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Abstract

The paper is aimed at the proportional and derivative controls of vibration of a rotating beam by using a pair of
piezoelectric sensor and actuator layers. Using Hamilton’s principle derives the governing differential equations and the
boundary conditions for the coupled axial-bending vibration of a piezoelectric rotating beam with elastically restrained
root. The analytical method given by Lin et al. is used to determine the transient response of a piezoelectric rotating beam.
The influences of the proportional and derivative control gain factors on the performance of the first two modes of an
elastically constrained beam are investigated. It is found that considering the proportional control law only is not helpful
to the active damping of a rotating beam. Moreover, considering the proportional and derivative controls suitably and
simultaneously enhances the active damping of a rotating beam with an elastic root.
© 2007 Elsevier Ltd. All rights reserved.

1. Introduction

Rotating beams, which have importance in many practical applications such as turbine blades, helicopter
rotor blades, airplane propellers, and robot manipulators, have been investigated for a long time. An
interesting review of the subject can be found in the papers by Leissa [1], Ramamurti and Balasubramanian
[2], Rao [3], and Lin [4]. Much attention has been focused on the undamped vibration problems. Lin et al. [5]
and Lin and Lee [6] studied the passive damping of a rotating beam. Lin et al. [7] studied the active damping of
a rotating cantilever beam by using the derivative control law. So far, little research has been done on the
active-damping problem of a rotating smart beam because of its complexity.

Turcotte et al. [8] studied the vibration of a mistuned bladed-disk assembly using nonrotational structurally
damped beams. The structural damping was introduced through a complex bending rigidity. Patel and
Ganapathi [9] studied the free torsional vibration of nonrotating damped sandwich beams. Friswell and Lees
[10] studied the free vibration of simply supported nonrotating damped beams. Lin et al. [5,6] investigated the
vibration and instability of a rotating structurally and viscously damped beam with an elastically restrained
root and root damping. The complex frequency relations among different systems were revealed. The
instability of divergence, oscillating and non-oscillating motions were predicted exactly via the relations. The
above literature investigated the passive damped vibration problems. Piezoelectric materials have been applied
to the active control of structural vibrations and noises. Owing to the complexity of analytical methods the
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Nomenclature u, v, w displacements in the x, y, and z direc-
tions, respectively
a a,taptag Wy width of beam
a; dimensionless rotary inertia per unit w dimensionless lateral displacements in
length, p,1;/(p,AnL*) the z direction, w/L
A; cross-sectional area of the beam, X, ¥, z principal frame coordinates of blade
wp [ dz Z, the neutral axis, 3., Eil(3_.h)—
b b, tb;+b, %hi]/Zi:a,lz,,yEihi
b; dimensionless bending rigidity, E;f;/ Zg hy 4+ hy + (h3/2) — z.
(EnL,) o dimensionless rotational speed, QL?
B, W f: bT;:; zdz onAn/(Epy)
¢ elastic stiffness constant B, Po dimensionless tanslational and rotational
dga, dg, dimensionless derivative piezoelectric para- spring constants, f; = Ky L*/Exl», fy =
meter, [—esiiesiBazshs /(13 L2har/ oy AnEnTy) ki, 0= K()L/E2]2
& y  spring constant, 7y, = fr/(1 + Br). 712 =
D electric ~ displacement  [ui3A.z2(hyes1 s/ /(1 4+ Br)syar = Bo /(L + o)y ym =
(3 Lha)) [(ppAn LG i = d. p 1/(1+ By)
é; dimensionless bending rigidity, aE;I;/ I strain
(Enly) 4 decay rate
é e,+ e+ é 0 setting angle
e piezoelectric constant u permittivity
E Young’s modulus of beam 14 dimensionless distance to the root of the
E, electric field intensity beam, x/L
EA E A AEAp+EA;g 0 mass density per unit volume of beam
EB EaBa+EsBs pA paAa+phAh+psAs
EI Eala+Ehlh+Esls pB paBa+phBh+psBs
H;  pislhesiiki/(usLh)P, i=d,p ol paitpalitpy
I; area moment inertia of the beam, o stress
W f: e 2dz T dimensionless time, #y/Exl,/(p,AnL*)
j imaginary unit w frequency
K7, Ky translational and rotational spring con- Q rotational speed
stants, respectively w dimensionless frequency, @/ p;,4,L* /(Ej ;)
L length of the blade
m mgtmy,+m, Subscripts
m; dimensionless mass per unit length,
0;Ai/(pyAn) a actuator
n dimensionless centrifugal force, o’ f; m h host beam
(r+yxdyx s sensor
N centrifugal force 1, 2,3 in the x-, y- and z-direction, respectively
Ou Q) [—es1aes15hs /(153 L2h)lki, i=d,p
r dimensionless radius of root, R/L Superscripts
R radius of root
t time variable * independent of “*

approximated finite element method has been investigated by many researchers [11,12]. So far, little
research has been done on the active-damping problem of a piezoelectric rotating beam because of its
complexity.

Lin et al. [7] investigated the active damping of the first mode of a cantilever beam under a derivative
control law. In this paper, it uses Hamilton’s principle to derive the governing differential equations and the
boundary conditions for the coupled axial-bending vibration of a piezoelectric rotating beam with an elastic
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root. The proportional and derivative control laws are simultaneously used to control the performance of a
rotating beam with an elastic root. The analytical method given by Lin et al. [7] is used to determine the
transient response of the system. Finally, the influence of the proportional and derivative gain factors, the
rotational and translational spring constants and the rotating speed on the natural frequencies and the decay
rate are investigated.

2. Governing equations and boundary and initial conditions

Consider the transient response of a piezoelectric rotating beam mounted with setting angle 6 on a hub with
radius R, rotating with constant angular velocity Q2. The upper and bottom surfaces of beam are bonded
sensor and actuator layers, as shown in Fig. 1. A set of differential equations of coupled axial-bending motion
for the rotating beam are derived based on the following assumptions [7]:

(1) The beam is assumed to be narrow in both the y- and z-direction, and not loaded in these directions, then
0p) =03 = 0.

(2) The shear deformation is negligible.

(3) The rotary inertia is considered.

(4) The transverse displacement is same for all three layers.

(5) Linear theory of piezoelectricity is applicable.

(6) The electric field will be applied to the piezoelectric actuator on the z-direction (perpendicular to the planes
of piezoelectric film). Therefore E,; = E,, = 0.

The displacement fields of the beam are

ow(x, t)

u=uy(x,t)—z , v=0, w=w(x,1i). (1)
Ox

Fig. 1. Geometry and coordinate system of a rotating beam.
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Based on the effect of centrifugal force, the nonlinear term of strain of the host beam is considered:

Ouy w1 fow)?
Sl—a‘za—xz*z(_)’ 2=t a=b @

The kinetic energy 7 of the beam is

1 L NN
:—/ /V-VpdAdx, 3
2Jo Ja

where the velocity vector of a point (x, y, z) in the beam is
= Oou . .
V= a—}—Qsm 0(z +w)+ yQ cos 0|1
0
—i—[(x—l—R—i—u)Qcos@]j—i—{%—(X—i—R—i—u)Qsin@}k. 4)

The extended potential energy including the electric contribution is

1 1 1 9 ow(0, 1)] >
U:E\[G]S]dv—z/v p3D3dU+2KTW 0, l)+ K()|: ox (5)
The constitutive equation of the piezoelectric material is
o =cke — estkp,,
D3 = e31e1 + U Ep,. (6)

The piezoelectric layer is used to sense the vibration of the rotating beam. The charge accumulated on the
layer due to the direct piezoelectric effect is evaluated by

q=wp / e3e dx. (7)
Considering the sensor to be a parallel capacitor, the voltage of the sensor is
77 [ enaid ®)
= — e31&) dx.
N M%L

In closed-loop control, the control voltage on the piezoelectric actuator is designed by the following
proportional and derivative control laws [13]
oV
or’
where k,; and k), are the derivative and proportional gain factors.
Application of Hamilton’s principle yields the following governing differential equations:

%uy o [*w ow ow
—2pAQ sin 0 — — pBQ* —

pA —- T —|— B6 <612> p ASQ sin 0 o pB o
ON %up 3w 2w

+ AL (x+uo + R) + 5+ EA 5 — EB 5 — 0,(B. — Auz) 5.3

%uo *w ow
— 2044 dx ot Tha Qu(Ba + A”ZJ)ﬁ ox2 A (Aauo B Aazsa)

2 3
—H(&QE—AJEE):Q (10)

©)

= —k,Vy—kq

oz T or2ox
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2 2 a2 2
Bi(%).{. ]6_<M)+ Bgzauo pIQ26—+2pAQ Sing%

a2 \ox) " Moz \ax2 ox o2 ot
2 2
—4pBQ sin 02— pa TV 1 pBQP sin? 0+ pAwG? sin 0
0rdx or?
o [  ow o'u a W d%uy
+6_<N a )‘l‘EB a 3 QP(B azs)m
64w Oug , W
_ Qd |:(B +Aa25)a 28! 2BaZSW:| +Hp<Aqu ox — A,z 5 ox 2)
o*uy 2 otw
— Ha' (A”ZSW— aZ 5 6[26 > (11)
and the associated boundary conditions.
At x =0,
up =0, (12)
Ouyg *w ow
EB a — EI — a P ) Q[’ (Bauo — BaZs &)
6uo *w ow
- - Ba -r Ko—= 5 1
Qd( : 6t6x> Koz =0 (13
0%up ow , 0w 5
pBa[ 1w<a—)+ 1Q a——pBQ(x-i—uo—i-R)
ow ow %ug *w
+ 2pBQ sin Ga——Na—EBﬁ—i-Ela 3
Ouyg o*w
+ Qp(Ba aZs) + Qq {(B + Aazs) dx at aZs W}
, 0w 0%up 2 o*w
—Hp(Auzsuo—A Y@ >+Hd<A Zg——— a2 aZ S 320x + Krw=0. (14)
Atx=1L
dug a W ow duy o%w
EA == —E aty — AaZs — —Ayzg——1] =0, 1
R e QP( to = Aa ) Qd( ar ~ Aetgiax) =0 (13
Ouy *w ow auo o*w
EB—2_ EI — Bty — Buzs — Byzg——— | =0, 1
ox o QP( Ho = Baz ) Qd( v Bearax) =0 (16)
0%uy o (ow , 0w )
B——pl — | — 1Q°— — pBQ R
PESE P 6t2(6x>+p ox (¥ +uo + R)
. ow ow Q%ug O’w
+2pBQsm06—— x _EBﬁ+EIa_
+ 0, (B, — z) +Q (Bu+ Ayz) 210 0y OV
9 a a=s d a=s a @t a Sata 2
ow %u o'w
— H, | Ayzsug — Ayz> Hyl Az — A2 . 1
"( 0 ‘a)+ "( »3e ‘6126) 0 (17)

It should be noted that there exist the terms in Eqgs. (11), (14), (17), {pBQ*sin> 0, pBQ*(x + uy + R)},
independent of time. The first term represents a small transverse static centrifugal force due to the coupled
effect of the rotational speed and the small difference between the geometry center and the neutral one at
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which the bending stress is zero. The last term represents a static axial centrifugal force. Because these will not
affect the dynamic behavior, the static term is negligible in studying the dynamic behavior of beam.

Because the bending motion dominates in the vibration of a beam and the natural frequency of the
longitudinal motion is greatly higher than that of the bending motion, the effect of longitudinal displacement
is negligible. Moreover, the lateral vibration of a blade subjected to low rotational speed is dominant and the
effect of the Coriolis force may be neglected [4]. In this paper, assume that the beam is in extensional and the
effect of the Coriolis force, 2pQ sin 0(dw/d¢) of Egs. (10), (14), (17), is neglected. Moreover, because the sensor
and actuator layers are considered to be thin, the axial force in Eq. (10) is dominated by the centrifugal force,
pAQ*(x 4+ R). As a result, the centrifugal force N can be expressed as

L
N(x) = @? / p(X)A(x)(R + x) dx. (18)

The governing equation in terms of the transverse displacement w, becomes

2 /a2 2 2
Ia— (ﬂ) —,oIQ26 i AM+pAstm 0w+§ <N %)

Pror\ax o2 o ox
o*w o*w 6 w o*w
_EIa 4+2Qa,BazSa 6x3_Hp 36 2+HdAazS628 5=0. (19)
The boundary conditions at x = 0 are
o*w ow *w ow
—EI B, s aZs Ky—=0, 2

o2 T OBt CuBaz g+ Kot =0 (20)

o (O O gy O

Prae\ox) TP ax ™ ox x>

0w , 0w , 0w
_ szBuZxa 2 +H AazY ax — HyAuZ, =—— 3120~ +Krw=20 21

and at x = L,

*w a o*w
—EI — Bz, ' Zs =0, 22
et Q,Buz a 0B arox (22)

1o 0% (ow +pIQ? ow ow VBl *w
A > ok M aa
*w , 0w *w
—20,B,zs H,A, — H, A, . 2

QuBizs g g+ Hpduzi g~ Haduz 550 = 0 23)

It should be noted that when the sensor and the actuator are neglected, the differential equations are the
same as those given by Lin [14].

In terms of dimensionless quantities listed the nomenclature, the governing differential equation (19) and
the boundary conditions (20)—(23) of the system are non-dimensionlized as follows:

oW Lew B
0£%012 o&? o2
otw *w o*w o*w
—e———d +2d,, +dpg—— = 0. 24
act e Ty T M adar @)

+ mWo? sin 0+aa£( 6W>
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At ¢ =0,
o'w 2 oW oW
—Vlzaaéa 5 +yan 2 — V2l = ¢ + ol —3 o8
oFw ow oW
- ZVIqud%'i'Vlzdhpa_i_ V1zdhdw+“/11W =0, (25)
W W ow
—V0e—7 o + /22dqp af + V22 gd =52 3éor + V0= oz =0 (26)
and at £ =1,
W ow oW
——+dyp—+du——=0, 27
‘o Tl T Minee @7
oW 2w oW o'W o*w ow *w
- — 4 eé———2dy—— — —dy == 28
aa§612+ o —n 2 +€6§3 qd65261+ hpaé ldaéarz (28)
The dimensionless initial conditions of the motion at the tip are
1
W(1,0)=w, and w — i, (29)
T
3. Solution method
3.1. Characteristic governing equations and boundary conditions
Assume that the solution to Egs. (24)—(29) is
W&, ) = W(e™, (30a)

where W represents the complex mode function and / is the complex frequency. They can be expressed as

W) =Wr©&)+jWi(d), i=-{+]jo, (30b)
where ( is the decay rate. The imaginary term o is the damped frequency.
Letting Re W (1,0) = wy, and Re W (1,0) =y, one obtains
- -1
Wgr(l)=wy and W (1) = E[CW}O =+ Wyl 3D

Substituting Egs. (30) into the governing equation (24) and the boundary conditions (25)—(28)
and taking the real and imaginary parts apart, the coupled real differential equations can be
obtained:

_d'wg Wi & w; 5 d*We d*w;
d—é“_qud(C @ + @ ) +a[(«: — o’ —o?) @ +2¢wd—52
d*We d* W Wy d’w;
+ @ A ——— e Kt dig [(C - o) a2 + 2w & ]
dndWr _ ml((> — w* — oa?sin?O) W + 2lwW;] =0, (32a)
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d*w; ( dw; d3WR> { s, L AWy Wy
—e— —2d —_——w— | + - — —2w——~
e ga| € NIRRT a|(C— " —a) @ (o PR
d2W[ dZWI |: ) 2 deI d2I/T/R:|
+n —d, +d —w — 2w
e Ly nd | (€ ) a2 ¢ e
dn dWI [(CZ _ CO2 —OCZ Sin2 Q)W] _2CwWR] = 0. (32b)
dé dé
At £ =0,
Wy Wi d>w,
V”ed—@”md"d(C ag déz)
dWg dw; dWg
—V1261|:(C2—602—062)d—6+2c df :| +/12dh[7 df
aw dw dWpg -
—Vlzdhd[(éz—wz) d€R+2Cw dgl] Viah—5— az +mWr=0, (33a)
& w; ( d*w; dZWR>
V128 ———+ 2710d —w
V128 4@ V12dga | € a2 e
aw aw aw
B 2 9 I_ 4 R I
ma{(c ? —o?) 4z 2w R ]+V12d11p KE
dw daw dw -
= V12dha [(Cz_wz)d_gl_%w déR} — V12 dél+711W1:0: (33b)
W dw,
V2026 ——— e +(/22dqu—V22dqp “/21) dé +V22dqd60 dz =0, (34a)
d*w; dw dw
128+ Odaal = ydip = 72) Sz~ Iadaer g = 0. (34b)
At E=1,
dZW dw dw
e R (dgal —dyy) §R+dqd d,’_o, (35a)
de dw dw
df 1+(dqd§ dqp) dél dqdw TfRZ 0, (35b)
Wy &Ewr d&EwW 5 dWg dw,
eidé3 +2dqd(é/ e +ow e )—a[(C — o — o) az + 2lw dé}
dw dw dw
+dhpYR—dhd[(C - )diR—FZCw d£1}=0 (36a)
d3W1 2w, deR) [2 , L dWg dWR}
——+2d — - . -2
e qd<(, 2 ® & al(("—ow “)dé (o az
dw; aw aw
+dhpd—é_dh [(C - o) dé’—ZCw d;} =0. (36b)
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3.2. Frequency equations
The fundamental solution of the characteristic differential equations (32) is assumed to be
Wr(& 5 Wri(©)
' R( ) _ Z Cl' 4 ’
W) Wri(&)

i=1

(37)

where the eight linearly independent fundamental solutions [W g (&) WI,[(f)]T, i=12,...8, of Egs. (32)
are chosen such that they satisfy the following normalization conditions at the origin of the coordinated
system:

i WRJ WR’Q WR,3 WRA WR,S WR,é WRJ WR,S | T 0 0 0 0 0 0 07
W/R,l W;z,z W;z,s W,RA W/R,S W/R,é W/RJ W;?,S 0O1 0 0 0 0 O0 O
Wii Wiy Wiy Wra Wis Wie Wrs Wiy 00100000
W/I/Q/,l W/Jg,z W/é/,s W/I/Q/A W/g,s W/I;/,é W;/Q/J W/zg,g _ 00 01 00 0O (38)
Win Wia Wiz Wisa Wis Wie Wiz Wig 00001000}
Wi Wi, Wi Wiy Wi Wi Wi Wig 0000O0T100
W/Il,l W/I/ 2 W/I/,3 W,I, 4 W/I/,S W/I/,6 W/I/J W/I/,S 00000010
T Wi Wi Wi Wis Wi Wi W] ot 00 0 000l

where primes indicate differentiation with respect to the dimensionless spatial variable £.
Substituting solution (37) into the boundary conditions (33)—(35) and the initial conditions (31), the
following relation is obtained:

[ Bi By, Bi; B4 Bis Bis By Bis 17CT
By By By By Bos By By B &)
B3, By, B33 B34 Bjs B By B3y 3
By By, By By, Bys By By By Cy
Bs; Bs> Bs3 Bs4 Bss Bss Bs; Bsg Cs -
Bs) Be> Bes Bes Bes Bes Be Bes Co
Wri(l) Wga(l) Wgra(l) Wgra(l) Wrs(l) Wre(1) Wgra(l) Wes() | | C;

| W) W) Wiy Wra(l) Wis(l) Wie(h) Wis(l) Wig(l) || Cs |

0

0
0
0
0 , (39a)
0

wo

—1
—(lwo + o)
10)
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By = 0,Bi2 = y00dgal — y22dgp — 721, B13 = 7228, B1a = Bj5 = 0,
Bis = yndjaw,B17 = Big =0,

By = 0,Boy = —y5dgam, B3 = By = Bys = 0,Bos = y20dgal — vppdgp — 721, B27 = 7228, Bog = 0;
B3 = yq1,

By = —Vlza(Cz — o’ —a?) - Vlzdhd(Cz —w?)+ V1adpp — V12°‘2m(" + %),
B33z = 2y1,dql, B34 = 7,8, B35 = 0,
B3 = —2ypalw — 2y1dpalo,

B3; = 2“/12d,,da),
By =0,
B43 = _2y12dqdw7

Bis = 0,
B42 = 2'})12050) + 2V12dthwa
By =0, Bss =y,

Bis = —pa((* — 0* — &%) — p12dina(C — @) + p1odiy — 71007 m(r +1/2),

By7 = 2y15d il

Bss = 758,

Bsi = eW (1) + (dgal — dyp) Wi (1) + dga W (1),
Bgi = Wy ,(1) + (dgal — dgp) W (1) — dgao Wi (1), i=12,...8.

(39b)

Given the initial displacement w, and velocity »y, the oscillating frequency and the decay rate can be
easily determined via Egs. (36), called as a coupled frequency equations, by using the numerical method

proposed by Lin [14].

3.3. Exact fundamental solutions

In general, the closed-form fundamental solutions of two coupled differential equations with variable
coefficients are not available. However, if the coefficients of the equations, which involve the material
properties and/or geometric parameters, can be expressed in matrix polynomial form, then a power
series representation of the fundamental solutions can be constructed by the modified method of Frobinius [6].
Egs. (32) can be expressed as

where

o dfWr - W - Wi dWg

a +4 +4 +4 +AsW
1 4 2 M 3 a2 4 ke sWR
dwy o dEwp -
+4 + 4 + A3W; =0,
6 & 7 e s
/:1 d4VT/1+1‘~1 (‘.131/1/1_}_/:1 d2WI+;1 dWI+/~1 W
1 dé4 2 d(f 3 dé 4 df sWr
- By . &g
+ A + Ay + AgWgr =0, € (0,1),
o Gt A £e(0.1)
/_Ilzao /le:dOs
/-lzzb 1‘12250
Ay =co+c1é+ 8, Ay =0y + Gl + HE,
Ay =dy+di¢g, Ay =do+dié¢,
1‘15280, “15:_0’

(40a)

(40b)
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146 =f0>/~16 =f-05
A7 = gy, A7 = §o,
Ag = hy, Ay = ho
in which
ay = dy = —&, by = by = —2dyL,
o= = al’ — o — o) —dyp + dpa(C — ) + Pm(r +1/2),
cp=7¢C = —rfxzm, ) =0C = —%oczm,
dy=dy=—ra’m, d,=d, =—a’m,
e) = ¢y = —m((2 — »? — o sin® 0), fo= —fo = —2d o,
gdo = —Jo = 2lwa + 2wdy, hy = —hy = —2{wm. (41b)

The eight normalized fundamental solutions of Eqs. (32) are expressed as

Wril [ oyut
= , Jj=12,...,8, (42)
[ Wi, ] ; [ﬂ_,,,(gk

which can be derived by using the recurrence formula given by Lin et al. [7]. Consequently, upon substituting
these fundamental solutions into the frequency equation (36), the exact complex frequencies of the beam are
obtained.

4. Numerical results and discussion

To demonstrate the efficiency and convergence of the proposed method to solve the vibration problem, the
transient response, the frequency shift and the decay rate of a rotating beam are determined. Fig. 2
demonstrates the transient response of the beam. The initial displacement and velocity are given. The
oscillation of the beam decays away exponentially. In Table 1, the convergence pattern of the complex
eigenvalues of a rotating beam is shown. It shows that the eigenvalues determined by the proposed method
converge very rapidly. The convergent frequencies without the piezoelectric damping are the same as those
given by Lin [14].

Fig. 3 shows influence of the gain factors k; and k, on the frequencies w; and the decay rates (;
of the first two modes of a rotating beam with an elastic root. Figs. 3a and 3c show that without the
proportional and derivative controls, i.e., k;=k,=0, the frequencies of the first two modes are
the natural frequencies of free vibration of a rotating beam. In the neglect of the derivative control, i.e.,
k4, =0, decreasing the proportional gain factor increases the frequencies of oscillation. Given any propor-
tional gain factor, whatever the derivative gain factors is increased or decreased from zero, the freque-
ncies of oscillation are decreased. Figs. 3b and 3d show that in the neglect of the derivative control,
i.e., k; =0, whatever the proportional gain factor is given, the decay rates {{;, {5} are zero. In other
words, if k; = 0, considering the proportional control only is not helpful to the active damping of a rotating
beam.

Fig. 3b shows that if k,, = 0, considering a positive or negative derivative gain factor will results in a positive
or negative decay rate {; of the first mode, respectively. It means that if the decay rate is positive, the
amplitude decay exponentially and the system is stable. Otherwise, it is unstable. Increasing the derivative gain
factor k, from zero, the decay rate {; increases rapidly from zero to a critical value and then decreases slowly.
This fact happens also to the first mode of a cantilever beam [7]. If k,, <0, increasing the negative proportional
gain factor enhances the phenomenon. However, if k,>0, increasing the positive proportional gain factor
upsets the phenomenon. It is observed from Fig. 3b that in the neglect of the proportional control, if k;<0, the
first decay rate is negative. In other words, the oscillation of the first mode is divergent. But it is observed from
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0.012 —

0.008 —

0.004 —

W(l,7)
(=)
|

-0.012 ' T ' T ' T ' |
0 40 80 120 160
T

Fig. 2. Oscillation of a rotating beam [k, = 0.3, k, =0, y;; = 0.9, 7, = 0.9, wy = 0.01, vy =0, a =0.00001, e =1.722, m = 1.807,
d, = 0.98k§,, dy=1892k,, r=0.5,a=1,0 =30

Table 1
Convergence pattern of the first two eigenvalues of a rotating beam with an elastic root [y;; = 0.9, 751 = 0.9, wy = 0.001, »y =0,

a=0.00001, e =m =1, dh = 0.98k3, dy=1892ky, r=05, =1, 0 =30

No. of terms ki=k,=0 kq=0.1, k, = —0.05

o o W) ( [ e
15 2.2487 6.9254 2.2321 0.0269 5.7386 0.1147
20 2.2487 6.9254 2.2321 0.0269 5.7386 0.1149
30 2.2487 6.9254 2.2321 0.0269 5.7386 0.1149
40 2.2487 6.9254 2.2321 0.0269 5.7386 0.1149
50 2.2487 6.9254 2.2321 0.0269 5.7386 0.1149
[14] 22487 6.9258 - - - -

Fig. 3d that if k;<—0.3, the second decay rate becomes positive. It means that the oscillation of the first mode
is convergent. Moreover, It is observed from Fig. 3b that if k;>0, the first decay rate is positive. In other
words, the oscillation of the first mode will be convergent. But it is observed from Fig. 3d that if k;>0.3, the
second decay rate become negative. It means that the oscillation of the second mode will be divergent. It is
concluded that considering the active damping of the first two modes, the derivative gain factor k, should be
limited.

Fig. 4 shows the influences of the gain factors k; and k, and the rotational spring constant y,; on the
frequency and the decay rate of the first mode. It is observed from Fig. 4b that if k£, = 0, whatever the
rotational spring constant and the proportional gain factor are, the decay rate is zero. If k; = 1, increasing
the rotational spring constant increases the first decay rate. Moreover, It is observed from Fig. 4a
that increasing the rotational spring constant increases the first frequency of oscillation especially for the case
of kd =0.
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Fig. 3. Influence of the gain factors k; and k, on the frequencies w; and the decay rates {; of the first two modes of a rotating beam
[y11 = 0.95, y5; = 0.95, wy = 0.01, Wy = 0, @ = 0.00001, e = 1.722, m = 1.807, d;, = 0.98k§, d, = 1892k, r=0.5, 0 =30°].

It is well known that a rigid root of a rotating beam is considered, i.c., y1; = 7>; = 1, increasing the rotating
speed increases the frequency. However, if an elastic root is considered and the root spring constants are small
enough, increasing the rotating speed decreases the first frequency [14]. When the rotating speed increases to a
critical value, the first frequency decreases to zero. Figs. 5a and 5b show the influences of the gain factors &,
and k, and the rotating speed o on the frequency and the decay rate of the first mode. It is observed from
Fig. 5a that the influence of the proportional gain factor on the first frequency is small. But as shown in
Fig. 5b, Its effect on the first decay rate is large. Moreover, increasing the rotating speed o greatly decreases the
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Fig. 4. Influence of the gain factors k,; and k, and the rotational spring constant y,; on the frequencies w; and the decay rate {; of the first
mode of a rotating beam [y;; = 1, wo = 0.01, Wy = 0, a = 0.00001, e = 1.722, m = 1.807, d), = 0.98k§, d, =1.892k,, r=0.5, 0 = 30°].

first decay rate of a rotating beam with an elastic root. It is different to that of a cantilever beam with a
clamped root. Lin et al. [7] found that increasing the rotating speed increases the first decay rate of a rotating
beam with a clamped root.

Fig. 5c shows the influence of the proportional gain factor k, and the rotating speed o on the Q-factor. The
definition of the Quality factor is O-factor = 27E,/E.ss Where E, is the total energy and Ej. is the loss energy
per cycle [7]. When the rotating speed « is very small, the Q-factor is almost constant and small. It means that
the energy dissipation is very large. As shown in Fig. 5b, if k, = 0 and the rotating speed approaches a critical
value, the decay rate approaches zero. In other words, the energy dissipation is negligible and the Q-factor
approaches infinite, as shown in Fig. 5c. The Q-factor of a rotating beam with an elastic root obviously
depends on the proportional gain factor and the rotating speed.

5. Conclusion

In this paper, the proportional and derivative control laws are simultaneously applied to the active damping
of the first two oscillating modes of a rotating beam. It has been found by Lin et al. [7] that the derivative
control law is helpful to the active damping of the first oscillating mode. But considering the proportional
control law only is unuseful for the active damping. However, considering the proportional and derivative
controls suitably and simultaneously will enhance the active damping of a rotating beam with an elastic root.
Moreover, it is also found that:

(1) Considering the active damping of any mode, the derivative gain factor should be limited.

(2) Increasing the rotating speed o greatly decreases the first decay rate of a rotating beam with an
elastic root. But increasing the rotating speed increases the first decay rate of a rotating beam with a
clamped root.

(3) The Q-factor of a rotating beam with an elastic root obviously depends on the proportional gain factor
and the rotating speed.
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Fig. 5. Influence of the rotational speed o and the proportional gain k, on the frequency ,, the Q-factor and the decay rate (;
of a rotating beam [k;= 0.3, y,;, =0.9, y,;, = 0.9, wy =0.01, 1wy =0, a=0.00001, e =1.722, m = 1.807, d; = 0.98%2, dy = 1.892k,,
r=20.5, 0 =60°].
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