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Abstract

This paper presents a modified continuous-mass (model) transfer matrix method (CTMM) to determine the natural
frequencies and associated mode shapes of a uniform or non-uniform beam with various classical (or non-classical)
boundary conditions (BCs) and carrying multiple sets of concentrated elements with each set consisting of a point mass
(with eccentricity and rotary inertia), a translational spring and a rotational spring. To this end, a continuous non-uniform
free—free beam is subdivided into several uniform beam segments (each having distributed mass) and any two adjacent
beam segments are connected by a node at which various concentrated elements being attached. Next, the transfer matrix
for the integration constants of arbitrary two adjacent beam segments joined at an intermediate node is derived, and then
the characteristic equation of the entire vibrating system is derived by combining all transfer matrices for all intermediate
nodes and considering the BCs of the entire free—free beam. It has been found that, based on the foregoing formulation for
a non-uniform free—free beam, one may easily obtain the mathematical model for a uniform or non-uniform beam with
various BCs and carrying various concentrated elements by only adjusting the magnitudes of cross-sectional area and
length of each beam segment and those of the concentrated elements (such as the lumped mass m; with eccentricity e¢; and
rotary inertia J;, the translational spring with stiffness k,; and/or the rotational spring with stiffness k, ;) attached to each
node. The reliability of the presented results has been confirmed by comparing them with those of the existing literature or
the conventional finite element method (FEM) and good agreement is achieved.
© 2007 Elsevier Ltd. All rights reserved.

1. Introduction

Since the dynamic characteristics of some structural systems may be predicted by using a beam carrying
single or multiple concentrated elements, the literature concerned is plenty. For the free vibration analysis of
beams with various attachments, the lumped-mass (model) transfer matrix method (LTMM) is one of the
most popular approaches in early years [1-10]. Later, various classical analytical methods are presented
to solve the similar problems [11-18]. One of the drawbacks of LTMM is the requirement of finer beam
segments to achieve better accuracy of its numerical results and that of the classical analytical methods is not
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available for the more complicated problems. To improve the drawbacks of the last existing approaches,
some researchers devoted themselves to the study of continuous-mass (model) transfer matrix method
(CTMM) [19-24].

From reviews of the existing literature [1-23], one finds that the information regarding the free vibration
analysis of a non-uniform beam with various boundary conditions (BCs) and carrying multiple sets of various
concentrated elements is rare, thus, the purpose of this paper is to extend the theories of Refs. [24,25] to the
presented modified CTMM. In which, the transfer matrix method (TMM) based on the lumped-mass model in
Ref. [25] is extended to the TMM based on the continuous-mass model in this paper. To achieve the last goal,
a continuous non-uniform free—free beam is subdivided into several uniform beam segments (each having
distributed mass) and any two adjacent beam segments are connected by a node at which various concentrated
elements being attached. Next, the transfer matrix for the integration constants of arbitrary two adjacent
beam segments joined at an intermediate node i is derived, and then the characteristic equation of the entire
vibrating system is obtained by combining the transfer matrices for all intermediate nodes and considering the
BCs of the entire free—free beam. It has been found that, based on the foregoing formulation for a non-
uniform free— free beam, one may easily obtain the mathematical model for a uniform or non-uniform beam
with various BCs and carrying various concentrated elements by only adjusting the magnitudes of cross-
sectional area and length of each beam segment and those of the concentrated elements (such as the lumped
mass m; with eccentricity e; and rotary inertia J;, the translational spring with stiffness &, ; and/or the rotational
spring with stiffness k, ;) attached to each node i. Besides, the continuous-mass instead of the lumped-mass
model is used to the formulation of problem, the solution of the modified CTMM will be very close to the
exact one even if the entire beam is subdivided into only a few beam segments. For this reason, the computer
memory and the CPU time required by modified CTMM will be much less than those required by the
conventional finite element method (FEM) for achieving the same accuracy.

2. Equation of motion and displacement function

The sketch for the non-uniform free—free beam studied in this paper is shown in Fig. 1. It is composed of n
uniform beam segments (denoted by (1), (2), ..., (i—1), (i), (i+ 1), ..., (n)) separated by n—1 nodes (denoted by
2,3, ..., i—1, i, i+1, ..., n) and carrying a lumped mass m, (with eccentricity ¢; and rotary inertia J;),
a translational spring with stiffness k,; and a rotational spring with stiffness k, ; at each node i, i = l~n+1.
For the ith beam segment (cf. Fig. 1), its equation of motion for free vibration is given by

tyi(x, 1) Oy(x, 1)
Eih#"‘ﬂil‘livzo (for x; < x < xi11), )
kr.lfl k rii+l ron+l
i—1 n;,e; 1[ l+1 n +1
SNl )~ {) g----a -------- o) .. »
m;_,€,_,, J’ 1 nl,ﬂ €l JH[ (n) M1 it Jn+l
kr,i+1 kl,/1+|
0= / -, —>
I i1
: x;
: Xis >
:= Kop1 = L o
Y y

Fig. 1. A non-uniform free—free beam composed of n uniform beam segments and carrying a lumped mass m; (with eccentricity e; and
rotary inertia J;), a translational spring k,; and a rotational spring k,; at each node 7, i = l~n+1.
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where p,, E; and A; are mass density, Young’s modulus and cross-sectional area of the ith beam segment,
respectively, I;is moment of inertia of area A;, while y,(x, f) is transverse displacement function of the ith beam
segment at axial coordinate x and time f.

According to the theory of separation variables, one sets

yi(x, 1) = Yi(x)e", 2)
where Y,(x) is amplitude function of the ith beam segment and w is the natural frequency of the entire non-

uniform beam.
Substituting Eq. (2) into Eq. (1), one has

Y{(x) = B Yix) =0 (forx; < x < xi11) ©
with
4 _ o Pidi
&—me) )

where the primes (') denote differentiations with respect to the axial coordinate x.
The solution of Eq. (3) takes the form

Yi(x) = A; cos B;x + B; sin f;x + C; cosh f;x + D; sinh f;x (for x; < x < xj11). 5)

3. Natural frequencies and mode shapes of the entire beam

The continuity of displacements and slopes, and the equilibrium of shear forces and bending moments for
the two beam segments, (i—1) and (i), joined at the intermediate node i (cf. Fig. 1) require that

Yioi(xi) = Yi(xy), (6a)

Yi_i(x) = Yi(xo), (6b)

Eili Y ((x) = ELY)(x;) — mo? Yi(xi) + ki Yi(xi) — mieio Yi(x:), (6¢)

Ei i Y] ((x) = EL Y (%) — ki Yi(x0) + (J; + mie))o” Yi(x) + mie;o” Y i(x;). (6d)

Note that the effects due to rotary inertia J; and eccentricity e; of the lumped mass m; are not considered in

Ref. [24].
The non-uniform beam shown in Fig. | is a free—free (F-F) beam, thus, the shear forces and bending
moments at its two ends, nodes 1 and n+ 1, must be equal to zero, i.e.,

E\LY] (0) — mia?* Y1(0) + ki Y1(0) — mie 0 Y (0) = 0, (7a)

E\L Y((0) = ket Y(0) 4 (J1 + myed)o? Y(0) + mieyo” Y1(0) = 0, (7b)
E.LY,(L)+ My 1@0* Y (L) — Kipns1Yu(L) + My1€n 1 @7 Y, (L) =0, (8a)

E Ly Y (L) + iyt Y(L) = (Jugt + Mugrey, ) Y (L) — myq1€n10” Yo(L) = 0. (8b)

From Eqgs. (5) and (6a)—(6d) one obtains
Ai—1 cos B;_1x; + Bi—y sin f;_x; + Ci_y cosh B,_;x; + D;_; sinh B,_;x;
= A; cos fi;x; + B; sin f,x; + C; cosh f,x; + D; sinh f;x;, (9a)

Bi_i(—A-1 sin B;_1x; + Bi_y cos f;_1x; + C;_ sinh B,_;x; + D;_y cosh f;_;x;)
= f,(—A; sin B;x; + B; cos f;x; + C; sinh f;x; + D; cosh f;x;), (9b)
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Airsinf;_1x; — Biycos B x; + Ci—ysinh B;_x; + Dj—y cosh f;_x;
= (P;sin f;x; + R;cos f;x)A; + (—P;cos f;x; + R; sin f;x)B;
+ (Q; sinh B;x; + R; cosh f;x)C; + (Q; cosh f;x; + R; sinh f8;x)D;, (9¢)

— A1 cos Bi_1x; — Bi_ysin f;_x; + C;_y cosh f,_;x; + D;_; sinh f;_x;
= A;(—Q;cos B;x; — R; sin B;x;) + Bi(—Q; sin B;x; + R; cos Bix;)
+ Ci(P;cosh B;x; + R; sinh B;x;) + D;(P; sinh B;x; + R; cosh f,x;), (9d)

where

P — Eiliﬁ? + mje;?;

3 2 2

. _ Eilif; — mjej”B; kii —mio
1 3 -
Eiflliflﬁj_l

, Rj=—t T (10a—c)
Eidiif Eidif

. O

o ELP +miew® - Edp —mej?® i+ mie})o* — k. i1p;
p, = Eidibi +mieior IO’ g, _ Eidibi = mieir” e, Ri= [(Ji + miei)eo _ rilfi. (10d—f)
Ei I1p;, Ei Iip;i, EiIipi,
To write Egs. (92)—(9d) in matrix form, one has
(Gl {0}y = [H];{0};, (11)
where
(8, ={4;i B C; D;}, {(8},_y={4i-1 Bi.i Ci-i D1}, (12a,b)
cos 0,_; sin 0;_; cosh 0;_; sinh 0;_;
—Bi_y sin 0,y P,_; cos 0,1 P,_; sinh 0;_; f;_; cosh 0;_,
(Gl = | o ~ cos 0, inh 0. A » (13)
sin 0;_4 cos 0,4 sinh 0;_; cosh 0,_,
—cos 0;_; —sin 0;_; cosh 0;_; sinh 0;_;
cos 0; sin 0; cosh 0; sinh 0;
—p; sin 0; p; cos 0; f; sinh 0; f; cosh 0;
[H]; = P; sin 0; + R; cos 0, —P;cos 0;+ R; sin 0; Q; sinh 0; + R; cosh 0; Q, cosh 0; + R; sinh 0;
—Q;cos 0; — R; sin 0; —Q, sin 0; + R; cos 0; P; cosh 0; + R; sinh 0; P; sinh 0; + R; cosh 0;
(14)
with
0; = ﬁixi, (15)
Oi—l = ﬁiflxi‘ (16)
From Eq. (11) one obtains
(0 = [H]; (Gl 0}y = [T]i-1 (0} (17)
where
[T)i-1 = [H]; '[Gli- (18)

which represents the transfer matrix between the integration constants for beam segment (i), {};, and those
for beam segment (i—1), {0};_;, joined at the intermediate node 7.
From Eq. (17), one has

{0}, = [T1,-1 {0}y = [T]ha[T]h2{0}y2 = ... = [T]a[Thia . . . [TLIT]i {0} = [TT{0}1, (19)
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where

Ty Ty T3 Tis
Ty Tn Ty Txu
Ty Tz Tz Tx
Ty Ta T4z Ty

[TT= [T r[Thh— ... [TLIT], = (20)

It is noted that the symbols { } and [ ] denote the column vector and square matrix, respectively, and
{...}=[...]" with [...]" denoting the transpose of a row matrix.
For the beam segment at left end of the beam with x; = 0 (cf. Fig. 1), from Egs. (5) and (7a), one obtains

Sudy+ SiBi +813C1 + S14Dy =0, (21a)
S A1+ SnB + 83C1 + SuD; =0, (21b)
where
Si =k —mao?, Sp=—(ELf] +me o), (22a,b)
Si3 =k —mie?, Sy =E\L —mieio*p, (22¢,d)
So1 =mieiw® — E\L1f},  Sxn =[(J1 +meD)a® —k.1lp, (23a,b)
Sy =mie1® + E\L1f},  Sau =[(J1 +med)o® —k,11p,. (23¢,d)

Similarly, for the beam segment at right end of the beam with x,+; = L (cf. Fig. 1), from Egs. (5) and (8a),
one has

Undp+ UnB,+ UisC, + UuD, =0, (24a)
UsiA, + UpB, + U Cy + UnyDy =0, (24b)

where
Un = (Enlnﬁ,?; - mn+len+lw2ﬁn) sin B,L — (kiuy1 — mn+1w2) cos B,L, (25a)
Up = _(Enlnﬂz - mn+l€n+lw2ﬂn) cos fB,L — (kpy1 — mn+1w2) sin 3, L, (25b)
Uiz = (Ep LB + myp1ep10*B,) sinh B, L — (kyppt — My 10?) cosh B, L, (25¢)
Uig = (E 1B + myi1e,10°B,) cosh B,L — (kypy1 — myy10?)sinh B, L, (25d)
Us = _(Enlnﬁi + mn+1€’n+10)2) cos f,L+ [(Jns1 + mn+1€,2,+1)0)2 — kyn1]B,sin B, L, (26a)
Uy = —(Enl,,ﬁi + Mpy1epp @) sin B, L — [(Jur1 + Wln+1ei+1)602 — kynt1]B, cos B,L (26b)
Uz = (Epd B — mysienr10?) cosh B,L — [(Jus1 + mys1€l, )0 = kyni1]B, sinh B, L, (26¢)
Uy = (En1r1ﬁ,21 - mn+1€n+1w2) sinh f,L — [(Jut1 + mn+1€,2,+1)032 — kypy1]B, cosh B, L. (26d)

To write the two equations for the right-end BCs given by Egs. (24a,b) in matrix form, one obtains
[UI{o}, =0, 27)
where
Un U U Uun

Ul =
[U] Un Upxp Uy Uxy

(28)
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Introducing the overall transfer matrix [7] defined by Eq. (19) into Eq. (27) gives

[UIITo} =0 (29a)
or
[V){o} =0, (29b)
where
V] = [UlxalTlyxa- (30)
Combining the other two equations for the Jeft-end BCs given by Eqs. (21a,b) with Eq. (29b), one obtains
[Wl{o} =0 (31
with

Su Sz Sz Su

Sor S Su Su
(W] = . (32)
Vie Vi Viz Via

Voo Vo Vi Vo

Since Eq. (31) represents a set of simultaneous equations, non-trivial solution requires that its coefficient
determinant is equal to zero, i.e.,

W] = = 0. (33)
Voo Vo Vo Vo

Eq. (33) is the frequency equation, from which one may determine the natural frequencies w, (v =1, 2, 3,...)
and corresponding to each natural frequency one may obtain the associated integrations {0}; = {4, B; C; D}
from Eq. (31). Once the integration constants for the first beam segment, {0},, are determined, those of the
other beam segments, {5}; (i = 2,3, ..., n), may obtained from Eq. (17), and substituting the integration
constants for all beam segments, {0}; (i = 1,2,3, ..., n), into Eq. (5), one will determine the associated mode
shape of the entire beam, Y(x).

4. Numerical results and discussions

For convenience of comparisons, the dimensions and physical constants of the beams studied in this
paper are taken to be the same as those of Ref. [25]: total length L = 2.0 m, diameter ¢; = 0.03 m, mass
density p; = 7850kg/m>, Young’s modulus E; = 2.068 x 10" N/m? cross-sectional area A, = nd%/4 =
7.069 x 1074 m?, area moment of inertia I, = nd‘l‘/64 =3.976 x 10~ ®m*, reference mass /i = p AL =
11.098331kg, reference rotary inertia J = p,4,L° = mL*> =44.39332kgm?, reference rigidity E I, =
8.2224 x 103Nm2, reference rotational spring constant IE, =EI/L=41112 x 10° Nm, reference transla-
tional spring constant &, = E\I,/L? = 1.0278 x 10° N/m. In the foregoing expressions, the subscript 1 refers
to field 1 (or beam segment 1).

4.1. A “stepped” beam carrying multiple sets of concentrated elements

The current stepped beam has two stepped changes in cross-sections with diameters of the stepped beam
segments to be d; = 0.03m, d» = 0.04m and d; = 0.05m, as one may see from Fig. 2. Besides, the stepped
beam carries three identical sets of concentrated elements. Each set of concentrated elements includes a
lumped mass m; (with eccentricity e; and rotary inertia J;), a translational spring (with stiffness constant &, )
and a rotational spring (with stiffness constant k, ;. The magnitudes of the concentrated elements are:
m; = it = 11.098331kg, ¢; = 0.01L = 0.02m, J; = 0.1J = 4.439332kgm?, k,; = k, =1.0278 x 10°N/m and
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Fig. 2. A three-step P-P beam carrying three identical sets of concentrated elements located at & = x;/L =0.125, 0.5 and 0.875,
respectively. The unit for all lengths in the figure is ““‘meter” and the station numberings are for LTMM and FEM only.

Table 1
The lowest five natural frequencies, @, (v = 1-5), for the three-step beam (cf. Fig. 2) carrying three identical sets of concentrated elements
located at &; = x;/L = 0.125, 0.5 and 0.875, respectively

Boundary conditions Methods Natural frequencies, w, (rad/s)
(] (&) w3 Wy s

P-P LTMM 57.3317 108.1611 268.9405 281.6411 467.3322
CTMM 57.3303 108.1652 268.9206 281.6431 467.0818
FEM 57.3303 108.1651 268.9206 281.6434 467.3489

c-C LTMM 97.0301 131.5889 293.7608 317.5620 751.8541
CTMM 97.0273 131.5916 293.7228 317.5613 751.9225
FEM 97.0273 131.5916 293.7228 317.5617 751.9331

C-F LTMM 21.8981 79.1734 124.5587 307.1878 387.4394
CTMM 21.8995 79.1755 124.5614 307.1629 387.4295
FEM 21.8995 79.1755 124.5614 307.1629 387.4302

C-P LTMM 73.3668 124.4120 270.6345 310.0435 468.4279
CTMM 73.3654 124.4147 270.6195 310.0296 468.4319
FEM 73.3654 124.4147 270.6195 310.0298 468.4508

Note: (i) m; = J; = e; = k,; = k,; = 0 except those at &; = x;/L = 0.125, 0.5 and 0.875.
(ii) Total number of beam segments is n = 40 for LTMM and FEM, and n = 8 for CTMM.

kri = k, = 41112 x 10° Nm (i=6, 21, 36 for LTMM and FEM; i=2, 5 8 for CTMM), where i
denotes the ‘‘station” numbering, and the total number of “beam segments” is n =40 for LTMM
and FEM and n =28 for CTMM. The digits in Fig. 2 represent the numberings for the associated
“stations” (for LTMM and FEM only), and the locations of the three sets of concentrated elements
are: &= x;/L =0.125, 0.5 and 0.875, respectively. It is noted that the unit for all lengths in the figure is
“meter”.

Four classical boundary (supporting) conditions of the stepped beam are studied: pinned—pinned (P-P),
clamped—clamped (C-C), clamped—free (C—F) and clamped—pinned (C—P). The lowest five natural frequencies
of the stepped beam, w, (v = 1-5), obtained from LTMM, CTMM and FEM are listed in Table 1. Note that,
in LTMM and CTMM, a pinned end is modeled by k, = 1.0 x 10'>N/m and k, = 0; a clamped end by
k,=1.0x 1015N/m and k, = 1.0 x 10> N'm; a free end by k, = k, = 0.

4.2. Influence of total number of beam segments (n) on solution convergence

Because the solution convergence of either LTMM or FEM has something to do with the problems tackled,
two kinds of vibrating system are studied in this subsection: a uniform beam with one set of concentrated
elements located at mid-length (cf. Fig. 3) and a three-step beam carrying three intermediate identical sets of
concentrated elements (cf. Fig. 2).
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Fig. 3. A spring-hinged uniform beam carrying an eccentric tip mass.

4.2.1. A uniform spring-hinged beam with an eccentric tip mass and a set of in-span springs

For the uniform spring-hinged beam carrying an eccentric tip mass and a set of in-span springs as shown
in Fig. 3, and with kI, =k.i/k, =10°, ki;=kpi/k, =10, ki, =kyi/ki=10, Ji = Ju1/J =01,
e =en1/L=01, m; , = My /M =5 and & = x;/L =0.5, the influence of total number of beam
segments (n) on accuracy of the lowest five natural frequencies, w, (v = 1-5), is shown in Table 2 and Fig. 4.
Since the results of CTMM based on n =4 are the same as those based on n =2, as one may see from
Table 2(a), the solution of CTMM for the current example is the exact one, the percentage errors (¢%) in the
parentheses of Table 2(a) are determined from the formula: ¢ = (o; x—;crmm) X 100%/@; crmm With @; x
denoting the ith natural frequency obtained from X method (X = LTMM or FEM). Based on the absolute
values of ¢, five figures showing the solution convergence versus total number of beam segments (n) are plotted
in Figs. 4(a)—(e) for w;, w,, w3, g4 and ws, respectively. In which, the solid curves (—e—, —d—, -a-, —m—
and —x—) are for the solution of LTMM and the dashed curves (---Q-=-, ~-=% ===, ~==A---, =--0--- and ---7---)
are for that of FEM.

From Table 2(a) one sees that, for the case of n = 2, LTMM can only determine the second rough natural
frequency (w, = 73.2035~71.2678 rad/s) but FEM cannot determine any reasonable natural frequencies
(because w; = 22.4584>11.2087 rad/sand w, = 127.3449> 71.2678 rad/s). However, for the case of n =4,
FEM can determine the lowest “five”” reasonable natural frequencies but LTMM can determine only the
lowest “four”. For the last reason, the minimum number of beam segments for the solution convergence
graphs shown in Figs. 4(a)—(e) is nyi, = 6. For the case of n = 14, the maximum percentage error for the
lowest five natural frequencies is gpnax = 0.040% for w, obtained from LTMM and &,,.x = 0.026% for ws
obtained from FEM as one may see from Table 2(a) and Fig. 4. Based on the foregoing discussions, one may
say that one of the predominant advantages of CTMM superior to LTMM or FEM should be its capable of
achieving accurate solution using only a few beam segments.

4.2.2. A three-step beam with three identical sets of concentrated elements in P- P BCs

For the three-step beam carrying three identical sets of concentrated elements with P—P BCs as
shown in Fig. 2 and Case 1 of Table 1, the influence of total number of beam segments (n) on accuracy
of the lowest five natural frequencies, w, (v = 1-5), is shown in Table 2(b). In Fig. 2, the entire beam
has 4 stepped changes of cross-sections and 3 attaching points for the 3 identical sets of concentrated elements.
For the last reason, the minimum number of beam segments for either LTMM, CTMM or FEM is ecight
(Nmin = 8) for the stepped beam shown in Fig. 2 instead of two (n,;, = 2) for CTMM for the uniform beam
shown in Fig. 3. The percentage differences (¢%) between the lowest five natural frequencies obtained from
LTMM (i.e., @;1tmm, i = 1-5) and the corresponding ones obtained from CTMM (i.e., ®;ctvmm, | = 1-5,
with n = n,,;, = 8) are shown in the parentheses in upper part of Table 2(b) for the cases of n = 8, 16, 32 and
40. Similarly, the lower part of Table 2(b) shows the values of ¢% between w; pgm and o; crvmm (i = 1-5).
Note that the foregoing values of ¢ are also obtained from the formula: ¢ = (w; x—®; crmm) X 100%/®; cTmm
with X = LTMM or FEM. From Table 2(b) one sees that, for the case of n = ny,;, = 8, the maximum
percentage difference is ey, = 0.196% for w3 obtained from LTMM and ¢,,,x = 0.062% for ws obtained
from FEM. Therefore, for the current example, the solution accuracy of LTMM or FEM is near that of
CTMM.



1428

Table 2
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Methods Total number Natural frequencies, w, (rad/s)
of beam
segments, n w w2 w3 W4 s
(a) For the uniform spring-hinged beam carrying an eccentric tip mass and a set of in-span springs as shown in Fig. 3
LTMM 2 - 73.2035 - - -
4 11.1925 71.6455 240.6655 634.7105 -
(—0.145%)* (0.530%) (—0.147%) (—6.569%)
6 11.2015 71.4285 241.0745 673.4885 1146.6905
(—0.064%) (0.225%) (0.022%) (—0.861%) (—2.404%)
8 11.2045 71.3565 241.0735 677.8625 1168.8305
(—0.037%) (0.124%) (0.021%) (—=0.217%) (—0.519%)
10 11.2065 71.3245 241.0595 678.8085 1172.9455
(—0.020%) (0.080%) (0.016%) (—0.078%) (—0.169%)
12 11.2070 71.3065 241.0495 679.1035 1174.1055
(—0.015%) (0.054%) (0.012%) (—0.034%) (—0.070%)
14 11.2075 71.2965 241.0425 679.2195 1174.5285
(—0.011%) (0.040%) (0.009%) (—0.017%) (—0.034%)
CTMM 2 11.2087 71.2678 241.0210 679.3350 1174.9315
4 11.2087 71.2678 241.0210 679.3350 1174.9315
FEM 2 22.4584 127.3449 - - -
4 11.2087 71.2702 241.3558 686.9020 1199.2475
(0.000%) (0.003%) (0.139%) (1.114%) (2.070%)
6 11.2087 71.2683 241.0881 681.0135 1183.3461
(0.000%) (0.001%) (0.028%) (0.247%) (0.716%)
8 11.2087 71.2679 241.0423 679.8773 1177.7173
(0.000%) (0.000%) (0.009%) (0.080%) (0.237%)
10 11.2087 71.2678 241.0297 679.5590 1176.0923
(0.000%) (0.000%) (0.004%) (0.033%) (0.099%)
12 11.2087 71.2678 241.0252 679.4435 1175.4963
(0.000%) (0.000%) (0.002%) (0.016%) (0.048%)
14 11.2087 71.2678 241.0232 679.3937 1175.2380
(0.000%) (0.000%) (0.001%) (0.009%) (0.026%)

(b) The three-step beam carrying three identical sets of concentrated elements with P— P boundary conditions as shown in Fig. 2 and Case 1 of

Table 1
LTMM 8

16

32

40

CTMM 8
FEM 8

32

40

57.3661
(0.062%)*
57.3392)
(0.016%
57.3325
(0.004%)
57.3317
(0.002%)

57.3303

57.3303
(0.000%)
57.3303
(0.000%)
57.3303
(0.000%)
57.3303
(0.000%)

108.0742
(—0.084%)
108.1404
(=0.023%)
108.1588
(—0.006%)
108.1611
(—0.004%)

108.1652

108.1652
(0.000%)
108.1652
(0.000%)
108.1651

(0.000%)
108.1651

(0.000%)

269.4464
(0.196%)
269.0483
(0.047%)
268.9519
(0.012%)
268.9405
(0.007%)

268.9206

268.9240
(0.001%)
268.9206
(0.000%)
268.9206
(0.000%)
268.9206
(0.000%)

281.6303
(—0.005%)
281.6346
(—0.003%)
281.6400
(—=0.001%)
281.6438
(—0.001%)

281.6431

281.6450
(0.001%)
281.6435
(0.000%)
281.6434
(0.000%)
281.6434
(0.000%)

467.4578
(0.080%)
467.3561
(0.059%)
467.3354
(0.054%)
467.3322
(0.054%)

467.0818

467.3700
(0.062%)
467.3502
(0.057%)
467.3490
(0.057%)
467.3489
(0.057%)

*The percentage differences obtained from & = (w; x—w;crmm) X 100%/w; crmm With X = LTMM or FEM.
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Fig. 4. Influence of total number of beam segments (1) on the “absolute” percentage errors (|¢|%) for the lowest five natural frequencies
obtained from LTMM (—e—, —ap—— —a—, —8— and —k—) and FEM (---Q---, --- ® ---, === A==, =--0--- and ---v%---) based
on the formula: [¢| = [w; y—®; ctmm| X 100%/w; ctmm With X = LTMM or FEM for: (a) wy, (b) wy, (¢) ws, (d) w4 and (e) ws.

5. Conclusions

Comparing with Ref. [25], it is easy to see that the theory of continuous transfer matrix method
(CTMM) is much different from that of lumped-mass transfer matrix method (LTMM). This is due
to the fact that CTMM is based on the continuous-mass model and LTMM 1is based on the
lumped-mass model, furthermore, the transfer matrix for an intermediate node in CTMM is to
relate the ‘‘integration constants” for the two adjacent beam segments joined at that node and the
transfer matrix for a node (or beam segment) in LTMM is to relate the “‘state variables™ (i.e., displacements,
slopes, bending moments and shear forces) for the two sides of that node (or beam segment). Therefore,
the close agreement between the results of CTMM and those of LTMM should be one of the good
evidences that the theories presented and the computer programs developed for CTMM and LTMM are
reliable.

In addition to the formulation, the solution convergence of an approximate method is also dependent on the
problems tackled. In general, one of the predominant advantages of CTMM superior to LTMM and FEM is
its capable of achieving accurate solution by using only a few beam segments, particularly for the cases of a
uniform beam carrying a few sets of concentrated elements.
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