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Abstract

A generalized variational equation based on the extended Hamilton’s principle is presented as the starting point for a

procedure from which wake-body models for the two-dimensional vortex-induced vibration of a cylinder can be derived.

The case of an elastically mounted cylinder with a transverse degree-of-freedom in a uniform flow is offered as a ‘‘model

problem’’ through which this derivation procedure is illustrated. A number of wake-body models from the literature are

shown to be recoverable from the more general model derived here. The correspondence with these ‘‘classical’’ models is

presented as evidence of the feasibility of incorporating this methodology into vortex-induced vibration modeling. Unlike

these comparison models, however, which are often assigned an ad hoc form, any assumptions made in arriving at the

derived wake-body model are explicitly stated.

r 2007 Elsevier Ltd. All rights reserved.
0. Introduction

Wake-body models have enjoyed much success because they represent an alternative to flow-field models,
which require the determination of the hydrodynamic force coefficients before the structural equation of
motion can be solved. Wake-body models are based on the premise that the fluctuating hydrodynamic forces
(i.e., the lift and drag forces) on a given structure can be regarded as nonlinear oscillators representing some
near-wake effect. These nonlinear oscillator equations are solved in tandem with the structural equation of
motion. In essence, one is modeling only the effect of the fluid ‘‘seen’’ by the structure. As a con-
sequence, computations are generally faster and extend into Reynolds number regimes not accessible by direct
numerical simulation.

The transverse vortex-induced vibration (VIV) of a circular cylinder embedded in a uniform flow is by far
the application for which the majority of wake-oscillator models have been derived. The cylinder is assumed
rigid and is elastically mounted. In addition, the cylinder is prevented from moving in the flow direction, the
ee front matter r 2007 Elsevier Ltd. All rights reserved.
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exact details of the restraining system not being important for the development given here. The fluid–structure
interaction possessing these characteristics is subsequently referred to as the ‘‘model problem’’.

Additional assumptions, all fairly standard in analytical modeling of vortex-induced vibration, are as
follows: (i) the flow remains nominally two dimensional at all times, and (ii) the vortex shedding is fully
correlated along the span. This last assumption is rendered less approximate if attention is focused on the
synchronization or ‘‘lock-in’’ regime. This is the regime of flow speeds over which the vortex shedding
frequency is found to deviate from the Strouhal law and ‘‘locks-in’’ to the cylinder oscillation frequency.

With regards to the model problem, the typical wake-body model would involve a nonlinear equation in the
lift coefficient (or in some other appropriately chosen fluid variable) coupled to the linear oscillator governing
the transverse motion of the cylinder (subsequently referred to as the ‘‘structural oscillator’’). The structural
and wake oscillators interact via the coupling terms in each equation. Usually, but not always, these are taken
to be linear functions. Sometimes, a distributed-parametered structural equation is considered.

A major criticism of the wake-body models is that the formulation of the nonlinear wake-oscillator is
completely ad hoc, involving no analysis of the flow field. Furthermore, when fluid-mechanical arguments are
presented to bolster a given model, these arguments are not altogether convincing. An extensive review of
wake-oscillator models can be found in Refs. [1,2].

This paper can be viewed as a proof-of-concept paper for a modeling approach that places wake-oscillator
models on a more rigorous theoretical foundation. This modeling approach is based on a general variational
framework for fluid–structure interaction problems, the latter of which has been described in some detail in
Refs. [3,4]. The modeling approach is as follows: For a given fluid–structure interaction problem, a governing
variational equation is derived. The variational equation can then be simplified in a systematic fashion to yield
a class1 of wake-body models. In the context of the model problem, three wake-body models from the
literature are shown to be special cases of the more general derived model.

The aim here is not to tout the derived wake-body model as a better model than the comparison models from
the literature. Rather, it is shown that they can be integrated into the more rigorous modeling framework. This will
go a long way in helping wake-body models gain wider acceptance among the wider fluid dynamics community.

Numerical approaches to fluid–structure interaction problems of the type defined by the model problem are
many. As our purpose is to formalize the development of flow-oscillator models, rather than to compare their
predictive capabilities with those of numerical approaches, we do not discuss numerical approaches here.
Flow-oscillator models are viewed as simplified models that provide the analyst and designer order of
magnitude predictions along with an understanding of some of the underlying physics which is gained from
having a mathematical model that can be dissected and understood.

The organization of this paper is as follows. The general variational equation for the model problem is
presented in Section 1. A brief description of the simplification process applied to this variational equation and the
class of wake-body models that arises from said process are also presented in this section. In Section 2, the derived
class of wake-body models are nondimensionalized for the purpose of easing the subsequent comparisons. In
Section 3, it is demonstrated how the derived wake-body model can be related to the models of Hall [5], Berger [6],
and Tamura and Matsui [7]. Finally, some general remarks on the comparisons are given in Section 4.

Before proceeding, it is worthwhile to introduce the basic variables that are pervasive throughout this paper.
These are listed in Table 1. The reader is thus freed from the task of looking for definitions as they lay
scattered throughout the paper.

1. The extended Hamilton’s principle and the reduction process

Consider the system of particles inhabiting the open control volume Roðx; tÞ at time t. This system of
particles is referred to as the open system. Only instantaneously does it coincide with the closed system of
particles M. The control volume has a part Boðx; tÞ of its bounding surface Bðx; tÞ which is open to the flow of
particles. The closed part of the bounding surface Bcðx; tÞ includes any solid boundaries and portions of the
surface in which the local streamline is normal to the surface.
1It it a class insofar as it depends on a number of model parameters whose values are determined from experiments. Since all members of

the class have the same form, however, it is convenient to just refer to the singular form ‘‘derived model’’.
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Table 1

A list of key parameters

Parameter Defined by Description

S ’ 0:2 Strouhal number

mc � � � Cylinder dry mass

L � � � Cylinder length

D � � � Cylinder diameter

mfl � � � Mass of near-wake fluid oscillator

cðvacÞ � � � In vacuo material damping of the cylinderþ supports

kðyÞs
� � � Total stiffness of the supporting springs

Uo � � � Magnitude of the uniform freestream velocity

r � � � Fluid density

CA 1:0 Potential flow added mass coefficient

Ca � � � Added mass coefficient for a cylinder in crossflow

md rpLD2

4

Mass of fluid displaced by the cylinder

wðtÞ � � � Transverse displacement of the cylinder from equilibrium

m̂� md

mc

Reduced mass

ost 2pSUo

D

CircularStrouhal vortex shedding frequency
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The kinetic energy of the open system is denotedKo. The sum of the potential energy due to gravitational and/
or buoyancy forces Eðg=bÞ

o , the strain energy EðsÞo , and the internal energy EðiÞo of the open system is denoted Eo.
The extended form of Hamilton’s principle for a system of changing mass (e.g., the exhaust jet of a rocket)

or a system of constant mass that does not always consist of the same set of particles (e.g., a pipe of constant
diameter conveying fluid) can be written as [3]

d
Z t2

t1

Lo dtþ

Z t2

t1

dW o dtþ

Z t2

t1

ZZ
Boðx;tÞ

rðurel � drÞðu � nÞdsdt ¼ 0, (1)

where Lo ¼ ðK� EÞo is the Lagrangian of the open system, dW o is the virtual work performed by non-
potential forces on the same system, and ds ¼ dsðx; tÞ represents a differential surface element. At position x

and time t, the density is r and the velocity is u. Note that Eq. (1) is related to the Reynolds transport theorem.
Consider the model problem introduced previously, which is shown schematically in Fig. 1. Since the

cylinder is assumed rigid, its motion in the transverse direction y can be described by a single generalized
coordinate w. In addition, the assumption of perfectly correlated vortex shedding implies that the transverse
displacement of all points on the cylinder is the same, that displacement being w ¼ wðtÞ. The horizontal plane
passing through the cylinder’s center of mass is chosen as the reference plane and all dynamic variables
(i.e., displacement, velocity, acceleration) are defined on this plane.

From Fig. 1, the control volume RoðtÞ is defined as the rectangular volume surrounding the nonstationary
cylinder. The origin of the coordinate system is at the center of the cylinder when the cylinder is at rest. The
coordinate system does not move with the cylinder and is also considered to be at rest relative to the free-
stream. The open part of the control surface BðtÞ, BoðtÞ, is the perimeter of the outer rectangle multiplied by a
unit projection out of the plane of the paper.

It can be shown (see Ref. [8]) that the variational equation corresponding to the model problem is given by

d
Z t2

t1

ZZZ
RoðtÞ

1

2
rðu � uÞdvdt

zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{1

þd
Z t2

t1

1

2
mc _w2 dt� d

Z t2

t1

1

2
kðyÞs w2 dt�

Z t2

t1

cðvacÞ _wdw dt

�

Z t2

t1

ZZZ
RoðtÞ

ŝij

qðdriÞ

qxj

� �
dvdt

zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{2

þ

Z t2

t1

ZZ
BoðtÞ

½ruðu � nÞ þQ� � drdsdt

zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{3

¼ 0, ð2Þ
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Fig. 1. Plan view of the open control surface BoðtÞ, closed control surface BcðtÞ (at two different instances), and the open control volume

RoðtÞ for the model problem. The cylinder is only free to move transversely to the uniform incoming flow. The restraining springs are not

shown.
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where the terms with numbered overbraces are those that are to be simplified. In Eq. (2), uðx; tÞ is the fluid
velocity field and ŝij are the components of the stress dyadic r for an incompressible fluid in the x–y

rectangular coordinate system of Fig. 1. The boundary traction Qðx; tÞ is a prescribed quantity. Note that the
structural damping force is always opposite in direction to the velocity, such that the nonconservative virtual
work, dW ocyl ¼ cðvacÞ _wdw, is negative for positive _w.

In order to reduce the complexity of Eq. (2), the control volume RoðtÞ is first reduced to a small rectangular
region R�� incorporating the formation region. The negative damping condition initiating the cylinder motion,
as well as the periodic wake feeding the growing amplitudes of the cylinder are generated in the formation
region. The existence of a temporal global wake instability (see, for example, Refs. [9–11]) in the formation
region allows a second, more crucial simplification to be made. The flow in R�� is assumed to be represented by
the representative mass mfl whose transverse displacement is wðtÞ. All spatial dependencies are lost.

It emphasized that while _wðtÞ and _wðtÞ ( €wðtÞ and €wðtÞ) are both transverse velocities (accelerations), they need
not always have the same sign at any one instant. It is therefore important to talk about relative velocities
(accelerations).

Term ‘‘1’’ of Eq. (2) is reduced to

d
Z t2

t1

ZZZ
RoðtÞ

1

2
rðu � uÞdvdt)

Z t2

t1

â0mfl _wd _wdt, (3)

where â0 is a dimensionless constant. Term ‘‘2’’ can likewise be reduced. Term ‘‘3’’ is eliminated when the
assumption is made that energy is (approximately) evenly exchanged between the structure and the wake. In
essence, the near-wake is treated as a ‘‘closed’’ cavity such that the net rate of momentum flux through the
boundaries of R�� is virtually nil. Note that the energy balance argument has been employed previously by
Krenk and Nielsen [12]. A more elaborate discussion on the simplification of the aforementioned terms can be
found in Ref. [4].

Suppose the following separation is made:

�

Z t2

t1

ŝij

qðdriÞ

qxj

� �
dvdt) �

Z t2

t1

dW ð _w; €w; w; _w; €w; tÞdt�

Z t2

t1

F ðw; tÞdwdt. (4)

The functional F ðw; tÞ ¼ â1mflf stUowðtÞ=D represents the ‘‘fluid stiffness’’ term, where â1 is a dimensionless
constant and f st ¼ ost=2p. The positive square-root ðâ1mflf stUo=DÞ0:5 represents the natural frequency of the
undamped wake-oscillator for small wðtÞ (no motion of the cylinder). This form is consistent with the
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observation that the damped (and hence the undamped) natural frequency of the wake-oscillator must change
as the flow velocity Uo changes [13].

Using Eqs. (3) and (4), Eq. (2) becomesZ t2

t1

â0mfl _wd _wdtþ d
Z t2

t1

1

2
mc _w2 dt� d

Z t2

t1

1

2
kðyÞs w2 dt�

Z t2

t1

cðvacÞ _wdwdt

�

Z t2

t1

dW ð _w; €w; w; _w; €w; tÞdt�

Z t2

t1

F ðw; tÞdwdt ¼ 0. ð5Þ

It is assumed that the functional dW ð _w; €w; _w; €w; tÞ can be separated as follows:2

dW ð _w; €w; w; _w; €w; tÞ ¼ �F
ðyÞ

fl=stð _w; €w; _w; €w; tÞdwþ F
ðyÞ

m=p
ð _w; €w; _w; €w; tÞdw. (6)

F
ðyÞ
fl=stð _w; €w; _w; €w; tÞdw is the instantaneous virtual work done by total transverse hydrodynamic force acting on

the cylinder, while F
ðyÞ

m=p
ðw; _w; €w; w; _w; €w; tÞdw represents virtual work done by the vertical components of the

viscous ðmÞ and pressure ðpÞ forces within R��, excluding the boundary of the cylinder. The negative sign

on the F
ðyÞ

fl=stð _w; €w; _w; €w; tÞdw term is due to the fact that on the surface of the cylinder dw ¼ �dw because of the

no-slip condition.
In Eq. (6), the following form is assumed for F

ðyÞ

fl=st:

F
ðyÞ

fl=stð _w; €w; _w; €w; tÞ ¼ �
1
4
rpD2LCa €wðtÞ

þ 1
2
rDLCd ½ _wðtÞ � _wðtÞ�j _wðtÞ � _wðtÞj þ 1

4
prD2Lð1þ CaÞ €wðtÞ. ð7Þ

Cd represents the component of the instantaneous vortex lift coefficient Cyvortex ðtÞ that is out-of-phase with the
cylinder displacement.

Eq. (7) is equivalent to the Morison–O’Brien–Johnson–Schaff (MOJS) equation for the fluid force on a
cylinder moving parallel to a time-dependent fluid stream [14]. In principle, geometric considerations require
that the MOJS equation be modified when the cylinder is moving transversely to the free stream. However, Eq.
(7) is retained unaltered with the understanding that said equation can then be only referred to as ‘‘MOJS-
like.’’

The following form is assumed for F
ðyÞ

m=p
ð _w; €w; w; _w; €w; tÞ:

F
ðyÞ

m=p
ð _w; €w; _w; €w; tÞ ¼ â2mflf st½ _wðtÞ � _wðtÞ� þ

â3mflf st

U2
o

½ _wðtÞ � _wðtÞ�3. (8)

The âi’s are again dimensionless constants.
It is easily shown that Eqs. (7) and (8) change sign under the coordinate transformation y :¼� y. This is a

manifestation of the invariance of the forces these equations represent to this particular type of coordinate
transformation, an invariance that is required in Newtonian mechanics.

The functional F
ðyÞ

m=p
ð _w; €w; _w; €w; tÞ has two distinct roles. In the first place, it is intended to capture the

nonlinear damping effects in the wake-oscillator, much like the �f stð _q
2ðtÞ � 1Þ _qðtÞ term in the Rayleigh

equation, or the �f stðq
2ðtÞ � 1Þ _qðtÞ term in the van der Pol equation. This damping term must be such that the

wake-oscillator is self-excited and self-limiting.
Self-excitation of the wake is due to amplification by the shear-layers of initial instabilities generated at the

separation points, and an upstream influence caused by a region of absolute instability in the near wake. This
region of absolute instability, whose downstream boundary is the point in the wake where traveling waves can
be reflected, is associated with causing the propagation an upstream traveling wave disturbance which
amounts to a ‘‘feedback’’ to the separation points.

In addition, F
ðyÞ

m=p
ð _w; €w; _w; €w; tÞ must represent the nonlinear interaction (i.e., the right-hand side) between the

wake-oscillator and the motion of the cylinder.
2Any explicit dependence on wðtÞ has been excluded. This is purely for the purpose of simplicity.
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First, Eqs. (7) and (8) are substituted in Eq. (6). The result is then replaced in Eq. (5), and the
indicated variations performed. The conditions dwj

t2
t1
¼ dwjt2t1 ¼ 0 are imposed and similar terms col-

lected. The independence of the variations dw and dw leads to the following set of coupled differential
equations:

ðmc þ
1
4
prD2LCaÞ€wðtÞ þ cðvacÞ _wðtÞ þ kðyÞs wðtÞ

¼ 1
2rDLCd j _wðtÞ � _wðtÞj½ _wðtÞ � _wðtÞ� þ 1

4prD2LðCa þ 1Þ €wðtÞ ð9Þ

and

â0mfl €wðtÞ þ â1mfl
Uof st

D
wðtÞ þ

mflf st

U2
o

½â3 _w
2ðtÞ þ â2U2

o� _wðtÞ

¼ â2mflf st _wðtÞ þ
â3mflf st

U2
o

_w3ðtÞ þ
3â3mflf st

U2
o

½ _w2ðtÞ_wðtÞ � _wðtÞ_w2ðtÞ�. ð10Þ
2. Nondimensionalization of the derived wake-body model

Let the dimensionless cylinder and wake displacement variables be

XðtÞ ¼
wðtÞ
D

and

W ðtÞ ¼
wðtÞ

D
,

respectively. The dimensionless time variable is defined as

T ¼ tost.

The notation ð�Þ0 is used to denote time derivatives with respect to T .
2.1. The structural oscillator

Nondimensionalizing Eq. (9) via the above variables yields

ðmc þmdCaÞX00ðTÞ þ
cðvacÞ

ost
X0ðTÞ þ

kðyÞs

o2
st

XðTÞ

¼
1

2
rD2LCd jW

0ðTÞ � X0ðTÞj½W 0ðTÞ � X0ðTÞ� þmdð1þ CaÞW
00ðTÞ. ð11Þ

Eq. (11) can be simplified and rewritten in a number of different ways. These differ fundamentally with
respect to the definitions of the natural frequency, the damping ratio, and the mass ratio that are employed.
Table 2 summarizes the various definitions that are of importance here. In the interest of making the paper
more readable, the various forms of Eq. (11) are not all presented in one place. Rather, they are presented as
needed in subsequent sections of the paper.
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Table 2

A number of possible characterizations of the cylinder natural frequency, and damping and mass ratios

Parameter Value Description

oðvacÞn

ffiffiffiffiffiffiffi
kðyÞs

mc

s
Cylinder natural frequency in vacuo

oðtrueÞn

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kðyÞs

ðmc þ Camd Þ

s
Cylinder true (or in situ) natural frequency

oðst: waterÞn

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kðyÞs

ðmc þ CAmd Þ

s
Cylinder natural frequency in still water

zðvacÞ cðvacÞ

2oðvacÞn mc

Damping ratio (material/critical) in vacuo

zðtrueÞ
zðvacÞ

ffiffiffiffiffiffiffiffiffiffiffiffi
1

m̂�Ca

r
True (or in situ) damping ratio

zðst: waterÞ
zðvacÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1

m̂�CA

r
Damping ratio in still water

m m�

1þm�Ca

Mass ratio including added mass

V ðvacÞr
2pUo

oðvacÞn D

Reduced velocity defined using the in vacuo natural frequency
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2.2. The wake oscillator

Introducing the dimensionless variables ðX;X0;X00;W ;W 0;W 00;TÞ into Eq. (10) gives

W 00ðTÞ þ ð2pSÞ2
â3

â0
W 02ðTÞ þ

â2

â0

� �
W 0ðTÞ þ

1

ð2pSÞ

â1

â0
W ðTÞ

¼ �3ð2pSÞ2
â4

â0
½W 0ðTÞX02ðTÞ � X0ðTÞW 02ðTÞ�

þ ð2pSÞ2
â3

â0
X03ðTÞ þ

â2

â0
X0ðTÞ, ð12Þ

where it is assumed âoa0.
Consider for the moment the case of a stationary cylinder. In this case, XðTÞ and all its derivatives are

identically zero. Eq. (12) then reduces to

W 00
oðTÞ þ ð2pSÞ2

â3

â0
W 02

o ðTÞ þ
â2

â0

� �
W 0

oðTÞ þ
1

ð2pSÞ

â1

â0
W oðTÞ ¼ 0, (13)

where

W oðTÞ ¼
woðTÞ

D
.

The van der Pol and Rayleigh equations are the nonlinear oscillators most commonly used to model the
fluctuating nature of the vortex shedding. For a stationary cylinder, they adequately model the self-sustained,
quasi-harmonic oscillations seen experimentally in the lift coefficient, for example. For definiteness, the
Rayleigh equation is taken as the ‘‘reference’’ nonlinear wake oscillator. The idea is then to construct a
Rayleigh-type equation from Eq. (13).

The dimensionless Rayleigh equation,

Q00ðTÞ þ �ðQ02ðTÞ � 1ÞQ0ðTÞ þQðTÞ ¼ 0,

with 0o�51, is known to provide a stable quasi-harmonic oscillation of finite amplitude at the frequency

O ¼ 1.
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Eq. (13) reduces to the Rayleigh type provided that

1

ð2pSÞ

â1

â0
¼ 1,

â2

â0
o0,

â2

â0

����
����51,

â3

â0
40

and

ð2pSÞ2
â3

â0

����
����51.

It is evident from the above conditions that if â0o0, then â240 and â1;3o0. On the other hand, if â040, then
â2o0 and â1;340.

Next, define

b̂i ¼
âi

â0

����
����,

where i ¼ 2; 3. The sign of the model constant â4 is not known a priori, and, therefore, there are no constraints
to determine the sign of the ratio â4=â0. As a result, said ratio is represented as b4, where b4v0.

Eq. (12) can now be written as

W 00ðTÞ þ ½ð2pSÞ2b̂3W 02ðTÞ � b̂2�W
0ðTÞ þW ðTÞ

¼ �3ð2pSÞ2b4½W
0ðTÞX02ðTÞ � X0ðTÞW 02ðTÞ� þ ð2pSÞ2b̂3X03ðTÞ � b̂2X0ðTÞ. ð14Þ

Upon examining Eqs. (11) and (14), it is apparent that the number of model parameters is reduced to five,
ðb̂2; b̂3; b4;Ca;Cd Þ. However, since b̂2, b̂3, and b4 are not all independent, the true number of independent
model parameters is actually six, ðâ0; â2; â3; â4;Ca;CdÞ.
3. The comparison models

3.1. Hall (1981)

As part of his doctoral dissertation, Hall [5] considers a modified Blevins model for the transverse VIV of a
spring-mounted rigid cylinder in uniform fluid flow. When said fluid is water, the model equations are given in
dimensionless form3

X00ðTÞ þ
1

ð1þ Za3Þ
2zðst: waterÞ

oðst: waterÞn

ost
þ

a4Z
2pS

� �
X0ðTÞ þ

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ Za3Þ

p oðst: waterÞn

ost

 !2

XðTÞ

¼
a4Z

2pSð1þ Za3Þ

� �
Z0ðTÞ þ

ða3 þ a5ÞZ
ð1þ Za3Þ

� �
Z00ðTÞ ð15Þ
3Hall defines his mechanical parameters per unit length. The necessary invariance of the equations to scaling, however, means they can

simply be rewritten using the relevant parameters in Table 2 without compromising their validity.
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and

Z00ðTÞ �
ða1 � a4Þ

2pSða0 þ a3 þ a5Þ

� �
Z0ðTÞ þ

2pSa2

ða0 þ a3 þ a5Þ

� �
Z03ðTÞ þ ZðTÞ

¼
a4

2pSða0 þ a3 þ a5Þ

� �
X0ðTÞ þ

a3

ða0 þ a3 þ a5Þ

� �
X00ðTÞ. ð16Þ

In the above equations, the ai’s are independent model constants and

Z ¼
rD2L

ðmc þmdÞ

is a mass ratio based on the potential flow added mass.4

Note that there exists the following relationship between Z and m̂�:

Z ¼
rD2L

ðmc þmdÞ
¼

rD2L

mcð1þ m̂�Þ
¼

4

p
m̂�

ð1þ m̂�Þ
. (17)

Eq. (15) can now be written as

X00ðTÞ þ
1

ð1þ Za3Þ
2zðst: waterÞ

oðst: waterÞn

ost
þ

a4Z
2pS

� �
X0ðTÞ þ

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ Za3Þ

p oðst: waterÞn

ost

 !2

XðTÞ

¼
a4Z

2pSð1þ Za3Þ

� �
Z0ðTÞ þ

ða3 þ a5ÞZ
ð1þ Za3Þ

� �
Z00ðTÞ. ð18Þ

T and X have the same meaning in Eqs. (16) and (18) as they do in Eqs. (11) and (14). In principle, however,
ZðTÞ has a slightly different interpretation than does W ðTÞ. Z0ðTÞ is in fact related to the dimensionless form
of the Blevins’ [16] ‘‘hidden fluid variable,’’ _zðtÞ.

It is crucial to point out that Hall derives his model for a horizontal cylinder. The ‘‘Hall hidden fluid
variable’’ is then defined as

_zHallðtÞ ¼ DostZ
0ðTÞ ¼

1

a0rD2

ZZ
Ao

ru2ðy; z; tÞdydz,

where Ao is the cross-sectional area of the rectangular control volume of unit axial ðxÞ dimension that
surrounds the cylinder.

The distinction between Hall’s _zHallðtÞ and Blevins’ _zðtÞ vanishes when Hall’s model is formulated for a
vertical cylinder. This is accomplished by rotating Hall’s coordinate system about the y-axis by an angle
a ¼ �p=2 radians (i.e., counterclockwise), and then setting a5 equal to zero. The order of these operations is
immaterial.

Is Z0ðTÞ related to W 0ðTÞ? To find the answer to this question, suppose u2ðy; z; tÞ is approximately constant
over some subset A�o of Ao. As a result,

_zðtÞ ’
1

a0rD2
u2ðtÞ

ZZ
A�o

rdx2 dx3 ¼
1

a0rD2
u2ðtÞb,

where b is simply a constant as r is assumed constant (the flow is incompressible). From the assumption of
fully correlated shedding in the synchronization regime, A�o is the same at each axial station. As a result,

bL ¼ ~mfl,

where ~mfl is the total mass of fluid contained in the volume A�oL. It is then possible to write

_zðtÞ ’
1

a0rD2L
u2ðtÞ ~mfl.
4Hall does not directly define his mass in this way. He merely refers to the ‘‘mass per unit length.’’ The same ambiguity exists in the

Blevins model: In Ref. [15] reference is also made to the ‘‘mass per unit length m’’ , while in Ref. [16] the same mass m includes ‘‘the

entrained mass of fluid.’’
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If A�o coincides with the x–y projection of the region R��, then ~mfl ¼ mfl and u2ðtÞ coincides with the wake
degree-of-freedom _wðtÞ. It follows that

_zðtÞ ’
1

a0rD2L
_wðtÞmfl.

In addition, if mfl ¼ rD2L, as is Ref. [12], then

_zðtÞ ’
1

a0

_wðtÞ.

It is clear that Z0ðTÞ is indeed related toW 0ðTÞ, at least in a limiting sense. This supports the notion that
model represented by Eqs. (9) and (14) can be meaningfully compared with Hall’s model equations.

To that end, consider first rewriting Eq. (11) as

X00ðTÞ þ
2

l
zðst: waterÞ

oðst: waterÞn

ost
X0ðTÞ þ

1ffiffiffi
l
p

oðst: waterÞn

ost

� �2

XðTÞ

¼
2

p
m̂�

lð1þ m̂�Þ
Cd jW

0ðTÞ � X0ðTÞj½W 0ðTÞ � X0ðTÞ�

þ
m̂�

lð1þ m̂�Þ
ðC�a þ 2ÞW 00ðTÞ, ð19Þ

where the parameters oðst: waterÞn and zðst: waterÞ are defined in Table 1, and l ¼ ½1þ ðm̂�=ð1þ m̂�ÞÞC�a�. C�a
represents the deviation of the added mass coefficient from its potential flow value of CA ¼ 1.

Setting a5 ¼ 0 in Eq. (18) gives

X00ðTÞ þ
1

ð1þ Za3Þ
2zðst: waterÞ

oðst: waterÞn

ost
þ

a4Z
2pS

� �
X0ðTÞ þ

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ Za3Þ

p oðst: waterÞn

ost

 !2

XðTÞ

¼
a4Z

2pSð1þ Za3Þ

� �
Z0ðTÞ þ

a3Z
ð1þ Za3Þ

� �
Z00ðTÞ. ð20Þ

Suppose now that the model parameters a3 and a4 are related to Ca and Cd , respectively, in the following
way:

a3 ¼
p
4

ðm̂�Ca � m̂�Þ

m̂�
¼

p
4
ðCa � 1Þ ¼

p
4

C�a,

and

a4 ¼
p
4

Cd .

Using Eq. (17), the following additional relations are obtained:

a3Z ¼
m̂�

ð1þ m̂�Þ
C�a

and

a4Z ¼
m̂�

ð1þ m̂�Þ
Cd .

Defining

1þ a3Z ¼ 1þ
m̂�

ð1þ m̂�Þ
C�a

� �
¼ l,

it follows that

a3Z
ð1þ a3ZÞ

¼
m̂�

lð1þ m̂�Þ
C�a
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and

a4Z
ð1þ a3ZÞ

¼
m̂�

lð1þ m̂�Þ
Cd .

Substituting the above relations into Eq. (20) yields

X00ðTÞ þ
1

l
2zðst: waterÞ

oðst: waterÞn

ost
þ

1

2pS

m̂�

ð1þ m̂�Þ
Cd

� �
X0ðTÞ

þ
1ffiffiffi
l
p

oðst: waterÞn

ost

� �2

XðTÞ ¼
1

2pS

m̂�

lð1þ m̂�Þ
CdZ0ðTÞ

þ
m̂�

lð1þ m̂�Þ
C�aZ00ðTÞ. ð21Þ

When Eq. (19) is rewritten as

X00ðTÞ þ
2

l
zðst: waterÞ

oðst: waterÞn

ost
X0ðTÞ þ

1ffiffiffi
l
p

oðst: waterÞn

ost

� �2

XðTÞ

¼
2

p
m̂�

lð1þ m̂�Þ
Cd jW

0ðTÞ � X0ðTÞj½W 0ðTÞ � X0ðTÞ�

þ
m̂�

lð1þ m̂�Þ
C�aW 00ðTÞ þ

2m̂�

lð1þ m̂�Þ
W 00ðTÞ, ð22Þ

its similarity with Eq. (21) becomes apparent.
Eqs. (21) and (22) differ primarily with respect to the drag term. This difference is attributable to the fact

that Hall’s formulation is based on a linear drag term, proportional to Cd ½Z
0ðTÞ � X0ðTÞ�. The presence of this

linear drag term is manifested in both the fluid-added damping term on the left-hand side (LHS) of Eq. (21),

1

2pS

m̂�

lð1þ m̂�Þ
CdX0ðTÞ

and in the forcing term proportional to Z0ðTÞ on the right-hand side (RHS) of said equation. Such a
separation is not possible in Eq. (22).

In addition to the aforementioned difference, Eq. (22) possesses the additional term

2m̂�

lð1þ m̂�Þ
W 00ðTÞ ¼

2m̂�

1þ
m̂�

ð1þ m̂�Þ
C�a

� �
ð1þ m̂�Þ

W 00ðTÞ

¼
2m̂�

ð1þ m̂�CaÞ
W 00ðTÞ. ð23Þ

The absence of this term in Eq. (21) can be attributed to the fact that the Z00ðTÞ and the X00ðTÞ terms have the
same coefficient, a3Z ¼ m̂�C�a=ð1þ m̂�Þ, in the forcing function5 Hall assumes for his structural oscillator. On
the other hand, the coefficients of the W 00ðTÞ and X00ðTÞ terms in Eq. (19) differ, the difference between them
being precisely equal to this extra term.

It is of interest to point out that Iwan and Blevins [15] set a3 ¼ 0. They argue that doing so ‘‘. . . does not
imply that there is no added mass effect since the flow forward of the separation point remains attached to the
cylinder, effectively increasing the oscillating mass of the cylinder.’’ Furthermore, ‘‘. . . the best agreement
between model predictions and experimental response data . . . is obtained when a3 ¼ 0.’’ If the added mass
effect is not represented by the a3 term, then this suggests that it is already captured in the effective mass which
is computed using the potential flow added mass.

The assumption a3 ¼ 0 is suitable when the fluid medium is air, in which case m̂� is small. The additional
term of Eq. (22) can then be neglected. In a water medium, for which m̂� may no longer be small, added mass
5See Eqs. (2.2.7) and (3.2.16) of Ref. [5].
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effects are important. Indeed, the potential flow added mass becomes an increasingly inexact representation of
the actual added mass as m̂� decreases. Under these circumstances, the assumption a3 ¼ 0 no longer seems
reasonable, and the term represented by Eq. (23) cannot be neglected.

It is difficult to make a comparison between Eqs. (14) and (16) without reinterpreting the model constants
ai ði ¼ 1; . . . ; 5Þ. This is because in Hall’s model, the ai’s appear directly in both equations. This is not a feature
of the present model. With a5 ¼ 0, Eq. (16) becomes

Z00ðTÞ þ
2pS

ða0 þ a3Þ
a2Z

02ðTÞ �
ða1 � a4Þ

ð2pSÞ2

� �
Z0ðTÞ þ ZðTÞ

¼
a4

2pSða0 þ a3Þ
X0ðTÞ þ

a3

ða0 þ a3Þ
X00ðTÞ. ð24Þ

Noting that a X00ðTÞ term is absent from the of Eq. (14), one can also set

a3 ¼ 0.

Next, suppose

a2

ða0 þ a3Þ
¼

a2

a0
¼ 2pSb̂3

and

a1 � a4

a0 þ a3

� �
¼
ða1 � a4Þ

a0
¼ 2pSb̂2. (25)

Eq. (24) then becomes

Z00ðTÞ þ ½ð2pSÞ2b̂3Z
02ðTÞ � b̂2�Z

0ðTÞ þ ZðTÞ ¼
a4

2pSa0
X0ðTÞ.

Solving for a4 from Eq. (25) and then substituting the result in the above equation yields

Z00ðTÞ þ ½ð2pSÞ2b̂3Z02ðTÞ � b̂2�Z
0ðTÞ þ ZðTÞ ¼

1

2pS

a1

a0
� ð2pSÞb̂2

� �
X0ðTÞ. (26)

A comparison of Eqs. (14) and (26) reveals that the main difference lies in the forcing function on the right-
hand side of each equation. The forcing function in Eq. (14) is the sum of the nonlinear function,

f NLðW
0ðTÞ;X0ðTÞÞ ¼ ð2pSÞ2

X2
i¼0

aiX0
3�i

ðTÞW 0i ðTÞða0 ¼ b̂3; a1 ¼ a2 ¼ b̂4Þ (27)

and the linear function

f LðX
0ðTÞÞ ¼ �b̂2X0ðTÞ.

The nonlinear function f NLðW
0ðTÞ;X0ðTÞÞ represents the autoparametric excitation.

In contrast, the forcing function in Eq. (26) is purely a linear function of the cylinder velocity,
and f NLðW

0ðTÞ;X0ðTÞÞ ¼ 0. This type of forcing has been extensively used in wake oscillator models
(e.g., Refs. [12,17]).

In summary, it is apparent that the model represented by Eqs. (19) and (14) compares well with the model
equations derived by Hall [5]. The major discrepancy between each of the model equations and their
counterparts in Hall’s formulation is in the form of the forcing function. Hall’s forcing functions are in each
case linear; the forcing functions in the model derived here include additional nonlinear terms.

3.2. Berger (1988)

Berger’s [6] model represents a departure from the previous comparison model in that it uses the lift
coefficient as the fluid internal degree-of-freedom. Nonetheless, Berger’s model serves a useful comparison
because it is generally believed to be one of the most successful improvements on the original Hartlen–Currie
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model [2]. Its touted success lies primarily in its ability to correctly predict, both quantitatively and
qualitatively, oscillation hysteresis for certain values of zðvacÞ.

Berger derives the following pair of dimensionless coupled equations as a model for the transverse VIV of
an elastically mounted rigid circular cylinder lying in a uniform stream of air:

X00ðtÞ þ dðX0ðtÞÞX0ðtÞ þ XðtÞ ¼
1

2p3L
m̂�V ðvacÞ

2

r CyðtÞ ¼ aO2CyðtÞ (28)

and

C00yðtÞ þ f �ðC0yðtÞÞC
0
yðtÞ þ O2CyðtÞ ¼ bðX0ðtÞÞX0ðtÞ. (29)

CyðtÞ is the lift coefficient,6 dðX0ðtÞÞ is the nonlinear structural damping function, a is a coupling constant,
f �ðC0yðtÞÞ is the nonlinear damping function for the wake oscillator, and bðX0ðtÞÞ is a nonlinear feedback
parameter. According to Berger, the dðX0ðtÞÞ term is used to model the effects of viscous forces. The reduced
velocity V ðvacÞr is defined in Table 2.

The model parameters are defined as

dðX0ðtÞÞ ¼
Xm

k¼0

d2kX0
2k

ðtÞ,

f �ðC0yðtÞÞ ¼
Xm

k¼0

a2kC0
2k

y ðtÞ; with a0o0 and a2m40,

bðX0ðtÞÞ ¼
Xm

k¼0

b2kX0
2k

ðtÞ

and

O ¼
f st

f ðvacÞn

¼ 2pSV ðvacÞr . (30)

The coefficient set ðd2k; a2k; b2kÞ represents the model constants that are to be determined from experimental
data. Note that the expansions for dðX0ðtÞÞ, f �ðC0yðtÞÞ and bðX0ðtÞÞ are all necessarily symmetric with respect to
the neutral position of the cylinder, XðtÞ ¼ 0. This guarantees a system of equations, Eqs. (28) and (29), that is
invariant to the sign changes y :¼� y and Cy :¼� Cy.

Berger defines the dimensionless cylinder displacement as XðtÞ ¼ yðtÞ=D and the dimensionless time as
t ¼ oðvacÞn t. His equations are now modified so that they are in terms of the dimensionless time T .

To than end, the following relationship between the time derivatives is used:

dn
ð�Þ

dtn
¼

ost

oðvacÞn

� �n
dn
ð�Þ

dTn .

In order to distinguish the parenthesis indicating a functional relationship, f �ðC0yðtÞÞ for example, from
those used solely for grouping purposes, it is convenient to introduce the variable

k ¼
oðvacÞn

ost
. (31)

Using the above relationships and the definition of k, the dimensionless structural equation of motion,
Eq. (28), can be written as

X00ðTÞ þ kdðk�1X0ðTÞÞX0ðTÞ þ k2XðTÞ ¼ aO2k2CyðTÞ. (32)
6The fluid force term CyðtÞ implicitly contains the added mass effects.
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Effecting the change of variables t! T in the wake oscillator, Eq. (29), and again using the definition
of k yields

C00yðTÞ þ kf �ðk�1C0yðTÞÞC
0
yðTÞ þ O2k2CyðTÞ ¼ kbðk�1X0ðTÞÞX0ðTÞ. (33)

Following Berger and Plaschko [18], only the first two terms are retained in each of the power series
representations for dðX0ðtÞÞ, f �ðC0yðtÞÞ, and bðX0ðtÞÞ. Accordingly,

dðX0ðtÞÞ ¼ d0 þ d2X0
2

ðtÞ,

f �ðC0yðtÞÞ ¼ a0 þ a2C0
2

y ðtÞ; with a0o0 and a240,

bðX0ðtÞÞ ¼ b0 þ b2X0
2

ðtÞ.

In terms of T , these become

dðk�1X0ðTÞÞ ¼ d0 þ d2k�2X0
2

ðTÞ,

f �ðk�1C0yðTÞÞ ¼ a0 þ a2k�2C0
2

y ðTÞ; with a0o0 and a240

and

bðk�1X0ðTÞÞ ¼ b0 þ b2k�2X0
2

ðTÞ.

Substitution of the truncated expansions into Eqs. (32) and (33) yields

X00ðTÞ þ k½d0 þ d2k�2X0
2

ðTÞ�X0ðTÞ þ k2XðTÞ ¼ aO2k2CyðTÞ

and

C00yðTÞ þ k½a0 þ a2k�2C0
2

y ðTÞ�C
0
yðTÞ þ O2k2CyðTÞ ¼ k½b0 þ b2k�2X0

2

ðTÞ�X0ðTÞ,

respectively. After rearrangement, one finds

X00ðTÞ þ ½d0kþ d2k�1X0
2

ðTÞ�X0ðTÞ þ k2XðTÞ ¼ aO2k2CyðTÞ (34)

and

C00yðTÞ þ ½a0kþ a2k�1C0
2

y ðTÞ�C
0
yðTÞ þ O2k2CyðTÞ ¼ b0kX0ðTÞ þ b2k�1X0

3

ðTÞ, (35)

respectively.
Noting that

aO2k2 ¼ a
f st

f ðvacÞn

 !2
2pf ðvacÞn

2pf st

 !2

¼ a, (36)

Eq. (34) can be rewritten as

X00ðTÞ þ d0kX0ðTÞ þ k2XðTÞ þ d2k�1X0
3

ðTÞ ¼ aCyðTÞ. (37)

Returning to Eq. (11), consider rewriting it in the form

mc €wðtÞ þ cðvacÞ _wðtÞ þ kðyÞs wðtÞ

¼ 1
2
rDLCd j _wðtÞ � _wðtÞj½ _wðtÞ � _wðtÞ� þmdð1þ CaÞ €wðtÞ �mdCa €wðtÞ. ð38Þ

The right-hand side of Eq. (38) simply manifests the assumed form for

F
ðyÞ

fl=stðtÞ ¼
1
2
rU2

oDLCyðtÞ

(see Eq. (7)). Thus, Eq. (38) is equivalent to

mc €wðtÞ þ cðvacÞ _wðtÞ þ kðyÞs wðtÞ ¼ 1
2
rU2

oDLCyðtÞ.
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Nondimensionalization of this equation yields

X00ðTÞ þ 2zðvacÞ
oðvacÞn

ost

� �
X0ðTÞ þ

oðvacÞn

ost

� �2

XðTÞ ¼
1

2

rU2
oL

mco2
st

CyðTÞ. (39)

Upon using the definitions of m̂� and V ðvacÞr , Eq. (39) can be written as

X00ðTÞ þ 2zðvacÞ
oðvacÞn

ost

� �
X0ðTÞ þ

oðvacÞn

ost

� �2

XðTÞ ¼
1

2p3
m̂�V ðvacÞ

2

r

oðvacÞn

ost

� �2

CyðTÞ. (40)

Finally, upon introducing O from Eq. (30) and k from Eq. (31) into Eq. (40), one obtains

X00ðTÞ þ 2zðvacÞkX0ðTÞ þ k2XðTÞ ¼ aO2k2CyðTÞ ¼ aCyðTÞ, (41)

where the final equality follows from Eq. (36).
Comparing Eqs. (37) and (41), it is evident that the right-hand sides are the same. That the right-hand side

of each equation lacks terms proportional to C00yðTÞ and/or C0yðTÞ is of little surprise. The lift coefficient is,
after all, a dimensionless force. If its time derivatives were included, then the left-hand side of Eq. (38) would
necessarily involve terms proportional to XivðTÞ and/or X000ðTÞ when nondimensionalized. These terms are not
physically reasonable.

The cubic damping term of Eq. (37) is not reproduced in Eq. (38). As was previously mentioned, the form of
the drag term in Eq. (38) must be such that it guarantees the invariance of said equation to a rotation of the
coordinate system about the axis of symmetry x. Acceptable modifications to the current form of the drag
term are then: (i) a linearization of the drag term, resulting in a term proportional to ½W 0ðTÞ � X0ðTÞ�, (ii) a
representation in higher-order odd powers of ½W 0ðTÞ � X0ðTÞ�, and (iii) a superposition of (i) and (ii).

Additionally, a term consisting of the superposition of the existing drag term and (i) or (ii), or the existing
drag term and both (i) and (ii), can be constructed. The addition of a term that is proportional to X0

3
ðTÞ would

therefore constitute an acceptable modification to the right-hand side of Eq. (38). This term might be
introduced by assuming that the lift coefficient is represented by ĈyðtÞ ¼ CyðtÞ � kX0

3
ðTÞ, where CyðtÞ is

determined from Eq. (7). The kX0
3

ðTÞ term would then appear in Eq. (41), thus cementing its correspondence
with Eq. (37). Given the complexity of the existing drag term in Eq. (38), such a modification is not carried out
here.

Turning to the wake oscillators, a comparison of Eq. (14),

W 00ðTÞ þ ½ð2pSÞ2b̂3W
02ðTÞ � b̂2�W

0ðTÞ þW ðTÞ

¼ �3ð2pSÞ2b4½W
0ðTÞX02ðTÞ � X0ðTÞW 02ðTÞ�

þ ð2pSÞ2b̂3X03ðTÞ � b̂2X0ðTÞ ð42Þ

and Eq. (35) reveals many similarities. Noting again that

O2 oðvacÞn

ost

� �2

¼ O2k2 ¼
2post

2poðvacÞn

� �2 oðvacÞn

ost

� �2

¼ 1,

Eq. (35) can be rewritten as

C00yðTÞ þ ½a0kþ a2k�1C0
2

y ðTÞ�C
0
yðTÞ þ CyðTÞ ¼ b0kX0ðTÞ þ b2k�1X0

3

ðTÞ. (43)

Suppose that

a0
oðvacÞn

ost
¼ a0k ¼ �B0

and

a2
ost

oðvacÞn

¼ a2k�1 ¼ ð2pSÞ2B2,
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Fig. 2. The relevant physical parameters of the Tamura-Matsui model.
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where B0, B240. Note that the signs are preserved since a0o0 and a240. Upon substituting these definitions
into Eq. (43), one obtains

C00yðTÞ þ ½ð2pSÞ2B2C
02

y ðTÞ � B0�C
0
yðTÞ þ CyðTÞ ¼ b0kX0ðTÞ þ b2k�1X0

3

ðTÞ. (44)

The left-hand side of this equation now has the same form as the left-hand side of Eq. (42).
Consider the case in which

a0 ¼ b0

and

a2 ¼ b2.

It follows, then, that

a0k ¼ b0k ¼ �B0

and

a2k�1 ¼ b2k�1 ¼ ð2pSÞ2B2.

Under this special set of conditions, Eq. (44) becomes

C00yðTÞ þ ½ð2pSÞ2B2C
02

y ðTÞ � B0�C
0
yðTÞ þ CyðTÞ ¼ �B0X0ðTÞ þ ð2pSÞ2B2X0

3

ðTÞ.

This equation is identical in form to Eq. (42 when f NLðW
0ðTÞ;X0ðTÞÞ ¼ 0.

Thus, the general form of Berger’s equations can be obtained as a special case of the model equations
presented here. It is again found, however, that f NLðW

0ðTÞ;X0ðTÞÞ must zero for the best agreement.
3.3. Tamura and Matsui (1979)

In Ref. [7], Tamura and Matsui (TM) present a modified Birkhoff wake-oscillator and the equation of
motion for an elastically-mounted cylinder as a system of simultaneous equations. The length Lw:o: of the
wake-oscillator is variable7 and this translates into the presence of a parametric damping term in the fluid-
oscillator equation.
7However, the time rate-of-change of the length, _Lw:o:, is neglected for simplicity.
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Letting a denote the angular displacement of the fluid-oscillator (see Fig. 2), the time evolution equation in a
is given by

I €a� Cð1� Pa2Þ_aþ K aþ
_w

Uo

� �
¼ �

I

ð0:5Dþ Lw:o:Þ
€w. (45)

I is the mean moment of inertia of the wake-oscillator about the center of the cylinder, C is the mean damping
coefficient representing the effects of discharged vortices, K is the mean coefficient of the fluid dynamic
restoring force, P is the coefficient of the nonlinear damping mechanism, and Lw:o: is the mean length of the
wake-oscillator. The rationale behind the Kðaþ ð_w=UoÞÞ term is that horizontal motion of the cylinder changes
the relative angle over which the fluid dynamic restoring force must act.

The equation of motion for the elastically mounted cylinder is given as

mc €wþ cðvacÞ _wþ kðyÞs wðtÞ ¼ �
1

2
f rU2

oDL aþ
_w

Uo

� �
�

1

2
r
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
U2

o þ _w2
q

DLCd _w, (46)

where f ’ 1:16 is a proportionality constant related to the experimentally observed relationship8 between the
Magnus effect lift and wake angular displacement for a rotating cylinder, and Cd ¼ 1:2 is the drag coefficient.
For a stationary cylinder, the lift coefficient Cy is assumed to be Cy ¼ �f a, while for the self-excited cylinder
Cy ¼ �f ðaþ ð_w=UoÞÞ.

Physically, the first term on the right-hand side of Eq. (46) represents the lift force, while the second term
represents the transverse ðyÞ component of the drag force.

TM apply the simplification

�1
2r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
U2

o þ _w2
q

DLCd _w ’ �1
2rUoDLCd _w,

which is based on the assumption Uob_w. Implementing this approximation in Eq. (46) yields

mc €wþ cðvacÞ _wþ kðyÞs wðtÞ ¼ �
1

2
f rU2

oDL aþ
_w

Uo

� �
�

1

2
rUoDLCd _w. (47)

Nondimensionalizing Eqs. (45) and (47) yields

Io2
sta
00ðTÞ � C½1� Pa2ðTÞ�osta0ðTÞ þ K aðTÞ þ

DostX0ðTÞ
Uo

� �

¼ �
I

ð0:5Dþ Lw:o:Þ
Do2

stX
00ðTÞ

and

mcDo2
stX
00ðTÞ þ cðvacÞDostX0ðTÞ þ kðyÞs DXðTÞ

¼ �
1

2
f rU2

oDL aþ
DostX0ðTÞ

Uo

� �
�

1

2
rUoDLCdDostX0ðTÞ,

respectively. Upon simplifying the above equations, one obtains

a00ðTÞ �
C

ostI
½1� Pa2ðTÞ�a0ðTÞ þ

K

o2
stI

aðTÞ ¼ �
KD

UoostI
X0ðTÞ

�
1

ð0:5Dþ Lw:o:Þ
DX00ðTÞ, ð48Þ
8The reader may wish to peruse Ref. [19]. Curiously, the authors find that f ¼ 1:15 (Cs in their notation) for the case of a spinning

football whose trajectory is tracked in three dimensions.
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and

X00ðTÞ þ 2zðvacÞ
oðvacÞn

ost
þ 2m̂�ðf þ CdÞ

Uo

Dpost

� �
X0ðTÞ þ

oðvacÞ
2

n

o2
st

XðTÞ

¼ �
1

2

f rU2
oL

o2
stmc

a, ð49Þ

respectively.
Defining

ost ¼

ffiffiffiffi
K

I

s
,

zw:o: ¼
C

2ostI
,

and

u ¼
1

ð0:5Dþ Lw:o:Þ
D.

Eq. (48) can be rewritten as

a00ðTÞ � 2zw:o:½1� Pa2ðTÞ�a0ðTÞ þ aðTÞ ¼ �
Dost

Uo

X0ðTÞ � uX00ðTÞ. (50)

However,

�
Dost

Uo

¼ �2pS

and Eq. (50) can also be written as

a00ðTÞ � 2zw:o:½1� Pa2ðTÞ�a0ðTÞ þ aðTÞ ¼ �2pSX0ðTÞ � uX00ðTÞ. (51)

Turning to Eq. (47), one finds that it can be expressed in the form

X00ðTÞ þ ½2zðvacÞkþ 4m̂�ðf þ CdÞS�X0ðTÞ þ k2XðTÞ ¼ �
f m̂�

2p2S2
a, (52)

where k of Eq. (31) has been used.
In order to compare Eqs. (52) and (11), the latter is first rewritten in the following way by using the

corresponding parameters from Table 29

X00ðTÞ þ
2zðvacÞ

ð1þ m̂�CaÞ

oðvacÞn

ost

� �
X0ðTÞ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

ð1þ m̂�CaÞ

s
oðvacÞn

ost

 !2

XðTÞ

¼
2

p
m̂�

ð1þ m̂�CaÞ
Cd jW

0ðTÞ � X0ðTÞj½W 0ðTÞ � X0ðTÞ�

þ
m̂�

ð1þ m̂�CaÞ
ð1þ CaÞW

00ðTÞ. ð53Þ

Next, let m̂�Ca ’ 0 (i.e., assume the experiments are conducted in air). In this case, the Eq. (53) reduces to

X00ðTÞ þ 2zðvacÞkX0ðTÞ þ k2XðTÞ ¼
2

p
m̂�Cd jW

0ðTÞ � X0ðTÞj½W 0ðTÞ � X0ðTÞ� þ m̂�W 00ðTÞ. (54)
9Use the relation oðtrueÞn =oðvacÞn ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=ð1þ m̂�CaÞ

p
, which can be easily derived.
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It is apparent that (i) a linearization of the drag term in Eq. (54) would lead to a left-hand side that closely
resembles the left-hand side of Eq. (52), (ii) the displacement coupling present in Eq. (52) is not a feature of
Eq. (54), and the acceleration coupling present in Eq. (54) is not a feature of Eq. (52).

Comparing Eqs. (51) and (14), it is evident that if only the linear term on the right-hand side of the latter is
retained, the expressions are rendered quite similar. Indeed,

W 00ðTÞ þ ½ð2pSÞ2b̂3W 02ðTÞ � b̂2�W
0ðTÞ þW ðTÞ ¼ �b̂2X0ðTÞ (55)

is qualitatively similar to Eq. (51). However, that acceleration coupling of Eq. (52) is not a feature that is
reproduced by Eq. (55).

4. Discussion

Nonlinear wake-oscillator models have been shown to be leading order approximations for the vortex
shedding instability from a fixed cylinder in uniform flow [20], while wake-body models have been shown to
represent the same type of leading order approximation for forced oscillations of circular cylinders in uniform
flows [21]. These findings imply that these models have, at least to some degree, fluid dynamical origins. It is
precisely because of these fluid dynamical origins that wake-body models have been successful. However, by
the very nature of being leading order approximations to a very complex interaction, they have limitations.
The methodology presented in this paper serves to address both of these aspects. The fluid dynamical origins
can be accounted for since the starting variational principle is rigorous. The limitations are accounted for
because any assumptions made in reducing the variational principle are explicitly stated.

In Section 3 it is shown that the wake-body model derived from the proposed methodology shares many
qualitative features with the three comparison models chosen from the literature. One can argue that the
comparison models are special cases of the derived models. This follows from the fact that the derived model is
found to involve terms that do not appear in the comparison models. These additional terms are, for the most
part, the autoparametric terms. It is not the aim of this paper to weigh in on the issue of whether or not these
terms should be retained. Suffice it to say that many authors have previously addressed the inadequacy of
linear coupling terms in wake-body models (e.g., Refs. [12,13]).

There are terms in the comparison models that are not captured in the derived model. This is simply a
manifestation of the assumed forms in Eqs. (7) and (8). Subject to a different set of assumptions, these
equations could conceivably be modified such that the ‘‘missing’’ terms appear in the derived model. It cannot
be stressed enough that these modifications would need to be justified. This is in essence the embodiment of the
advantage of the method presented in this paper: That while the wake-body models still contain arbitrary
coefficients, their forms are arrived at by a line of reasoning, rather than a ‘‘hit or miss’’ approach.

The authors believe that this approach can be implemented in other fluid–structure interaction problems.
The possibility of applying it to derive wake-body models for elastic structures in uniform and shear flows is
something that is currently being given further consideration. To the authors’ knowledge, there exists only a
small body of literature that deals with the application of wake-body models (a two equation model is still
implied) to these particular problems (i.e., Refs. [22,23]). Again, the aim would be to show how these existing
models could be made part of a more rigorous deductive process.
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