equations are given in Section 3.3 (i.e. Eqs. (27) and (28)).
The complex amplitudes are transformed for convenience first

An ¼ Bn e
isT1=2; Am ¼ Bm e�isT1=2. (48)

Inserting them into Eqs. (27) and (28) yields

D1Bn þ
m
2
þ i

s
2

� �
Bn þ k5mnBm ¼ 0,

D1Bm þ
m
2
� i

s
2

� �
Bm þ k6mnBn ¼ 0. ð49Þ

One may now introduce the below forms for Bn and Bm

Bn ¼ bne
lT1 ; Bm ¼ bme

lT1 (50)

and substituting into Eq. (49), one gets the following matrix equation:

lþ
m
2
þ i

s
2

� �
k5mn

k6mn lþ
m
2
� i

s
2

� �
2
64

3
75 bn

bm

" #
¼

0

0

	 

. (51)
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For non-trivial solutions

l1;2 ¼ �1
2
m� 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�s2 þ 4k5mnk6mn

p
. (52)

It turns out that k5mnk6mn is always a negative real number. Therefore solutions are stable upto order e. This
conclusion is also valid for the special case of m ¼ n discussed in Section 3.3.1.

4.4. Sum- and difference-type combination resonances together (O�omffion, O+opffioq) (m6¼n 6¼p 6¼q)

As outlined in Section 3.4, in the more general case, modes that are involved in sum- and difference-type
resonances are uncoupled from each other. Therefore results of previous sections (i.e. Sections 4.2 and 4.3) are
directly applicable, such that one does not expect any instability due to difference-type resonances but may
encounter instability due to sum-type resonances upto order e. Special cases of this section are however
important and requires a distinct stability analysis. Depending on the numerical values of natural frequencies
and fluctuation frequencies, resonances involving more than four modes may also be possible which are not
treated in this work.

4.4.1. n ¼ q case (O�omffion, O+opffion)

As discussed in Section 3.4.1 this choice leads to negative frequencies and is impossible.

4.4.2. m ¼ q case (O�omffion, O+opffiom)

This choice also leads to negative frequencies and is impossible.

4.4.3. n ¼ p case (O�omffion, O+onffioq)

The equations for this case is given in Section 3.4.3 (i.e. Eq. (37)). A transformation of the below form
makes simplifications

An ¼ Bne
is1T1=2; Am ¼ Bme

is1T1=2; Aq ¼ Bqe
is1T1=2eis2T1 . (53)

Substituting into Eq. (38), one has

D1Bn þ
m
2
þ i

s1
2

� �
Bn þ k3mnB̄m þ k6nqBq ¼ 0,

D1Bm þ
m
2
þ i

s1
2

� �
Bm þ k3nmB̄n ¼ 0,

D1Bq þ
m
2
þ i

s1
2
þ s2

� �� �
Bq þ k5nqBn ¼ 0. ð54Þ

Defining the new variables

Bn ¼ ðbnR þ ibnI Þe
lT1 ; Bm ¼ ðbmR þ ibmI Þe

lT1 ; Bq ¼ ðbqR þ ibqI Þe
lT1 (55)

and substituting into Eq. (54), one gets the following matrix equation:

lþ
m
2
�
s1
2

k3mnR k3mnI k6nqR �k6nqI

s1
2

lþ
m
2

k3mnI �k3mnR k6nqI k6nqR

k3nmR k3nmI lþ
m
2
�
s1
2

0 0

k3nmI �k3nmR
s1
2

lþ
m
2

0 0

k5nqR �k5nqI 0 0 lþ
m
2

�
s1
2
þ s2

� �
k5nqI k5nqR 0 0

s1
2
þ s2 lþ

m
2

2
66666666666666664

3
77777777777777775

bnR

bnI

bmR

bmI

bqR

bqI

2
6666666664

3
7777777775
¼

0

0

0

0

0

0

2
666666664

3
777777775
. (56)

Eigenvalues can be determined from the determinant of the coefficient matrix.
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4.4.4. m ¼ p case (O�omffion, O+omffioq)

As mentioned previously in Section 3.4.4, this case is similar to the case given in Section 4.4.3 if m and n are
interchanged. Therefore, a separate treatment is unnecessary.
4.4.5. m ¼ n case (O�onffion, O+opffioq)

This case is treated in Section 3.4.5 (Offi2on, Offioq�op). Referring to Eq. (40), one realizes that difference-
type combination resonances are uncoupled from the parametric resonance mode on. As discussed previously,
combination resonances do not yield instability upto order e. Therefore, the stability of the system depends
mainly upon the principal parametric resonances.

Inserting the below transformation to the first of Eq. (39)

An ¼ Bn e
is1T1=2 (57)

one has

D1Bn þ
m
2
þ i

s1
2

� �
Bn þ k3nnBn ¼ 0. (58)

Defining the new variable as

Bn ¼ ðbnR þ ibnI Þe
lT1 (59)

and substituting into Eq. (58), one has the following matrix equation:

lþ
m
2
þ k3nnR �

s1
2
þ k3nnI

s1
2
þ k3nnI lþ

m
2
� k3nnR

2
64

3
75 bnR

bnI

" #
¼

0

0

	 

. (60)

The eigenvalues are

l1;2 ¼ �
1

2
m�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�
s21
4
þ k2

3nnR þ k2
3nnI

r
. (61)

From here, the detuning parameter is calculated as follows:

s1 ¼ �2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�
m2

4
þ k2

3nnR þ k2
3nnI

r
. (62)

Then the stability boundaries are

O ¼ 2on � 2�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�
m2

4
þ k2

3nnR þ k2
3nnI

r
. (63)

Note that the above result can be retrieved as a special case from Section 4.2 by taking m ¼ n in Eq. (47).
4.4.6. p ¼ q case (O+opffiop, O�omffion)

As mentioned earlier in Section 3.4.6, both conditions Offi0, Offion+om cannot simultaneously occur and
hence discarded.
4.4.7. n ¼ p ¼ m case (O�onffion, O+onffioq)

This case is treated in Section 3.4.7. The relevant equations are given in Eq. (40). In this case, one mode is
involved in a principal parametric resonance and the principal parametric resonance mode is involved further
in a difference type combination resonance (Offi2on, Offioq�on).

Introducing the transformations

An ¼ Bne
is1T1=2; Aq ¼ Bqe

iððs1=2Þþs2ÞT1 (64)
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M. Pakdemirli, H.R. Öz / Journal of Sound and Vibration 311 (2008) 1052–1074 1063
and substituting into Eq. (40), one has

D1Bn þ
m
2
þ i

s1
2

� �
Bn þ k3nnBn þ k6nqBq ¼ 0,

D1Bq þ
m
2
þ i

s1
2
þ s2

� �h i
Bq þ k5nqBn ¼ 0. ð65Þ

The new variables can be expressed as follows:

Bn ¼ ðbnR þ ibnI Þe
lT1 ; Bq ¼ ðbqR þ ibqI Þe

lT1 . (66)

Substituting them into Eq. (65), one gets the following matrix equation:

lþ
m
2
þ k3nnR �

s1
2
þ k3nnI k6nqR �k6nqI

s1
2
þ k3nnI lþ

m
2
� k3nnR k6nqI k6nqR

k5nqR �k5nqI lþ
m
2

�
s1
2
þ s2

� �
k5nqI k5nqR

s1
2
þ s2 lþ

m
2

2
6666666664

3
7777777775

bnR

bnI

bqR

bqI

2
66664

3
77775 ¼

0

0

0

0

2
6664
3
7775. (67)

Eigenvalues can be evaluated from the determinant of the coefficient matrix.
5. Numerical solutions

In this section numerical solutions will be presented. The velocity dependent frequencies are shown in
Figs. 2 and 3 for the first and second modes, respectively for different flexural stiffness values. The frequencies
decrease with increasing mean velocity. As the flexural rigidity increases (vf), the frequencies increase also.
Figs. 4–6 denote the first five modes for three different flexural stiffness values (vf ¼ 0.2, 0.6, 1.0). The dashed
lines denote the complex frequency values, i.e. non-zero imaginary parts. The beam is unstable at those
velocities.

In Ref. [26] analytical frequency equations were given in the special case of vanishing mean velocity. Our
numerically calculated frequency results for v0-0 can directly be compared to those given in Ref. [26]. In that
Fig. 2. Velocity dependent first mode frequencies for different flexural stiffness values (vf values indicated on the figure).
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reference, dimensional frequencies are given in Eq. (16) as follows:

o�2n ¼
cnp
L

� �2
þ d

np
L

� �4
; n ¼ 1; 2; 3 . . . , (68)

where c and d are defined in that work as

c ¼

ffiffiffiffiffiffiffi
P

rA

s
; d ¼

EI

rA
. (69)
Fig. 3. Velocity dependent second mode frequencies for different flexural stiffness values (vf values indicated on the figure).

Fig. 4. Velocity dependent first five frequencies for flexural stiffness value vf ¼ 0.2.
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Fig. 5. Velocity dependent first five frequencies for flexural stiffness value vf ¼ 0.6.

Fig. 6. Velocity dependent first five frequencies for flexural stiffness value vf ¼ 1.0.
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The dimensional (denoted by asteriks) and dimensionless frequencies are related to each other as follows:

o� ¼ o

ffiffiffiffiffiffiffiffiffiffiffiffi
P

rAL2

s
. (70)

Dividing Eq. (68) by

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P=rAL2

q
, inserting the definitions (69) yields finally the dimesionless frequencies of

Ref. [26] in terms of vf parameter used in this work

o2
n ¼ n2p2 þ v2f n4p4; n ¼ 1; 2; 3 . . . , (71)
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where vf is given in Eq. (2). Our numerical frequency results for vanishing mean velocity are compared with the
frequencies calculated by the analytical expression given in Eq. (71) in Table 1. Excellent match is observed in
both results.

Possible combination resonances of sum and difference types are given in Fig. 7 for vf ¼ 0.2, in Fig. 8 for
vf ¼ 0.6, and in Fig. 9 for vf ¼ 1.0. The first five modes are considered. As can be seen from the figures, sum of
two modes and difference of another two modes may be close (or even equal) to each other for some specific
values of the mean velocity. For a given mean velocity v0 and fluctuation frequency O (y-axis), if the system is
in the vicinity of an intersection point of two curves, one might expect resonances involving four modes.
Resonances involving higher number of modes cannot be detected from the figures because only the first five
modes and their combinations are calculated. It might happen that more than two curves intersect at a point
or become very close to each other at a specific point indicating resonances involving higher number of modes.
However, if O is kept small enough, then one can ensure that there is only one sum-type combination
resonance and any possible difference resonance that involves higher modes and close to O will not alter the
stability of the system because one knows that difference-type resonances do not yield instability upto order e
Table 1

Comparison of the first three-dimensionless frequencies of [26] with the ones calculated in the present work for vanishing mean velocity

case

vf o1 [26] o1 (this study) o2 [26] o2 (this study) o3 [26] o3 (this study)

0.2 3.7103 3.7103 10.0906 10.0906 20.1105 20.1105

0.6 6.7035 6.7035 24.5062 24.5062 54.1228 54.1228

1.0 10.3575 10.3575 39.9753 39.9753 89.3250 89.3250

Fig. 7. Sum and difference of the first five natural frequencies and their variation with the mean velocity for vf ¼ 0.2.
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Fig. 8. Sum and difference of the first five natural frequencies and their variation with the mean velocity vf ¼ 0.6.
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and furthermore they are uncoupled from the sum-type resonances. Therefore resonances involving four
modes would be a reasonable assumption. Sample values can be deducted from the figures corresponding to
different cases considered previously in the stability analysis.

The stability branches separating stable and unstable regions for only sum-type resonances are given in
Figs. 10–13. The stability of this case is developed in Section 4.2 and the branches are drawn based on Eq. (47).
In Fig. 10 the stability borders are shown for vf ¼ 0.2, u0 ¼ 1.0 and O ¼ o3 þ o1 þ �s, i.e. the velocity
fluctuation frequency is close to the sum of the first and third frequencies. Note that from Fig. 7, there is no
other curve close to o1+o3 for u0 ¼ 1.0. Resonances occur due to only two modes. The region between the
lines are unstable and the region outside the lines are stable. As expected, increasing damping shifts the
stability borders upwards, that is instability is encountered at higher axial velocity fluctuation amplitudes (eu1).
As the velocity fluctuation amplitude increases, the stability region widens. In Fig. 11 the first principal
parametric resonance is shown with O ¼ 2o1 þ �s, i.e. the velocity fluctuation frequency is close to twice of
the first frequency (choose m ¼ n ¼ 1 in Eq. (47)). Again one has to check from Fig. 7 that for the given u0 ¼ 1
value, there is no other interactions. Similar qualitative behavior is observed but damping has less effect
compared to Fig. 10. In Fig. 12, the first and third mode sum-type combination resonance is considered for a
different mean velocity and flexural rigidity. For the same mean velocity and flexural rigidity, the first
principal parametric resonance is considered in Fig. 13. The effect of damping is again less compared to the
sum-type resonance having the same system values.

For higher number of mode interactions, some numerical examples from Section 4.4 are presented. In
Tables 2a–j example resonances from Section 4.4.3 when O� om ffi on and Oþ on ¼ oq are given
(Section 4.4.4. is similar to Section 4.4.3 when n and m are interchanged). The resonance cases are identified
from Figs. 7 to 9 first. Then the stability equations presented in Section 4.4.3 are used to determine stability.
There different dimensionless stiffness values namely vf ¼ 0.2, 0.6 and 1.0 are used in the calculations. For a
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Fig. 9. Sum and difference of the first five natural frequencies and their variation with the mean velocity vf ¼ 1.0.

Fig. 10. Stable and unstable regions for sum-type combination resonances for the first and third modes (vf ¼ 0.2, u0 ¼ 1.0, m ¼ 0 —,

m ¼ 0.1 - - -, m ¼ 0.2 -.-.-).
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Fig. 11. Stable and unstable regions for principal parametric resonances for the first mode (vf ¼ 0.2, u0 ¼ 1.1, m ¼ 0 —, m ¼ 0.1 - - -,

m ¼ 0.2 -.-.-).

Fig. 12. Stable and unstable regions for sum-type combination resonances for the first and third modes (vf ¼ 0.6, u0 ¼ 1.5, m ¼ 0 —,

m ¼ 0.1 - - -, m ¼ 0.2 -.-.-).
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selected parameter range, the amplitude of velocity fluctuations (ev1) are increased and the stability of each
point is calculated. For some of the cases, all points evaluated lead to stable solutions. However, for some
others, instability starts after a specific value of the amplitude of fluctuations. Higher amplitude values might
be needed to track instability for the tables of ‘‘all stable’’ solutions. Specific values of the modes for which
resonance occurs are treated in Table 2. For example there exists a resonance involving second, fourth and
fifth modes for O�o4ffio2 and O+o2ffio5 for vf ¼ 0.2, u0 ¼ 0.776, O ¼ 41.925 in Table 2a. Since the
eigenvalues are complex, the solution is stable for ev1 values ranging from 0 to 0.1. The resonances for some
other sample frequencies are presented in Table 2b–j. As can be seen from the tables, unstable solutions appear
at relatively low amplitude of fluctuation frequencies for some cases whereas they are undetectable for other
cases for the parameter range considered.
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Fig. 13. Stable and unstable regions for principal parametric resonances for the first mode (vf ¼ 0.6, u0 ¼ 1.5, m ¼ 0 —, m ¼ 0.1 - - -,

m ¼ 0.2 -.-.-).

Table 2

Resonance conditions of Section 4.4.3

ev1 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10

(a) Resonance conditions of Section 4.4.3 when O�o4ffio2, O+o2ffio5, vf ¼ 0.2, u0 ¼ 0.776 (O ¼ 41.925, s1 ¼ 0.0290, s2 ¼ �0.0626,
o2 ¼ 8.9162, o4 ¼ 33.0059, o5 ¼ 50.8474)

ev1 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10

Stable/unstable S S S S S S S S S S S

(b) Resonance conditions of Section 4.4.3 when O�o4ffio3, O+o3ffio5, vf ¼ 0.2, u0 ¼ 2.248 (O ¼ 34.43, s1 ¼ 0.0971, s2 ¼ �0.0824,
o3 ¼ 9.2215, o4 ¼ 25.1988, o5 ¼ 43.6598)

ev1 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10

Stable/unstable S S S S S S S S S S S

(c) Resonance conditions of Section 4.4.3 when O�o3ffio2, O+o2ffio4, vf ¼ 0.2, u0 ¼ 1.218 (O ¼ 24.495, s1 ¼ 0.0520, s2 ¼ �0.0976,
o2 ¼ 7.0362, o3 ¼ 17.4536, o4 ¼ 31.5410)

ev1 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10

Stable/unstable S S S S S S S S S U U

(d) Resonance conditions of Section 4.4.3 when O�o1ffio2, O+o2ffio3, vf ¼ 0.2, u0 ¼ 0.94 (O ¼ 10.222, s1 ¼ �0.1287, s2 ¼ 0.1189,

o1 ¼ 1.8939, o2 ¼ 8.3410, o3 ¼ 18.5511)

ev1 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10

Stable/unstable S S S S S S S S S S S

(e) Resonance conditions of Section 4.4.3 when O�o4ffio3, O+o3ffio5, vf ¼ 0.6, u0 ¼ 5.97 (O ¼ 102.27, s1 ¼ �0.0770, s2 ¼ 0.0623,

o3 ¼ 27.4702, o4 ¼ 74.8075, o5 ¼ 129.7340)

ev1 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10

Stable/unstable S S S S S S S S S S S

M. Pakdemirli, H.R. Öz / Journal of Sound and Vibration 311 (2008) 1052–10741070
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Table 2 (continued )

ev1 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10

(f) Resonance conditions of Section 4.4.3 when O�o3ffio2, O+o2ffio4, vf ¼ 0.6, u0 ¼ 2.26 (O ¼ 71.907, s1 ¼ �0.0811, s2 ¼ 0.0712,

o2 ¼ 20.8591, o3 ¼ 51.0560, o4 ¼ 92.7590)

ev1 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10

Stable/unstable S S S S S S S S S S S

(g) Resonance conditions of Section 4.4.3 when O�o1ffio2, O+o2ffio3, vf ¼ 0.6, u0 ¼ 0.97 (O ¼ 29.685, s1 ¼ �0.0567, s2 ¼ �0.1327,
o1 ¼ 5.8237, o2 ¼ 23.8670, o3 ¼ 53.5653)

ev1 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10

Stable/unstable S S S S U U U U U U U

(h) Resonance conditions of Section 4.4.3 when O�o4ffio3, O+o3ffio5, vf ¼ 1.0, u0 ¼ 9.836 (O ¼ 170.31, s1 ¼ 0.0597, s2 ¼ �0.0507,
o3 ¼ 45.7413, o4 ¼ 124.5628, o5 ¼ 216.0563)

ev1 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10

Stable/unstable S S S S S S S S S S S

(i) Resonance conditions of Section 4.4.3 when O�o3ffio2, O+o2ffio4, vf ¼ 1.0, u0 ¼ 3.5 (O ¼ 119.631, s1 ¼ 0.1036, s2 ¼ �0.1118,
o2 ¼ 34.7124, o3 ¼ 84.9082, o4 ¼ 154.3546)

ev1 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10

Stable/unstable S S S S S S S S S S S

(j) Resonance conditions of Section 4.4.3 when O�o1ffio2, O+o2ffio3, vf ¼ 1.0, u0 ¼ 0.98 (O ¼ 49.394, s1 ¼ 0.1341, s2 ¼ �0.0605,
o1 ¼ 9.7974, o2 ¼ 39.5832, o3 ¼ 88.9832)

ev1 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10

Stable/unstable S S S S S U U U U U U

Table 3

Resonance conditions of Section 4.4.7

ev1 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10

(a) Resonance conditions of Section 4.4.7 when O�o3ffio3, O+o3ffio5, vf ¼ 0.2, u0 ¼ 1.48 (O ¼ 32.222, s1 ¼ 0.0484, s2 ¼ �0.0445,
o3 ¼ 16.1086, o5 ¼ 48.3350)

ev1 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10

Stable/unstable S S S S S S S S S S S

(b) Resonance conditions of Section 4.4.7 when, O�o3ffio3, O+o3ffio4, vf ¼ 0.2, u0 ¼ 2.298 (O ¼ 16.506, s1 ¼ 0.0983, s2 ¼ �0.0858,
o3 ¼ 8.2481, o4 ¼ 24.7627)

ev1 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10

Stable/unstable S S S U U U U U U U U

(c) Resonance conditions of Section 4.4.7 when O�o2ffio2, O+o2ffio3, vf ¼ 0.2, u0 ¼ 1.46 (O ¼ 10.818, s1 ¼ �0.0587, s2 ¼ 0.0697,

o2 ¼ 5.4119, o3 ¼ 16.2230)

ev1 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10

Stable/unstable S S S S S S S S S S S
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Table 3 (continued )

ev1 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10

(d) Resonance conditions of Section 4.4.7 when O�o1ffio1, O+o1ffio2, vf ¼ 0.2, u0 ¼ 0.509 (O ¼ 6.398, s1 ¼ �0.0824, s2 ¼ 0.0742,

o1 ¼ 3.2031, o2 ¼ 9.5937)

ev1 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10

Stable/unstable S S S S S S S S S S S

(e) Resonance conditions of Section 4.4.7 when O�o3ffio3, O+o3ffio5, vf ¼ 0.6, u0 ¼ 3.21 (O ¼ 95.636, s1 ¼ 0.0221, s2 ¼ �0.0255,
o3 ¼ 47.8169, o5 ¼ 143.4554)

ev1 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10

Stable/unstable S S S S S S S S S S S

(f) Resonance conditions of Section 4.4.7 when O�o3ffio3, O+o3ffio4, vf ¼ 0.6, u0 ¼ 6.129 (O ¼ 49.057, s1 ¼ �0.0267, s2 ¼ 0.0177,

o3 ¼ 24.5298, o4 ¼ 73.5851)

ev1 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10

Stable/unstable S S S U U U U U U U U

(g) Resonance conditions of Section 4.4.7 when O�o2ffio2, O+o2ffio3, vf ¼ 0.6, u0 ¼ 3.322 (O ¼ 31.571, s1 ¼ 0.0365, s2 ¼ 0.0540,

o2 ¼ 17.7837, o3 ¼ 47.3493)

ev1 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10

Stable/unstable S S S S S S S S S S U

(h) Resonance conditions of Section 4.4.7 when O�o3ffio3, O+o3ffio5, vf ¼ 1.0, u0 ¼ 5.136 (O ¼ 159.271, s1 ¼ 0.0437, s2 ¼ �0.0924,
o3 ¼ 79.6333, o5 ¼ 238.9136)

ev1 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10

Stable/unstable S S S S S S S S S S U

(i) Resonance conditions of Section 4.4.7 when O�o3ffio3, O+o3ffio4, vf ¼ 1.0, u0 ¼ 10.1022 (O ¼ 81.696, s1 ¼ �0.0531, s2 ¼ 0.0647,

o3 ¼ 40.8507, o5 ¼ 122.5402)

ev1 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10

Stable/unstable S S S U U U U U U U U

(j) Resonance conditions of Section 4.4.7 when O�o2ffio2, O+o2ffio3, vf ¼ 1.0, u0 ¼ 5.362 (O ¼ 52.481, s1 ¼ �0.0272, s2 ¼ �0.0196,
o2 ¼ 26.2419, o3 ¼ 78.7248)

ev1 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10

Stable/unstable S S S S S S S U U U U
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The possible cases for the resonance type O� on ffi on and Oþ on ffi oq are given in Table 3a–j
(Section 4.4.7) for different vf values. For example there is a resonance involving third and fifth modes for
O�o3ffio3 and O+o3ffio5 for vf ¼ 0.2, u0 ¼ 1.48, O ¼ 32.222 in Table 3a which do not lead to instability.
Instabilities are detected in Tables 3b,f–j choices but the rest do not lead to instability for the parameter range
considered.

6. Concluding remarks

In this study, transverse vibrations of an axially traveling Euler–Bernoulli beam are investigated. The simply
supported beam is traveling with a velocity varying harmonically about a constant mean value with small
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fluctuation amplitudes. The method of Multiple Scales is applied to the equation of motion in search of infinite
mode approximate solutions. The formalism for detecting arbitrary number of modes involved in a resonance
is developed first. Sum- and difference-type combination resonances and upto four modes involved in such
resonances are considered. Various cases and their stability are examined and the necessary equations for
stability are derived. Stability borders are drawn for resonances due to sum-type combination of two modes.
Damping shifts the unstable regions upwards and amplitude of excitation widens the unstable regions. For
higher number of mode resonances (i.e. resonances involving upto four modes), stability results are presented
for some sample values in the tables. In some of the cases considered, increase in mean velocity fluctuation
amplitude causes instability.
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[16] H.R. Öz, M. Pakdemirli, E. Özkaya, Transition behavior from string to beam for an axially accelerating material, Journal of Sound

and Vibration 215 (3) (1998) 571–576.

[17] F. Pellicano, F. Zirilli, Boundary layers and non-linear vibrations in an axially moving beam, International Journal of Non-Linear

Mechanics 33 (1998) 691–711.
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