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Abstract

This paper presents a modified continuous-mass (model) transfer matrix method (CTMM) to determine the natural

frequencies and associated mode shapes of a uniform or non-uniform beam with various classical (or non-classical)

boundary conditions (BCs) and carrying multiple sets of concentrated elements with each set consisting of a point mass

(with eccentricity and rotary inertia), a translational spring and a rotational spring. To this end, a continuous non-uniform

free–free beam is subdivided into several uniform beam segments (each having distributed mass) and any two adjacent

beam segments are connected by a node at which various concentrated elements being attached. Next, the transfer matrix

for the integration constants of arbitrary two adjacent beam segments joined at an intermediate node is derived, and then

the characteristic equation of the entire vibrating system is derived by combining all transfer matrices for all intermediate

nodes and considering the BCs of the entire free–free beam. It has been found that, based on the foregoing formulation for

a non-uniform free–free beam, one may easily obtain the mathematical model for a uniform or non-uniform beam with

various BCs and carrying various concentrated elements by only adjusting the magnitudes of cross-sectional area and

length of each beam segment and those of the concentrated elements (such as the lumped mass mi with eccentricity ei and

rotary inertia Ji, the translational spring with stiffness kt,i and/or the rotational spring with stiffness kr,i) attached to each

node. The reliability of the presented results has been confirmed by comparing them with those of the existing literature or

the conventional finite element method (FEM) and good agreement is achieved.

r 2007 Elsevier Ltd. All rights reserved.
1. Introduction

Since the dynamic characteristics of some structural systems may be predicted by using a beam carrying
single or multiple concentrated elements, the literature concerned is plenty. For the free vibration analysis of
beams with various attachments, the lumped-mass (model) transfer matrix method (LTMM) is one of the
most popular approaches in early years [1–10]. Later, various classical analytical methods are presented
to solve the similar problems [11–18]. One of the drawbacks of LTMM is the requirement of finer beam
segments to achieve better accuracy of its numerical results and that of the classical analytical methods is not
ee front matter r 2007 Elsevier Ltd. All rights reserved.
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available for the more complicated problems. To improve the drawbacks of the last existing approaches,
some researchers devoted themselves to the study of continuous-mass (model) transfer matrix method
(CTMM) [19–24].

From reviews of the existing literature [1–23], one finds that the information regarding the free vibration
analysis of a non-uniform beam with various boundary conditions (BCs) and carrying multiple sets of various
concentrated elements is rare, thus, the purpose of this paper is to extend the theories of Refs. [24,25] to the
presented modified CTMM. In which, the transfer matrix method (TMM) based on the lumped-mass model in
Ref. [25] is extended to the TMM based on the continuous-mass model in this paper. To achieve the last goal,
a continuous non-uniform free– free beam is subdivided into several uniform beam segments (each having
distributed mass) and any two adjacent beam segments are connected by a node at which various concentrated
elements being attached. Next, the transfer matrix for the integration constants of arbitrary two adjacent
beam segments joined at an intermediate node i is derived, and then the characteristic equation of the entire
vibrating system is obtained by combining the transfer matrices for all intermediate nodes and considering the
BCs of the entire free– free beam. It has been found that, based on the foregoing formulation for a non-
uniform free– free beam, one may easily obtain the mathematical model for a uniform or non-uniform beam
with various BCs and carrying various concentrated elements by only adjusting the magnitudes of cross-
sectional area and length of each beam segment and those of the concentrated elements (such as the lumped
mass mi with eccentricity ei and rotary inertia Ji, the translational spring with stiffness kt,i and/or the rotational
spring with stiffness kr,i) attached to each node i. Besides, the continuous-mass instead of the lumped-mass

model is used to the formulation of problem, the solution of the modified CTMM will be very close to the
exact one even if the entire beam is subdivided into only a few beam segments. For this reason, the computer
memory and the CPU time required by modified CTMM will be much less than those required by the
conventional finite element method (FEM) for achieving the same accuracy.
2. Equation of motion and displacement function

The sketch for the non-uniform free–free beam studied in this paper is shown in Fig. 1. It is composed of n

uniform beam segments (denoted by (1), (2), y, (i�1), (i), (i+1), y, (n)) separated by n�1 nodes (denoted by
2, 3, y, i�1, i, i+1, y, n) and carrying a lumped mass mi (with eccentricity ei and rotary inertia Ji),
a translational spring with stiffness kt,i and a rotational spring with stiffness kr,i at each node i, i ¼ 1�n+1.
For the ith beam segment (cf. Fig. 1), its equation of motion for free vibration is given by

EiI i

q4yiðx; tÞ

qx4
þ riAi

q2yiðx; tÞ

qt2
¼ 0 ðfor xi � x � xiþ1Þ, (1)
Fig. 1. A non-uniform free– free beam composed of n uniform beam segments and carrying a lumped mass mi (with eccentricity ei and

rotary inertia Ji), a translational spring kt,i and a rotational spring kr,i at each node i, i ¼ 1�n+1.
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where ri, Ei and Ai are mass density, Young’s modulus and cross-sectional area of the ith beam segment,
respectively, Ii is moment of inertia of area Ai, while yi(x, t) is transverse displacement function of the ith beam
segment at axial coordinate x and time t.

According to the theory of separation variables, one sets

yiðx; tÞ ¼ Y iðxÞe
iot, (2)

where Yi(x) is amplitude function of the ith beam segment and o is the natural frequency of the entire non-
uniform beam.

Substituting Eq. (2) into Eq. (1), one has

Y 000i ðxÞ � b4i Y iðxÞ ¼ 0 ðfor xi � x � xiþ1Þ (3)

with

b4i ¼ o2 riAi

EiI i

� �
, (4)

where the primes (0) denote differentiations with respect to the axial coordinate x.
The solution of Eq. (3) takes the form

Y iðxÞ ¼ Ai cos bixþ Bi sin bixþ Ci cosh bixþDi sinh bix ðfor xi � x � xiþ1Þ. (5)
3. Natural frequencies and mode shapes of the entire beam

The continuity of displacements and slopes, and the equilibrium of shear forces and bending moments for
the two beam segments, (i�1) and (i), joined at the intermediate node i (cf. Fig. 1) require that

Y i�1ðxiÞ ¼ Y iðxiÞ, (6a)

Y 0i�1ðxiÞ ¼ Y 0iðxiÞ, (6b)

Ei�1I i�1Y
000
i�1ðxiÞ ¼ EiI iY

000
i ðxiÞ �mio2Y iðxiÞ þ kt;iY iðxiÞ �mieio2Y 0iðxiÞ, (6c)

Ei�1I i�1Y 00i�1ðxiÞ ¼ EiI iY
00
i ðxiÞ � kr;iY

0
iðxiÞ þ ðJi þmie

2
i Þo

2Y 0iðxiÞ þmieio2Y iðxiÞ. (6d)

Note that the effects due to rotary inertia Ji and eccentricity ei of the lumped mass mi are not considered in
Ref. [24].

The non-uniform beam shown in Fig. 1 is a free–free (F–F) beam, thus, the shear forces and bending
moments at its two ends, nodes 1 and n+1, must be equal to zero, i.e.,

E1I1Y 0001 ð0Þ �m1o2Y 1ð0Þ þ kt;1Y 1ð0Þ �m1e1o2Y 01ð0Þ ¼ 0, (7a)

E1I1Y
00
1ð0Þ � kr;1Y

0
1ð0Þ þ ðJ1 þm1e

2
1Þo

2Y 01ð0Þ þm1e1o2Y 1ð0Þ ¼ 0, (7b)

EnInY 000n ðLÞ þmnþ1o2Y nðLÞ � kt;nþ1Y nðLÞ þmnþ1enþ1o2Y 0nðLÞ ¼ 0, (8a)

EnInY 00nðLÞ þ kr;nþ1Y 0nðLÞ � ðJnþ1 þmnþ1e
2
nþ1Þo

2Y 0nðLÞ �mnþ1enþ1o2Y nðLÞ ¼ 0. (8b)

From Eqs. (5) and (6a)–(6d) one obtains

Ai�1 cos bi�1xi þ Bi�1 sin bi�1xi þ Ci�1 cosh bi�1xi þDi�1 sinh bi�1xi

¼ Ai cos bixi þ Bi sin bixi þ Ci cosh bixi þDi sinh bixi, ð9aÞ

bi�1ð�Ai�1 sin bi�1xi þ Bi�1 cos bi�1xi þ Ci�1 sinh bi�1xi þDi�1 cosh bi�1xiÞ

¼ bið�Ai sin bixi þ Bi cos bixi þ Ci sinh bixi þDi cosh bixiÞ, ð9bÞ
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Ai�1 sinbi�1xi � Bi�1 cosbi�1xi þ Ci�1 sinhbi�1xi þDi�1 cosh bi�1xi

¼ ðPi sinbixi þ Ri cosbixÞAi þ ð�Pi cosbixi þ Ri sin bixÞBi

þ ðQi sinh bixi þ Ri cosh bixÞCi þ ðQi cosh bixi þ Ri sinh bixÞDi, ð9cÞ

� Ai�1 cos bi�1xi � Bi�1 sinbi�1xi þ Ci�1 cosh bi�1xi þDi�1 sinh bi�1xi

¼ Aið�Q̄i cosbixi � R̄i sin bixiÞ þ Bið�Q̄i sin bixi þ R̄i cos bixiÞ

þ CiðP̄i coshbixi þ R̄i sinh bixiÞ þDiðP̄i sinh bixi þ R̄i cosh bixiÞ, ð9dÞ

where

Pi ¼
EiI ib

3
i þmieio2bi

Ei�1I i�1b
3
i�1

; Qi ¼
EiI ib

3
i �mieio2bi

Ei�1I i�1b
3
i�1

; Ri ¼
kt;i �mio2

Ei�1I i�1b
3
i�1

, (10a2c)

P̄i ¼
EiI ib

2
i þmieio2

Ei�1I i�1b
2
i�1

; Q̄i ¼
EiI ib

2
i �mieio2

Ei�1I i�1b
2
i�1

; R̄i ¼
½ðJi þmie

2
i Þo

2 � kr;i�bi

Ei�1I i�1b
2
i�1

. (10d2f)

To write Eqs. (9a)–(9d) in matrix form, one has

½G�i�1fdgi�1 ¼ ½H�ifdgi, (11)

where

fdgi ¼ fAi Bi Ci Di g; fdgi�1 ¼ fAi�1 Bi�1 Ci�1 Di�1 g, (12a,b)

½G�i�1 ¼

cos yi�1 sin yi�1 cosh yi�1 sinh yi�1

�bi�1 sin yi�1 bi�1 cos yi�1 bi�1 sinh yi�1 bi�1 cosh yi�1

sin yi�1 � cos yi�1 sinh yi�1 cosh yi�1

� cos yi�1 � sin yi�1 cosh yi�1 sinh yi�1

2
6664

3
7775, (13)

½H�i ¼

cos yi sin yi cosh yi sinh yi

�bi sin yi bi cos yi bi sinh yi bi cosh yi

Pi sin yi þ Ri cos yi �Pi cos yi þ Ri sin yi Qi sinh yi þ Ri cosh yi Qi cosh yi þ Ri sinh yi

�Q̄i cos yi � R̄i sin yi �Q̄i sin yi þ R̄i cos yi P̄i cosh yi þ R̄i sinh yi P̄i sinh yi þ R̄i cosh yi

2
66664

3
77775

(14)

with

yi ¼ bixi, (15)

yi�1 ¼ bi�1xi. (16)

From Eq. (11) one obtains

fdgi ¼ ½H�
�1
i ½G�i�1fdgi�1 ¼ ½T �i�1fdgi�1, (17)

where

½T �i�1 ¼ ½H�
�1
i ½G�i�1, (18)

which represents the transfer matrix between the integration constants for beam segment (i), {d}i, and those
for beam segment (i�1), {d}i�1, joined at the intermediate node i.

From Eq. (17), one has

fdgn ¼ ½T �n�1fdgn�1 ¼ ½T �n�1½T �n�2fdgn�2 ¼ . . . ¼ ½T �n�1½T �n�2 . . . ½T �2½T �1fdg1 ¼ ½T �fdg1, (19)
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where

½T � ¼ ½T �n�1½T �n�2 . . . ½T �2½T �1 ¼

T11 T12 T13 T14

T21 T22 T23 T24

T31 T32 T33 T34

T41 T42 T43 T44

2
6664

3
7775. (20)

It is noted that the symbols { } and [ ] denote the column vector and square matrix, respectively, and
{y}�[y]T with [y]T denoting the transpose of a row matrix.

For the beam segment at left end of the beam with x1 ¼ 0 (cf. Fig. 1), from Eqs. (5) and (7a), one obtains

S11A1 þ S12B1 þ S13C1 þ S14D1 ¼ 0, (21a)

S21A1 þ S22B1 þ S23C1 þ S24D1 ¼ 0, (21b)

where

S11 ¼ kt;1 �m1o2; S12 ¼ �ðE1I1b
3
1 þm1e1o2b1Þ; (22a,b)

S13 ¼ kt;1 �m1o2; S14 ¼ E1I1b
3
1 �m1e1o2b1, (22c,d)

S21 ¼ m1e1o2 � E1I1b
2
1; S22 ¼ ½ðJ1 þm1e21Þo

2 � kr;1�b1, (23a,b)

S23 ¼ m1e1o2 þ E1I1b
2
1; S24 ¼ ½ðJ1 þm1e21Þo

2 � kr;1�b1. (23c,d)

Similarly, for the beam segment at right end of the beam with xn+1 ¼ L (cf. Fig. 1), from Eqs. (5) and (8a),
one has

U11An þU12Bn þU13Cn þU14Dn ¼ 0, (24a)

U21An þU22Bn þU23Cn þU24D4 ¼ 0, (24b)

where

U11 ¼ ðEnInb
3
n �mnþ1enþ1o2bnÞ sin bnL� ðkt;nþ1 �mnþ1o2Þ cos bnL, (25a)

U12 ¼ �ðEnInb
3
n �mnþ1enþ1o2bnÞ cos bnL� ðkt;nþ1 �mnþ1o2Þ sin bnL, (25b)

U13 ¼ ðEnInb
3
n þmnþ1enþ1o2bnÞ sinh bnL� ðkt;nþ1 �mnþ1o2Þ cosh bnL, (25c)

U14 ¼ ðEnInb
3
n þmnþ1enþ1o2bnÞ cosh bnL� ðkt;nþ1 �mnþ1o2Þ sinh bnL, (25d)

U21 ¼ �ðEnInb
2
n þmnþ1enþ1o2Þ cos bnLþ ½ðJnþ1 þmnþ1e2nþ1Þo

2 � kr;nþ1�bn sin bnL, (26a)

U22 ¼ �ðEnInb
2
n þmnþ1enþ1o2Þ sin bnL� ½ðJnþ1 þmnþ1e

2
nþ1Þo

2 � kr;nþ1�bn cos bnL (26b)

U23 ¼ ðEnInb
2
n �mnþ1enþ1o2Þ cosh bnL� ½ðJnþ1 þmnþ1e

2
nþ1Þo

2 � kr;nþ1�bn sinh bnL, (26c)

U24 ¼ ðEnInb
2
n �mnþ1enþ1o2Þ sinh bnL� ½ðJnþ1 þmnþ1e2nþ1Þo

2 � kr;nþ1�bn cosh bnL. (26d)

To write the two equations for the right-end BCs given by Eqs. (24a,b) in matrix form, one obtains

½U �fdgn ¼ 0, (27)

where

½U � ¼
U11 U12 U13 U14

U21 U22 U23 U24

" #
. (28)
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Introducing the overall transfer matrix [T] defined by Eq. (19) into Eq. (27) gives

½U �½T �fdg1 ¼ 0 (29a)

or

½V �fdg1 ¼ 0, (29b)

where

½V � ¼ ½U �2�4½T �4�4. (30)

Combining the other two equations for the left-end BCs given by Eqs. (21a,b) with Eq. (29b), one obtains

½W �fdg1 ¼ 0 (31)

with

½W � ¼

S11 S12 S13 S14

S21 S22 S23 S24

V11 V 12 V 13 V14

V21 V 22 V 23 V24

2
6664

3
7775. (32)

Since Eq. (31) represents a set of simultaneous equations, non-trivial solution requires that its coefficient
determinant is equal to zero, i.e.,

jW j ¼

S11 S12 S13 S14

S21 S22 S23 S24

V 11 V 12 V13 V14

V 21 V 22 V23 V24

���������

���������
¼ 0. (33)

Eq. (33) is the frequency equation, from which one may determine the natural frequencies ov (v ¼ 1, 2, 3,y)
and corresponding to each natural frequency one may obtain the associated integrations {d}1 ¼ {A1 B1 C1 D1}
from Eq. (31). Once the integration constants for the first beam segment, {d}1, are determined, those of the
other beam segments, {d}i (i ¼ 2,3, y, n), may obtained from Eq. (17), and substituting the integration
constants for all beam segments, {d}i (i ¼ 1,2,3, y, n), into Eq. (5), one will determine the associated mode
shape of the entire beam, Y(v)(x).

4. Numerical results and discussions

For convenience of comparisons, the dimensions and physical constants of the beams studied in this
paper are taken to be the same as those of Ref. [25]: total length L ¼ 2.0m, diameter d1 ¼ 0.03m, mass
density r1 ¼ 7850 kg/m3, Young’s modulus E1 ¼ 2.068� 1011N/m2, cross-sectional area A1 ¼ pd2

1=4 ¼
7:069� 10�4 m2, area moment of inertia I1 ¼ pd4

1=64 ¼ 3:976� 10�8 m4, reference mass ~m ¼ r1A1L ¼

11:09833l kg, reference rotary inertia ~J ¼ r1A1L3 ¼ ~mL2 ¼ 44:39332 kgm2, reference rigidity E1I1 ¼

8.2224� 103Nm2, reference rotational spring constant ~kr ¼ E1I1=L ¼ 4:1112� 103 Nm, reference transla-
tional spring constant ~kt ¼ E1I1=L3 ¼ 1:0278� 103 N=m. In the foregoing expressions, the subscript 1 refers
to field 1 (or beam segment 1).

4.1. A ‘‘stepped’’ beam carrying multiple sets of concentrated elements

The current stepped beam has two stepped changes in cross-sections with diameters of the stepped beam
segments to be d1 ¼ 0.03m, d2 ¼ 0.04m and d3 ¼ 0.05m, as one may see from Fig. 2. Besides, the stepped
beam carries three identical sets of concentrated elements. Each set of concentrated elements includes a
lumped mass mi (with eccentricity ei and rotary inertia Ji), a translational spring (with stiffness constant kt,i)
and a rotational spring (with stiffness constant kr,i). The magnitudes of the concentrated elements are:
mi ¼ ~m ¼ 11:09833l kg, ei ¼ 0.01L ¼ 0.02m, Ji ¼ 0:1 ~J ¼ 4:439332 kgm2, kt;i ¼

~kt ¼ 1:0278� 103 N=m and
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Fig. 2. A three-step P–P beam carrying three identical sets of concentrated elements located at xi ¼ xi/L ¼ 0.125, 0.5 and 0.875,

respectively. The unit for all lengths in the figure is ‘‘meter’’ and the station numberings are for LTMM and FEM only.

Table 1

The lowest five natural frequencies, ov (v ¼ 1–5), for the three-step beam (cf. Fig. 2) carrying three identical sets of concentrated elements

located at xi ¼ xi/L ¼ 0.125, 0.5 and 0.875, respectively

Boundary conditions Methods Natural frequencies, ov (rad/s)

o1 o2 o3 o4 o5

P–P LTMM 57.3317 108.1611 268.9405 281.6411 467.3322

CTMM 57.3303 108.1652 268.9206 281.6431 467.0818

FEM 57.3303 108.1651 268.9206 281.6434 467.3489

C–C LTMM 97.0301 131.5889 293.7608 317.5620 751.8541

CTMM 97.0273 131.5916 293.7228 317.5613 751.9225

FEM 97.0273 131.5916 293.7228 317.5617 751.9331

C–F LTMM 21.8981 79.1734 124.5587 307.1878 387.4394

CTMM 21.8995 79.1755 124.5614 307.1629 387.4295

FEM 21.8995 79.1755 124.5614 307.1629 387.4302

C–P LTMM 73.3668 124.4120 270.6345 310.0435 468.4279

CTMM 73.3654 124.4147 270.6195 310.0296 468.4319

FEM 73.3654 124.4147 270.6195 310.0298 468.4508

Note: (i) mi ¼ Ji ¼ ei ¼ kt,i ¼ kr,i ¼ 0 except those at xi ¼ xi/L ¼ 0.125, 0.5 and 0.875.

(ii) Total number of beam segments is n ¼ 40 for LTMM and FEM, and n ¼ 8 for CTMM.

J.-S. Wu, C.-T. Chen / Journal of Sound and Vibration 311 (2008) 1420–14301426
kr;i ¼
~kr ¼ 4:1112� 103 Nm (i ¼ 6, 21, 36 for LTMM and FEM; i ¼ 2, 5, 8 for CTMM), where i

denotes the ‘‘station’’ numbering, and the total number of ‘‘beam segments’’ is n ¼ 40 for LTMM
and FEM and n ¼ 8 for CTMM. The digits in Fig. 2 represent the numberings for the associated
‘‘stations’’ (for LTMM and FEM only), and the locations of the three sets of concentrated elements
are: xI ¼ xi/L ¼ 0.125, 0.5 and 0.875, respectively. It is noted that the unit for all lengths in the figure is
‘‘meter’’.

Four classical boundary (supporting) conditions of the stepped beam are studied: pinned–pinned (P–P),
clamped–clamped (C–C), clamped–free (C–F) and clamped–pinned (C–P). The lowest five natural frequencies
of the stepped beam, ov (v ¼ 1–5), obtained from LTMM, CTMM and FEM are listed in Table 1. Note that,
in LTMM and CTMM, a pinned end is modeled by kt ¼ 1.0� 1015N/m and kr ¼ 0; a clamped end by
kt ¼ 1.0� 1015N/m and kr ¼ 1.0� 1015Nm; a free end by kt ¼ kr ¼ 0.

4.2. Influence of total number of beam segments (n) on solution convergence

Because the solution convergence of either LTMM or FEM has something to do with the problems tackled,
two kinds of vibrating system are studied in this subsection: a uniform beam with one set of concentrated
elements located at mid-length (cf. Fig. 3) and a three-step beam carrying three intermediate identical sets of
concentrated elements (cf. Fig. 2).
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Fig. 3. A spring-hinged uniform beam carrying an eccentric tip mass.
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4.2.1. A uniform spring-hinged beam with an eccentric tip mass and a set of in-span springs

For the uniform spring-hinged beam carrying an eccentric tip mass and a set of in-span springs as shown
in Fig. 3, and with k�r;1 ¼ kr;1= ~kr ¼ 105, k�r;i ¼ kr;i= ~kr ¼ 10, k�t;i ¼ kt;i= ~kt ¼ 10, J�nþ1 ¼ Jnþ1= ~J ¼ 0:1,
e�nþ1 ¼ enþ1=L ¼ 0:1, m�nþ1 ¼ mnþ1= ~m ¼ 5 and xi ¼ xi/L ¼ 0.5, the influence of total number of beam
segments (n) on accuracy of the lowest five natural frequencies, ov (v ¼ 1–5), is shown in Table 2 and Fig. 4.
Since the results of CTMM based on n ¼ 4 are the same as those based on n ¼ 2, as one may see from
Table 2(a), the solution of CTMM for the current example is the exact one, the percentage errors (e%) in the
parentheses of Table 2(a) are determined from the formula: e ¼ (oi,,X�oi,CTMM)� 100%/oi,CTMM with oi,X

denoting the ith natural frequency obtained from X method (X ¼ LTMM or FEM). Based on the absolute
values of e, five figures showing the solution convergence versus total number of beam segments (n) are plotted
in Figs. 4(a)–(e) for o1, o2, o3, o4 and o5, respectively. In which, the solid curves ( , , ,
and ) are for the solution of LTMM and the dashed curves ( , , , and )
are for that of FEM.

From Table 2(a) one sees that, for the case of n ¼ 2, LTMM can only determine the second rough natural
frequency (o2 ¼ 73.2035E71.2678 rad/s) but FEM cannot determine any reasonable natural frequencies
(because o1 ¼ 22:4584b11:2087 rad=sand o2 ¼ 127:3449b71:2678 rad=s). However, for the case of n ¼ 4,
FEM can determine the lowest ‘‘five’’ reasonable natural frequencies but LTMM can determine only the
lowest ‘‘four’’. For the last reason, the minimum number of beam segments for the solution convergence
graphs shown in Figs. 4(a)–(e) is nmin ¼ 6. For the case of n ¼ 14, the maximum percentage error for the
lowest five natural frequencies is emax ¼ 0.040% for o2 obtained from LTMM and emax ¼ 0.026% for o5

obtained from FEM as one may see from Table 2(a) and Fig. 4. Based on the foregoing discussions, one may
say that one of the predominant advantages of CTMM superior to LTMM or FEM should be its capable of
achieving accurate solution using only a few beam segments.

4.2.2. A three-step beam with three identical sets of concentrated elements in P– P BCs

For the three-step beam carrying three identical sets of concentrated elements with P– P BCs as
shown in Fig. 2 and Case 1 of Table 1, the influence of total number of beam segments (n) on accuracy
of the lowest five natural frequencies, ov (v ¼ 1–5), is shown in Table 2(b). In Fig. 2, the entire beam
has 4 stepped changes of cross-sections and 3 attaching points for the 3 identical sets of concentrated elements.
For the last reason, the minimum number of beam segments for either LTMM, CTMM or FEM is eight
(nmin ¼ 8) for the stepped beam shown in Fig. 2 instead of two (nmin ¼ 2) for CTMM for the uniform beam

shown in Fig. 3. The percentage differences (e%) between the lowest five natural frequencies obtained from
LTMM (i.e., oi,LTMM, i ¼ 1�5) and the corresponding ones obtained from CTMM (i.e., oi,CTMM, i ¼ 1�5,
with n ¼ nmin ¼ 8) are shown in the parentheses in upper part of Table 2(b) for the cases of n ¼ 8, 16, 32 and
40. Similarly, the lower part of Table 2(b) shows the values of e% between oi,FEM and oi,CTMM (i ¼ 1�5).
Note that the foregoing values of e are also obtained from the formula: e ¼ (oi,X�oi,CTMM)� 100%/oi,CTMM

with X ¼ LTMM or FEM. From Table 2(b) one sees that, for the case of n ¼ nmin ¼ 8, the maximum
percentage difference is emax ¼ 0.196% for o3 obtained from LTMM and emax ¼ 0.062% for o5 obtained
from FEM. Therefore, for the current example, the solution accuracy of LTMM or FEM is near that of
CTMM.



ARTICLE IN PRESS

Table 2

Influence of total number of beam segments (n) on the accuracy of the lowest five natural frequencies, ov (v ¼ 1–5)

Methods Total number

of beam

segments, n

Natural frequencies, ov (rad/s)

o1 o2 o3 o4 o5

(a) For the uniform spring-hinged beam carrying an eccentric tip mass and a set of in-span springs as shown in Fig. 3

LTMM 2 – 73.2035 – – –

4 11.1925 71.6455 240.6655 634.7105 –

(�0.145%)a (0.530%) (�0.147%) (�6.569%)

6 11.2015 71.4285 241.0745 673.4885 1146.6905

(�0.064%) (0.225%) (0.022%) (�0.861%) (�2.404%)

8 11.2045 71.3565 241.0735 677.8625 1168.8305

(�0.037%) (0.124%) (0.021%) (�0.217%) (�0.519%)

10 11.2065 71.3245 241.0595 678.8085 1172.9455

(�0.020%) (0.080%) (0.016%) (�0.078%) (�0.169%)

12 11.2070 71.3065 241.0495 679.1035 1174.1055

(�0.015%) (0.054%) (0.012%) (�0.034%) (�0.070%)

14 11.2075 71.2965 241.0425 679.2195 1174.5285

(�0.011%) (0.040%) (0.009%) (�0.017%) (�0.034%)

CTMM 2 11.2087 71.2678 241.0210 679.3350 1174.9315

4 11.2087 71.2678 241.0210 679.3350 1174.9315

FEM 2 22.4584 127.3449 – – –

4 11.2087 71.2702 241.3558 686.9020 1199.2475

(0.000%) (0.003%) (0.139%) (1.114%) (2.070%)

6 11.2087 71.2683 241.0881 681.0135 1183.3461

(0.000%) (0.001%) (0.028%) (0.247%) (0.716%)

8 11.2087 71.2679 241.0423 679.8773 1177.7173

(0.000%) (0.000%) (0.009%) (0.080%) (0.237%)

10 11.2087 71.2678 241.0297 679.5590 1176.0923

(0.000%) (0.000%) (0.004%) (0.033%) (0.099%)

12 11.2087 71.2678 241.0252 679.4435 1175.4963

(0.000%) (0.000%) (0.002%) (0.016%) (0.048%)

14 11.2087

(0.000%)

71.2678

(0.000%)

241.0232

(0.001%)

679.3937

(0.009%)

1175.2380

(0.026%)

(b) The three-step beam carrying three identical sets of concentrated elements with P– P boundary conditions as shown in Fig. 2 and Case 1 of

Table 1

LTMM 8 57.3661 108.0742 269.4464 281.6303 467.4578

(0.062%)a (�0.084%) (0.196%) (�0.005%) (0.080%)

16 57.3392 ) 108.1404 269.0483 281.6346 467.3561

(0.016% (�0.023%) (0.047%) (�0.003%) (0.059%)

32 57.3325 108.1588 268.9519 281.6400 467.3354

(0.004%) (�0.006%) (0.012%) (�0.001%) (0.054%)

40 57.3317 108.1611 268.9405 281.6438 467.3322

(0.002%) (�0.004%) (0.007%) (�0.001%) (0.054%)

CTMM 8 57.3303 108.1652 268.9206 281.6431 467.0818

FEM 8 57.3303 108.1652 268.9240 281.6450 467.3700

(0.000%) (0.000%) (0.001%) (0.001%) (0.062%)

16 57.3303 108.1652 268.9206 281.6435 467.3502

(0.000%) (0.000%) (0.000%) (0.000%) (0.057%)

32 57.3303 108.1651 268.9206 281.6434 467.3490

(0.000%) (0.000%) (0.000%) (0.000%) (0.057%)

40 57.3303 108.1651 268.9206 281.6434 467.3489

(0.000%) (0.000%) (0.000%) (0.000%) (0.057%)

aThe percentage differences obtained from e ¼ (oi,X�oi,CTMM)� 100%/oi,CTMM with X ¼ LTMM or FEM.
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Fig. 4. Influence of total number of beam segments (n) on the ‘‘absolute’’ percentage errors (|e|%) for the lowest five natural frequencies

obtained from LTMM ( , , , and ) and FEM ( , , , and ) based

on the formula: |e| ¼ |oi,X�oi,CTMM|� 100%/oi,CTMM with X ¼ LTMM or FEM for: (a) o1, (b) o2, (c) o3, (d) o4 and (e) o5.
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5. Conclusions

Comparing with Ref. [25], it is easy to see that the theory of continuous transfer matrix method
(CTMM) is much different from that of lumped-mass transfer matrix method (LTMM). This is due
to the fact that CTMM is based on the continuous-mass model and LTMM is based on the
lumped-mass model, furthermore, the transfer matrix for an intermediate node in CTMM is to
relate the ‘‘integration constants’’ for the two adjacent beam segments joined at that node and the
transfer matrix for a node (or beam segment) in LTMM is to relate the ‘‘state variables’’ (i.e., displacements,
slopes, bending moments and shear forces) for the two sides of that node (or beam segment). Therefore,
the close agreement between the results of CTMM and those of LTMM should be one of the good
evidences that the theories presented and the computer programs developed for CTMM and LTMM are
reliable.

In addition to the formulation, the solution convergence of an approximate method is also dependent on the
problems tackled. In general, one of the predominant advantages of CTMM superior to LTMM and FEM is
its capable of achieving accurate solution by using only a few beam segments, particularly for the cases of a
uniform beam carrying a few sets of concentrated elements.
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