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Abstract

The mechanistic empirical method of flexible pavement design/assessment uses a large number of numerical truck model
runs to predict a history of dynamic load. The pattern of dynamic load distribution along the pavement is a key factor in
the design/assessment of flexible pavement. While this can be measured in particular cases, there are no reliable methods of
predicting the mean pattern for typical traffic conditions. A simple linear quarter car model which aims to reproduce the
mean and variance of dynamic loading of the truck fleet at a given site is developed here. This probabilistic model reflects
the range and frequency of the different heavy trucks on the road and their dynamic properties. Multiple Sensor Weigh-in-
Motion data can be used to calibrate the model. Truck properties such as suspension stiffness, suspension damping, sprung
mass, unsprung mass and tyre stiffness are represented as randomly varying parameters in the fleet model. It is used to
predict the statistical distribution of dynamic load at each measurement point. The concept is demonstrated by using a pre-
defined truck fleet to calculate a pattern of statistical spatial repeatability and is tested by using that pattern to find the
truck statistical properties that generated it.

2007 Elsevier Ltd. All rights reserved.

1. Introduction

The AASHTO Guide for the design of pavement structures is commonly used to design pavements with
traffic loadings greater than 50 million equivalent axle loads (ESALs) [1]. It is assumed that each point is
subjected to forces that are statistically similar to all other points and hence that the probability of
deterioration is uniformly distributed along the pavement. This is clearly untrue given the phenomenon of
spatial repeatability—it is known that some points on a road are subjected on average to greater forces than
others. The phenomenon is illustrated in Fig. 1 which shows the mean pattern of measured dynamic forces on
a short stretch of road near Arnheim in the Netherlands. Three patterns are illustrated, each representing the
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Fig. 1. Patterns of statistical spatial repeatability for third axles taken from a fleet of 5-axle vehicles.

mean force applied by the third axle of one thousand 5-axle trucks. The similarity of the three patterns
confirms the phenomenon of “‘statistical” spatial repeatability in the truck fleet. Cole et al. [2] found similar
results by measuring dynamic force generated by 1500 heavy vehicles using a mat containing 144 capacitive
strip sensors. O’Connor et al. [3] report similar results from WIM data, demonstrating a pattern of spatial and
statistical spatial repeatability of dynamic force. Ullidtz and Larsen [4] and Collop and Cebon [5] have shown
that it is this dynamic force that should be used in the mechanistic empirical (ME) approach to predict the life
of a flexible pavement. The clustering of high forces at particular points along a road pavement (Fig. 1) leads
to a tendency of increased pavement damage at those points.

The ME method requires a prediction of the actual distribution of dynamic load caused by the fleet of
trucks that travels on that section of the road; see Collop et al. [6]. Furthermore, the predicted mean pattern of
dynamic force needs to be recalculated periodically as pavement damage causes the road profile to change.
DePont [7] used dynamic vehicle models in an attempt to generate the mean patterns of dynamic force
measured in the data of Ref. [3]. However, he used a stochastic road profile, so it is not surprising that he did
not get a good match to the measured mean patterns. Cole and Cebon [8] also tried to reproduce patterns of
spatial repeatability but did not allow for the variability in the vehicle dynamic properties. This paper
describes a computer model which predicts the dynamic behaviour of a truck fleet. The goal is to use this
model to predict patterns of spatial repeatability on a road with a given profile. This in turn can be used to
accurately predict pavement life.

The truck fleet model differs from a conventional truck dynamic model in that many runs are carried out
with different combinations of vehicle properties in each run, reflecting variations between individual trucks
on the road. The model allows for statistical variation in the vehicle properties such as suspension stiffness,
suspension damping, sprung mass, unsprung mass and tyre stiffness. The outputs are statistical distributions
of dynamic force at each point which can be used to predict the remaining pavement life.

Models which predict pavement wear in response to dynamic forces have been proposed by a number of
researchers. Eisenmann [9], for example, applies the fourth power law to a random Gaussian distribution of
wheel forces but with no spatial repeatability. More recently, some researchers [10,11] have made allowance
for spatial differences in the dynamic force in pavement deterioration models.

Wilson et al. [12] have used Bayesian Updating to find the statistical distributions for a truck fleet model
when applied dynamic forces are known, as would be the case with a dynamically calibrated multiple-sensor
weigh-in-motion system. This paper solves the same problem but with a more direct approach which provides
insights into the sensitivity of the force patterns to variations in fleet properties. Here the distributions of
properties for the fleet are found by minimising the sum of squares of differences between the theoretical and
statistical measurements of the forces. Many optimisation methods are based on gradient or pseudo-gradient
techniques. The drawback of optimisation techniques such as gradient descent, Newton-type methods,
variable metric, conjugate gradient, etc. are that in their nature, they do not cope well with problems that have
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non-convex objective functions and/or many local optima. There are many applications of multi-extremal
continuous optimisation problems. A popular and convenient approach to these problems is to systematically
partition the feasible region into smaller sub-regions and then move from one optimum to another, based on
information obtained by random search.

The optimisation problem described here is particularly difficult. It is required to find the statistical
parameters which describe the distribution of the dynamic properties of the truck fleet. Each trial truck fleet is
defined by statistical parameters such as mean and standard deviation of suspension stiffness, suspension
damping, tyre stiffness, sprung mass and unsprung mass. What makes this problem different is that the sum of
squares of differences refers to the statistical distributions of forces from the fleet of trucks rather than the
forces from an individual truck. Using Monte Carlo simulation to generate such distributions means that there
are random variations in each evaluation of the objective function at a point. Optimisation methods that may
be suitable for such an ill conditioned problem include simulated annealing, threshold acceptance, genetic
algorithms, colony method and the stochastic comparison method [13-17].

The cross entropy (CE) method of optimization, Appendix A, [18] is used in this paper as it considers a
generation of alternative solutions simultaneously and is therefore insensitive to the ‘noisiness’ of the problem.
The generations of solutions for the statistical parameters converge to optimal or near-optimal solutions. For
a simulated example, it is shown that CE can successfully find truck fleet statistical parameters which give a
good match to targeted patterns of dynamic force on a pavement.

2. Vehicle model

O’Connor et al. [3] have identified the principle of statistical spatial repeatability for mean patterns of
impact factor for a large number of trucks. Further, they have shown that the mean pattern is reasonably
consistent for trucks with different numbers of axles. It is therefore assumed here that such a pattern can be
captured with a simple uniaxial truck fleet model. A two-degree-of-freedom quarter car model [19-24] (Fig. 2)
is used in this paper. In this model, the unsprung mass (representing the mass of the wheels and axle) and
sprung mass (representing part of the mass of the vehicle body) are denoted as m, and my, respectively. The
suspension system is represented by a linear spring of stiffness k; and a linear damper ¢, while the tyre is
modelled by a linear spring of stiffness &k, and the road input irregularities are given by y,.

The quarter car model does not include suspension nonlinearities, interaction between axles of the truck, or
roll and pitch motions of axles and sprung masses. Nonetheless, Cebon [23] noted that the majority of single
axle suspensions in current use can be broadly represented by this model.

The equations of motion controlling this suspension system are given by the differential equations

mSj}u = kS(yu - yr) + CS(.]./u - ys)’ (1)

muj}u = _kS(yu - ys) - CS(J-/u - ys) + kl(yr - yu)s (2)

Fig. 2. Linear two-degree of freedom quarter car model.
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where y, and y, are the displacements of the unsprung and sprung masses, respectively and (,, y,) and (j,,, )
are, respectively, the corresponding velocities and accelerations. The pavement profile is represented by the
elevations, y,, at 0.0l m intervals.

Successive solutions of the unsprung deflections y,, allows calculation of the force (F,) applied by the axle to
the pavement for a given vehicle and road profile:

Fi=ki(y, =) (3)
Then the impact factor (IF) is calculated as this total force divided by the corresponding static weight.

2.1. Truck fleet model

For the truck fleet models described here, all the vehicle parameter properties are assumed to be normally
distributed [25]. Hence, each property illustrated in Fig. 2 can be represented with just a mean and standard
deviation: tyre stiffness, velocity, unsprung mass, sprung mass, suspension stiffness and suspension damping.
Typical statistical parameters for truck fleet properties are given in Table 1 from Refs. [22,24-26]. A typical
velocity distribution is taken from a statistical analysis of Weigh-in-Motion data collected at highway A1l near
Ressons in France [27].

2.2. Road surface profile
In this paper two types of road surface profile are used:

e Artificial profiles—profile 0 (good), illustrated in Fig. 3, profile 3 (good) and profile 4 (poor).
® Real profiles measured in the Netherlands—profiles 1 and 2 (both good).

For the artificial profiles, the randomness of the road surface roughness is represented with a zero mean
Gaussian isotropic random field in a (two-dimensional) spatial domain and becomes a normal stationary
ergodic random process in the distance domain [22,28-30]. The road profile, y.(x), is generated using a

Table 1
Vehicle parameters of truck model [22,24-26]
Number Vehicle parameter Mean Standard deviation
1 Unsprung mass, m, (kg) 420 40
2 Sprung mass, my (kg) 4450 450
3 Suspension stiffness, k; (N/m) 500,000 50,000
4 Suspension damping, ¢, (Ns/m) 21,000 2,000
5 Tyre stiffness, &, (N/m) 1,950,000 200,000
6 Velocity, v (m/s) 22.43 2.4
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Fig. 3. Artificially generated good surface profile (profile 0, provided as an example for the road profiles mentioned in the paper).
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standard procedure as the sum of a series of harmonics:

N
yx) = Z o cos(2mw;x + ¢;), 4)
i=1

where N is the total number of frequency terms used, ¢; is an independent random variable with uniform
distribution in the range [0:27], «; is the amplitude of the cosine wave, w; is the frequency within the interval
[Wmin» Wmax] in Which the power spectral density is defined and x is the distance. The parameters o; and w; are
computed, respectively, from

o = ds,(w)Aw, )

Wi = Wimin + (i —HAw, i=1,2,3,...,N, (6)
where

Wmax — Wmin
= e ) ™

and s,(w;) is the power spectral density (PSD) roughness in terms of wave number, 7, which represents the
spatial frequency [22]:

Aw

5y (00) = {Sy(Wo)(Wi/Wo)_”l wi <wo } ®

s (wo)(wi/wo) ™™ wi>wy

where wy is the discontinuity wave number and n; and n, define the slopes. According to Ref. [30] the
discontinuity between two branches of the PSD happens at a wavelength of approximately 6.3 m, which is 1/2x
cycles/metre taken as the datum value for s,(w¢). For a given s,(w), a higher value of #; means a road with an
increase in proportional roughness at the longer wavelengths and, in contrast, a higher n, means a road with a
decrease in proportional roughness at shorter wavelengths. Once generated, the surface profile is kept
deterministic for the optimisation process.

3. Fleet model properties

The optimisation problem is to find the mean and standard deviation of each vehicle property that gives a
best fit between the predicted statistical distribution of dynamic force and that measured at a multiple sensor
weigh-in-motion (MS-WIM) site. The dynamic force distribution is characterised here using the cumulative
distribution function (CDF) (or rank) and the optimisation problem is to find the truck fleet properties that
generate CDFs as close as possible to the measured CDFs of dynamic force at each point.

The simple linear two-degree-of-freedom truck fleet model of Fig. 2 is used to test the approach and the
means and standard deviations of Table 1 which define the fleet. These are used with profile 0 (Fig. 3) to
generate artificial MS-WIM data. The optimisation method is applied to that data to “‘back-calculate” the
distribution of vehicle properties. The results are then compared to the known test distributions. A six-sensor
MS-WIM array is assumed with sensor interval of 1.5m at locations 8, 9.5, 11, 12.5, 14 and 15.5m
along a 50 m length of road profile. The truck model was run repeatedly, each time with different properties
sampled from the test distributions using Monte Carlo simulation. Hence, CDFs for the dynamic forces were
generated at each sensor location. These were deemed to be the “measured” CDFs. This “measured” data is
considered as a target function and the optimisation problem is to find the truck fleet properties that give a
best fit to it.

3.1. Dynamic force on sensors and impact factor

It is felt by the authors that working with impact factors, as opposed to total (static +dynamic) force, is
misleading. Light axles tend to have a different pattern of spatial repeatability from heavy ones and the latter
have a much more significant influence on the rate of pavement deterioration.
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Fig. 4. Variation in statistics of dynamic force at sensor five with population size: (a) mean dynamic force and (b) standard deviation.

Fig. 4 illustrates the repeatability of the mean and standard deviation of dynamic force applied by the
simulated trucks. For small truck fleets there is considerable variability in the mean and standard deviation of
force at a point due to the randomness in the Monte Carlo method. However, for truck fleets of 3000 or more
in this example, the mean varies by less than 1% between runs and the standard deviation by less than 4%. To
minimise the lack of repeatability in results, a fleet size of 10,000 trucks was chosen in this study.

Using profile 0 of Fig. 3, a fleet of 10,000 trucks with the properties from Table 1 was run to determine
distributions of dynamic force on the road. The CDFs of force are illustrated in Fig. 5. For this example,
Sensor 5 is subject to significantly greater forces making that location more susceptible to damage.

The differences in the CDFs at each sensor location is a function of the road roughness and the fleet
properties, among other things. For this example, the variability is about 20% between sensors. This is
reasonably consistent with rank. For example, the range in the 10,000th largest force (100% fractile) is
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60.9-72.3kN (18%), 1000th largest force (10% fractile) is 39.9-47.9 kN (20%) while the range in the 500th
largest (5% fractile) is 38.3-46.2kN (21%).

3.2. Discretised cumulative distribution function

The histograms of dynamic force are fitted to a range of statistical distributions and the maximum log-
likelihood calculated in each case. The log-likelihood varies by sensor but is maximum or near-maximum for
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Fig. 6. Normal distribution fit to dynamic force at Sensor 1 location.

the normal distribution in all cases—see for example, Fig. 6. This is reasonably consistent with the findings of
Sweatman [10] who reported that the distributions of dynamic force have a departure from normality but
concluded that it is possible to assume it as a Normal distribution in the case of calculation of the stress factor.

However, to avoid the need for any assumption with regard to distribution, the dynamic force data is
represented by its measured CDF in this study. The CDF of sensor forces is defined by 101 points from the
distribution. Hence, of the 10,000 forces found by measurement or Monte Carlo simulation, 101 are deemed
to represent the distribution, namely the 1st, 100th, 200th, 300th, etc. The CDF corresponding to the
measurements is referred to here as the target CDF. Hence the optimisation problem is to find the truck fleet
model which minimises the sum of squares of differences between target and model CDFs, i.e., the model
which minimises the objective function:

s 101

Obj =Y Y (Ff - F}Iy, 9)
j=1 i=1

where s is the number of sensors, F” is the target force and F is the model force.

4. Sensitivity of the vehicle parameters

The optimisation approach will only find the correct fleet model parameters if the applied forces are
sensitive to these parameters. As an example, the CDF of force applied at Sensor 1 is plotted against mean
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sprung mass in Fig. 7(a), while keeping all other fleet parameters constant. It can be seen that a +10%
variation in mean sprung mass results in a significant shift in the CDF (at the 90% fractile, a 10% fall in mean
mass results in a fall of force from about 51-46 kN). This results in a smoothly varying objective function with
a clear minimum. On the other hand, a +10% change in the standard deviation of sprung mass (Fig. 7(b))
results in a small difference in the CDF of applied force. The result is a very “flat” and less smooth objective
function with variations between successive evaluations and a risk of local minima.

The sensitivity of the objective function to +10% variations in each of the ten fleet model parameters is
summarised in Table 2. It can be seen that, for all parameters, the objective function is considerably more
sensitive to means than to standard deviations. It should be noted that the patterns of spatial repeatability are

quite sensitive to speed but the statistical spatial repeatability patterns considered allow for the variations of
speed in the truck fleet.

5. Optimisation using CE method

The development of MS-WIM systems enables measurements to be taken of dynamic force at different
locations along the pavement length. These systems are calibrated using instrumented trucks to ensure that the
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measurements are dynamic forces rather than estimates of static axle weight [31]. The CE method of
optimisation is used in this paper for the back calculation of the vehicle parameters. In general, target
functions will be formed from the distribution of vehicle dynamic forces measured using MS-WIM systems.
However, to test the accuracy of the optimisation method, an artificial truck fleet is used here to generate the
target distributions. In this way, the true fleet properties are known and can be compared to the properties
inferred by the algorithm.

The goal in the optimisation is to find the fleet properties which give a minimum sum of squares of
differences from the target values. There are 101 differences for each sensor location giving a total of 606 such
differences. The Cross Entropy method works with a population of alternative solutions, i.e., a population of
alternative truck fleet properties. In each stage (generation) in the solution procedure, a population of 300
different truck fleets were considered and the objective functions compared. The range of truck fleet properties
to be considered is controlled by initial mean population values and initial population standard deviations. At
the end of the first stage, the objective function is evaluated for each alternative fleet in the population and an
elite subset, consisting of those with the highest 10% of objective function values, identified. The remaining
90% of solutions are discarded. The mean and standard deviation of each of the fleet parameters of the elite
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Table 2
Sensitivity of objective function to +10% variations in truck fleet properties

Variation in fleet property Objective function
~10% +10%

Mean unsprung mass, m, 1.63 x 10'° 221 x 10"
Standard deviation of m,, 5.95x 108 8.19 x 10®
Mean sprung mass, 1, 1.15x 10" 1.20 x 10"
Standard deviation of m 1.28 x 10'° 1.26 x 10'°
Mean suspension stiffness, k; 1.47 x 10° 2.58 x 10°
Standard deviation of k; 4.56 x 10° 7.60 x 108
Mean suspension damping, ¢ 3.26 x 10° 4.01 x 10°
Standard deviation of ¢ 8.65x 10® 3.57 x 108
Mean tyre stiffness, k, 1.38 x 10'° 1.08 x 10'°
Standard deviation of k, 3.81 x 108 7.67 x 108
Table 3

Comparison of true (target) truck population parameters with those found by optimisation

Target properties Calculated properties Difference (%)
Mean unsprung mass, m, 420 387 -7.9
Standard deviation of m,, 40 47 17.5
Mean sprung mass, m, 4450 4491 0.9
Standard deviation of m,, 450 490 8.9
Mean suspension stiffness, k; 500,000 480,098 —4.0
Standard deviation of k; 50,000 52,652 5.3
Mean suspension damping, ¢ 21,000 24,000 14.3
Standard deviation of ¢ 2000 2400 20.0
Mean tyre stiffness, k; 1,950,000 1,871,950 —4.0
Standard deviation of k, 200,000 180,900 —9.6

subset of 30 are then calculated and used to generate a new population. This process is repeated until the
standard deviation becomes small. A number of restarts were found to be needed to prevent premature
convergence to local minima. For each restart, the population standard deviations were reset while retaining
the mean value.

In the optimisation process, some spurious fleet properties were generated despite using reasonably good
initial estimates. When zero or negative truck fleet properties were generated, they were rejected and another
trial generated. This could introduce a small bias in the way in which the process converges towards the
solution but was found to be insignificant for the cases considered.

6. Results and discussion

For the artificial road profile 0 (Fig. 3), the truck fleet properties of Table 1 were used to generate the CDFs
of dynamic force at each sensor location. These target CDFs were used to back-calculate the truck fleet
properties using the same profile 0. The results are given in Table 3. The CE method did not find the exact
truck fleet properties but found reasonably good estimates which match the distributions of dynamic force
quite well. Despite the inaccuracies in fleet properties, they give a good prediction of the pattern of statistical
spatial repeatability for this road profile.
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To determine if this method can be used to predict unknown patterns of spatial repeatability, a number of
simulated results are compared for profiles 1-4. The pattern implied by the inferred fleet properties is
compared to the pattern generated by the original (true) properties. For each of these four profiles, both sets of
truck fleet properties given in Table 3, are used. The results are illustrated in Fig. 8. It can be seen that
the match is good for 10%, 50% and 90% fractiles and considerably better than the fleet property results of
Table 3 might suggest. While spatial repeatability is highly sensitive to truck properties, statistical spatial
repeatability is clearly not sensitive to the fleet properties. While the properties found by optimisation
are inaccurate by up to 20%, the predicted dynamic forces are quite accurate. For the poor road profile 4,
where the pattern is considerably more pronounced and therefore more significant for pavement deterioration,
the accuracy of the method is very good—the pattern is captured quite well both at the 50% and 90% fractiles
levels.

Matching the truck fleet properties at a site characterises the truck fleet. This fleet model can then be used to
predict patterns of spatial repeatability at other sites subject to similar traffic. This method can be used to
predict the changes in the SSR pattern as the road profile changes due to degradation with time. This is a
powerful tool can be used to forecast the service life of a pavement.

7. Conclusions

This paper addresses a fundamental issue for the prediction of the remaining life of a road pavement. To
back calculate the statistical properties of the truck fleet a method is developed which utilises pavement forces,
as would be measured from a Multiple-Sensor Weigh-in-Motion system. The truck fleet model can then be
used to calculate patterns of spatial repeatability for any given road profile, a critical part of a mechanistic
empirical assessment of pavement life.

Previous empirical studies have shown that patterns of spatial repeatability are insensitive to the number of
axles in the truck. Hence, a single axle model is used here to represent a typical axle of the fleet. For typical
fleet statistical properties, statistical spatial repeatability is shown to be strong—with little variation in mean
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dynamic force—for a fleet size in excess of about 3000. For a typical profile, the cumulative distribution
functions are presented for a series of successive points along the road. There is significant variation in the
dynamic forces and the differences are consistent by rank (90% fractile forces vary from one point to another
by about the same as the mean). The histograms fit well to normal statistical distributions.

The cross entropy method of optimisation is applied to the problem of finding the truck fleet properties. The
method is tested using simulated weigh-in-motion data so that the exact answer would be known. Quite
accurate values for the mean properties are found and reasonably accurate values are found for the standard
deviations. Predictions of patterns of spatial repeatability for other road profiles are shown to be insensitive to
the inaccuracies and good predictions were found in all cases considered.

Appendix A. Cross entropy method

Pioneered in 1997 by Rubinstein, the cross entropy (CE) method [18] has rapidly developed as a powerful
technique for combinatorial optimisation. In this paper, it is applied to the optimisation problem of finding
that combination of truck fleet parameters which generates cumulative distribution functions (CDFs) of forces
applied to the pavement which best fit known CDFs of these forces. The CE method is based on the
development of a population of solutions to the problem and the improvement of the population in successive
generations. It derives its name from the use of cross entropy minimisation principles for the updating of the
parameters.

For the truck fleet problem, the 10 parameters being sought are the means and standard deviations of the
vehicle properties. The CE population consists of an array of alternative combinations of the 10 parameters
which describe the fleet, i.e., an array of alternative fleets. For the first generation, the array is generated
randomly (see Ref. [18]). The dynamic simulation of the truck fleet is run for each individual fleet in the
population. For each fleet, the objective function—in this case—goodness of fit of CDFs, is evaluated. The
portion of the population, p, with the least values of objective function, is retained for the next generation and
the rest discarded. This ‘elite’ sub-population is used to generate new values of fleet properties to complete the
next generation. The mean and standard deviation of each property in the elite sub-population is calculated
and Monte Carlo simulation used to randomly generate new property values. Finally, the (1—p) new fleets are
combined with the elite sub-population of p to form the next generation.

The process is repeated for a number of generations until it converges to a population with a very small sub-
population standard deviation. It was found that there was a tendency for premature convergence to non-
optimal solutions and this was countered by occasional resetting of the standard deviation to a larger value, a
technique known as injection.

Unlike many conventional approaches to optimisation, the CE method has the advantage of working with a
population of solutions rather than a single one. This provides a good spread over a wide range of possible
solutions, especially in the early stages of the problem. While the Genetic Algorithm also works with a
population of solutions, that is better suited to discontinuous problems that are coded in binary or integer
strings.
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