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Abstract

A closed-loop optimal location selection method for actuators and sensors in flexible structures is developed. The
introduced technique simultaneously designs a computationally simple # ., controller and optimizes the location with a
gradient-based unconstrained minimization. The /# ., controller is a modified version of a normalized coprime controller
and obtained by solving control and filter algrebraic Riccati equations (CARE and FARE) approximately. Different types
of weights (disturbance input, performance output, sensor noise inputs, etc.) are incorporated to the generalized plant.
Hence, the approximate ARE solutions take into consideration the signal weightings in the system. Since an iterative
gradient search algorithm is used, the partial derivatives of the approximate AREs with respect to the design parameters
are taken. Developed method is detailed and illustrated by a Euler—Bernoulli beam example.
© 2007 Elsevier Ltd. All rights reserved.

1. Introduction

Vibration suppression in flexible structures such as beams, plates, space shuttles, large antennas, etc. is a
common engineering problem. Exposed to external disturbances, a flexible structure deforms. These
deformations need to be eliminated or reduced to a certain level by means of control forces applied by the
actuators. The control forces are determined by a controller using the feedback of the deformations obtained
by the sensors. Most often, the number of actuators and sensors are limited. Therefore, one has to find the best
actuator and sensor locations to achieve the maximum possible vibration suppression. This problem is called
the best (optimal) location selection of actuators and sensors.

To mention a few of the different I/O selection methods [1], one can use a naive and simple approach for I/O
selection that accepts configurations, which are both state controllable and state observable. These qualitative
properties of a system can be checked in various ways such as controllability/observability Gramians,
matrices, etc. [2,3]. In literature there are rare optimal selection methods based on this simple idea. The
quantitative measures of controllability and observability are preferred since they can give enough
information for comparing the different combinations of actuator and sensor locations.
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Among the techniques, which are used for checking controllability and observability, Gramians can
serve as an more rigorous quantitative measure. For optimal actuator and sensor locations, Georges [4] defines
transient controllability and observability Gramians at a time 7 and uses a function of them as an energy-
based optimization metric. Ha¢ and Liu [5] has dealt with optimal placement of actuators and sensors of
flexible structures which are exposed to external transient and persistent disturbances. They develop a certain
criterion which contains some measure of controllability and observability Gramians. Another study about
optimal actuator and sensor location selection, which uses controllability and observability Gramians, is the
paper of Gawronski and Lim [6]. They derive some structural properties of flexible structures in modal and
balanced coordinates where the controllability and observability Gramians are equal. The diagonal entries of
Gramians are Hankel singular values, which give a measure for controllability and observability.

Maghami and Joshi [7] develop an optimal actuator and sensor location selection technique for large-order
flexible space structure, where the placement of actuators and sensors is optimized in order to move the zeros
in right-half-plane to the left-half-plane.

Another group of 1/O selection methods use different measures of singular value decompositions (SVD) of a
configuration such as the minimum singular value, the maximum singular value, the condition number, the
relative gain array. Morari [8] suggests to chose combinations with large minimum singular value (a(P)) to
improve the tracking following and disturbance rejection properties of a plant.

Arabyan et al. [9] deal with the physical plant. They obtain an expression for the residual deformation of the
system and the maximum singular value of this expression needs to be kept small according to their best
location selection criteria. The actuator and sensor location with the smallest residual deformation is the best
place for the point actuators.

The robust coprime controller design Hiramoto et al. [10] has developed is a modified version of the robust
stabilization of coprime factors [2,11].

With the exception of Ref. [10], none of the methods mentioned above use closed-loop criteria to select the
location of actuators and sensors. Signal weights, which are an integral part of controller design, are also not
considered.

Our study introduces a closed-loop actuator/sensor selection technique, which includes a coprime controller
design. The optimization metric to be minimized is the #;-norm of the closed-loop plant including the signal
weights.

Our study introduces a closed-loop actuator/sensor selection technique, which includes a coprime controller
design. The optimization metric to be minimized is the 2#>-norm of the closed-loop plant including the signal
weights.

The designed controller is an improved version of the coprime controller developed Hiramoto et al. [10].
Their controller was designed for the physical plant without signal weightings and assumed zero damping.
However, in our study the modal damping is preserved and the physical plant is augmented with signal
weightings. By putting the generalized plant (with signal weightings) into more convenient modal state space
form, approximate but simple solutions of the generalized algebraic Riccati equations (AREs), and hence
simple 7, controllers are obtained.

The point actuators and the rate sensors are assumed to be collocated. That is, the rate sensors are installed
at the same locations with the actuators.

In the optimization part, a simple gradient-based algorithm is used to obtain the optimum locations. An
simply supported Euler—Bernoulli beam example is given to illustrate the developed approach.

2. Model of the structure

The equation of motion of the flexible structure with collocated point actuators and sensors can be given in
nodal form as

Mq + Cq + Kq = Lyd + Lyu,

7= Czqq + szfl,
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Y= quq + Cynq, )

where q is the vector of displacements, w and u are the vectors of disturbances and control inputs acting on the
nodes, respectively. y is N, x 1 the output vector. The matrix L, of dimensions N x N,, is a function of the
point actuators. N and N, denote the degree of freedom of the structure and the number of point actuators,
respectively.

C,q is the N, x N measured output displacement matrix, and C,, is the N, x N measured output velocity
matrix.

z is the performance output vector of dimensions N. x 1, where C,q and C,, are performance output
displacement and performance output velocity matrices, respectively.

If only rate sensors are installed and are collocated with actuators, no displacement is measured, Cyq = 0,
and Cy, becomes

Cy =L
Assuming proportional damping and following the procedure in Ref. [12], Eq. (1) can be transformed to the
equation of motion in the modal coordinates aso
i + 2294, + Q%q,, = Lymd + Lymu,
2= Cyymly + CoymQm,
Y= Cyv,mqm- (2)
In Egs. (2), the newly defined variables are q = ®@q,,,, Lym = oL, Lym = oL, Com=Ca®, Cyym = C, D,

Cyvm = Cy @, Q = diag{w;, wy,... oy} and Z = diag{{,, {5, ...y}, where ® is the mode shape matrix.
The state space realization of Egs. (2) is

7= élfi,
y =Gk, 3)
where % = [qF, ¢.]" and,
N 0 | . 0 0
A= , Bi= , B ,
Q° 270 Lym Lum
a=| "] eope
1= 0 sz’m 5 2 = [ yv,m]'

Using an appropriate coordinate transformation [12], Expression (3) can be converted to the first modal state
space form as

Xm = AnXm + Bnld + Bpau,
z = CpiXm,
y= CmZXma (4)

. 0 W] 0 N
A = diag —oy =200 | —oy —2tvo . &)

where the state matrix is
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2.1. Signal weightings for the best location selection

Most often in control engineering, it is necessary to emphasize some of the desired control objectives and
also some re-scalings of the inputs and outputs is required (Fig. 1). This is done by using the signal weightings
as shown in Fig. 2. Some measurement noise is also modeled.

In Fig. 2, each system (Wg;si, Wsn, Wer, Win and Plant) has its own state space realization. If these subsystems
are interconnected, the generalized plant in Fig. 2 has the state space representation

X =A/x, + By, w+Bu,
z=Cyx,+ Dy W+ Dy u,

y = Cy,Xg + Dy, W + Dy, u, (6)

where w, z and y are [d" n']", [eT ul]" and y,,, respectively.

2.2. Obtaining modal models of the generalized plant

Hiramoto et al. [10] designs their controller for the physical plant and neglect damping. Since in our work
we aim to design a coprime controller for the plant shaped with signal weightings and keep the modal
damping, we need to put the generalized plant into a modal state space form, where the state matrix is block
diagonal and each mode can be dealt individually.

d ——» —» ¢
z
w
{ Generalized plant ———u,,

n—
u »

Controller |«

Fig. 1. The generalized control configuration.
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Fig. 2. The weighted generalized plant with the controller.
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In Expression (6), Ay, By, By,, Cy,, Cy,, Dy,,, Dy, Dy, and Dy,, are:

[ Am BumCy 0 0 07
0 Ay 0O 0 o0
A, = B.Cuni B.DmiiCy A, 0 0 |,
0 0 0 A, 0
0 0 0 0 A
: B Dy 0 )
B, 0
By, = | BDmiDy 0 |,
0 0
L 0 BS_
By, =[B}, 0 (B,Dumi2)" B 0]",
) 0 0 C, O

Cy =

>

_Dszl DszIICw Cz 0 0
Cyy = —[Cm2 D21 Cyy 0 0 C4],

0 0
Dllg = 5
_DszllDw 0
"D,
Dy, = ,
20 Dsz12
Doy = — [Dm21 Dy Dy,
Dy = — Dmo. (7
Using a coordinate transformation the global state matrix A, can be put into a block diagonal form as
A = blockdiag{An, Ay, A, Ay, Al (®)

This form of the state matrix will enable us to obtain simple and approximate solutions of the AREs in the
controller synthesis step.

Since the eigenvalues of the global state matrices in Eqs. (7) and (8) are equal, there exists a single diagonal
eigenvalue matrix A for both of the state matrices in Eqgs. (7) and (8) which obey

A, = XAX,

A = XAX,

where A = diag{i;,42,... 44, ... An}.
Hence, the state matrix in Eq. (7) can be easily put into the form in Eq. (8) by the coordinate transformation
% = Zx, where Z = X~ 'X. The obtained state space matrices are:

A=Z7Z"TA,Z,

B, =B,Z, B, =ByZ,

C=7"'C,, G;=27"'C
Dii =Dy, Dip =Dy,
Dyi =Dgpi, D2 =Dyp. ©)

920



M. Giiney, E. Eskinat | Journal of Sound and Vibration 312 (2008) 210-233 215
3. Controller design

Since most controller design methods are time consuming, the location selection problem becomes
computationally complex. Therefore, most optimal location selection methods try to bypass the controller
design step. Hence, if one desires to apply a closed-loop location selection method, the controller design part
should not take much computation time. For this purpose Hiramoto et al. [10] suggest a simple controller
design procedure. They obtain a coprime controller for the lower part of the generalized plant Py,, by
manipulating the corresponding generalized ARE such that it has a predefinite simple solution. The robust
coprime controller design Hiramoto et al. [10] has developed is a modified version of the robust stabilization of
coprime factors [2,11].

3.1. Controller used by Hiramoto et al. [10]

Hiramoto et al. [10] augment the plant Py, as P, = oP,, and obtain a feedback controller K, (see Fig. 3),
where o serves as a design parameter and f is used to obtain suboptimal controller by selecting f slightly
greater than one. For improving disturbance rejection properties of a controller, one should increase o.
However, for obtaining the robustness of the closed-loop system, « should be kept as small as possible. Hence,
there is a tradeoff for this parameter as discussed detailed in Hiramoto et al. [10]. In Fig. 3, the Py, has the

state space realization
A | B
G| o]

The controller that is used in the optimization part of Ref. [10] is Ko, = 2K, and K|, is obtained by solving the
ARE of the augmented plant P,:

Py“ =

(10)

A'S + SA — o’SB,B;S + C; C, = 0, (11)
AT + TAT — TC;C,T + o’B;B] = 0. (12)
The diagonal positive-definite matrices
S = diag{si,s1,52,52, .., 5n, 5N}, (13)
T = diag{ty, 11, 12,12, ..., Iy, IN}, (14)

are assumed as the solutions of the Egs. (11) and (12).

To obtain Expressions (13) and (14), Hiramoto et al. [10] neglect the modal damping for all modes and solve
the simplified AREs (11) and (12) for zero-damping state space matrices. However, in our study we keep the
damping, add new signal weights to the generalized plant and still obtain approximate ARE solutions, which
lead to simple but more efficient /., controller design.

|
|
| al P,
|
|

Fig. 3. Closed-loop system with P, and 7 controller [10].
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3.2. Improved coprime controller

The approximate solutions of Eqs. (11) and (12) can be determined using the following property:
controllability and observability Gramians of diagonally dominant state matrices are also diagonally
dominant and their off-diagonal terms can be neglected [12]. Hence, for state space realizations in one of the
modal forms [12], one can solve the generalized ARE in Egs. (11) and (12) approximately.

The Gramians are used to express the controllability and observability properties of a system qualitatively
and are defined as [13]

t
W.(1) = / exp(Af)BBT exp(ATr)dr,
0

t
W, (f) = / exp(Af)CTCexp(ATr)dr.
0

The exact (full) controllability and observability Gramians are obtained alternatively from the Lyapunov
equations

AW, + WAT +BBT = 0,

ATW, + W,A + CTC = 0.

The generalized plant has N modes. The first N, modes are the physical modes and the remaining N,, modes
are relating the signal weights. For the first ith modes (i = 1 to N), the Lyapunov equations simplify to

wei(A; + A,T) + BiB[T =0, (15)
T T _
Wai(Ai + Al‘ ) + C,' Ci - 0: (16)
where
A 0 w;
a —w; 20w |
T 0 0 2 2 2 2

BB = |o gyz|- 1Bil2=®i+ba++biy,).
clc, = . NGB = (i +ch+ -+ iy,

0 1CiI3

B; is the ith mode’s contribution to the input matrix

0 0 ... 0 7
by b --- b,
0 0 0
B= | b1 bu - b, (17)
0 0 0
Lox1 bz o+ by, |
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and C; is the ith mode’s contribution to the output matrix

0 C11 0 21 e 0 CN1
0 C12 0 22 0 CN2

c=1|. . . o (18)
0 can, 0 cwn, - 0 cww,

So, if A;, B; and C; are inserted into Egs. (15) and (16), the approximate controllability and observability
Gramians for the ith mode are:

B,|3
we 2 2, (19)
ICilI3
oi = . 20
"= 4o, (20)
If only ith mode is considered, AREs (11) and (12) become
Alsil) + sihA; — o?s,[,B Bl s;I, + CI'C; =0,
A;til, + l,'le;-r - lJzC;rCili]z + O€2BiB;r =0,
which can be expressed as
siAT +A) —o’s’BBI +CIC, =0, (21)
ti(A;+A}) — 2CIC; + o’BB] =0. (22)

Since it is clear from Eqgs. (15) and (16) that
BB] = —w.(A; +A)),

C/Ci = —w,(A; + A)),

where

A +AT =

0
0 —4fiow; |’
Egs. (21) and (22) become scalar quadratic equations of s; and ¢; as

2.2
ST Wi 4 8; — Woi = 0,

2 2
EWoi + 1 — " we; = 0.

Since the solutions of Egs. (11) and (12) must be positive definite (s; >0 and ¢, > 0), the positive solutions of the
scalar quadratic equations

=L T do2wawy

. 202w, @3)
—1 4+ /1 +4Pwewey

;= ' 24

2Wyi (24)

are taken as the approximate solutions of the control and filter AREs.
For each of the N, modes from i=N,+1 to N, which are concerned with signal weights, the
Gramians are:

w”(a; + a[T) + b,'biT =0, (25)

[4)
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w(a; +aj ) +b'b; = 0. (26)

Here a; is scalar and is ith mode’s contribution to the global block diagonalized state matrix A. b,-bl-T and
cle; are:

bibl = IIbill3 = (0 + b5 + - + biy, ).

cle; = lleills = (G + i+ + Gy,

b; is the ith mode’s contribution to the input matrix

by by -+ b,

by by - b,
b=

wal bNWZ e bN»\fNu

and ¢; is the ith mode’s contribution to the output matrix

C11 (&) CNy1

C12 2 CN,2
C =

CINs €Ny '+ CNyNy

The first 2 x N, entries of the diagonal approximate Gramian are calculated from Eqs. (19) and (20). The
remaining N,, entries of the Gramian are calculated from Egs. (25) and (26) as follows:

bb’
w et} .
wh~——=~t i=1:N,
cl 201‘ ? 4
T
[
W o~ [t P .
wm.:—zai, i=1:N,.

The controllability and observability Gramians of the weighted generalized plant can be obtained
approximately as

. woow W

W, = diag{w., Wei, Wea, Wea, - . . WeNys WeNps Wels Wegs - Wch}, 27
. w w W

W, = diag{w,1, Wo1, Wo2, Wo2, - - - WoNps WoNps Wo1s Wops -+ - Wy, } (28)

The solutions of Eqgs. (21) and (22) for the weighting modes from N, +1 to N =N, + N,, have the same
expressions as s; and #; in Eqgs. (23) and (24). Hence, once the Gramians in Expressions (27) and (28) are
calculated, the solutions of AREs for the generalized plant can be obtained directly from Egs. (23) and (24).

The controller K, in Fig. 3 is obtained by solving the Riccati equations (11) and (12) approximately and by
choosing the parameters «>0, f>1. With the controller K, the state space realization of the closed-loop
system Gy (s) is

X, = A X, + B.w, (29)
z. = C.x,, (30)
where
A aB(Ly)Ck, (Ly)

> AC=

X
Xe = [XKH By, (L)Ca(Ly)  Ag,(Ly) [’

B, =[B] 0]", C.=[C, aD,Cx,].
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Ak,, Bk, and Cg, are the state space matrices of the controller in Fig. 3 and have the expressions
Ak, = A = aBsB)S + (Bin) (W) TC G,
By, = (B7min) (W) TC;,
Ck, = aB;S, 31)

with W= (1 = (Bymin) M+ ST, Jiin = (I + Zmax(ST)) /2.

Amax(.) 18 the maximum eigenvalue. The closed-loop system G,y(s) includes open-loop plant and controller
matrices which are functions of the configuration of the actuators and sensors.

4. Optimization of the actuator and sensor locations

The problem of optimal placement of the actuators and sensors can stated as follows: Given the closed-loop
system with the state space representation in Egs. (29) and (30), find the actuator/sensor placement matrix Ly,
which minimizes the optimization metric that is chosen by the designer.

The #> norm of the closed-loop system is selected as the optimization criterion for the optimal placement
as in the approach developed by Hiramoto et al. [10]. However, since they design their controller for the
physical system without any signal weightings and neglect the damping, they solve AREs simply and do not
need the derivatives of AREs.

Unlike their controller design technique, we use the signal weightings and the damping. So, the partial derivatives
of AREs in Egs. (11) and (12) are required to obtain the gradient of the objective function. Hence, in this section the
partial derivatives of approximate ARE solutions are introduced as another significant contribution.

4.1. Selection of the objective function

The optimization metric J which is the square of the J#,-norm can be given as

J = ||sz||% = trace(CcLCCI), (32)
where L. is the controllability Gramian of the closed-loop system and satisfies the equation
AL +LA"+BB!=0. (33)

Since the optimization function J is partially differentiable with respect to the locations f;, a gradient descent
method can be applied to obtain the optimal locations of the collocated actuator/sensor pairs [14].

If the location of the ith actuator/sensor pair is given by the coordinate éfl, the partial derivative of J in
Eq. (32) with respect to 5; is

0 oC, oL, oCc"
T — trace[ Cenee + €. e + n, 26 (34)
0¢y 0¢y 0¢a ¢y
where 0C,/0¢! is
oC.  |aC, 0Ck,
— = | OCD]Z - .
og,  |ad o,

oL./ aéfl in Eq. (34) is to be obtained by the equation that is achieved by differentiating Eq. (33) with respect to
the actuator/sensor locations &, as

AY+YA +Q=0,

where
T T
= % Q= a;A,‘Lc +LCaA? +aB."B(T, +BCaB€‘
0&, o&, 0, 0% ° oc,
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0A, /66; is simply the derivative of the state matrix of the closed-loop system with respect to g’fl

0 o GBg + aCK”
oA, og, " od
afa aBK”C + BK”aC aAK‘I

g, g, g,

where (0Ag,/0¢, 0By, /0, 0Ck, /O ) are the derivatives of the controller matrices in Eqgs. (31), which are
functions of the open-loop generalized plant in Egs. (9). So, to compute 0A,./ Géi the derivatives of Egs. (9) are
required. In Eq. (9), Z is made of the eigenvectors of the state matrices A and A,. Since the natural frequencies
and the signal weightings do not change with actuator/sensor locations, the elgenvector X associated with A
and the eigenvector X of A can be assumed to have zero partial derivatives. Hence, for calculating the
derivatives of Egs. (9), one should differentiate only the terms, which are functions of L, in Egs. (7). These
terms are By, Cii, C2 in Egs. (4).

4.2. Approximate ARE derivatives

In Hiramoto et al. [10], the solutions of AREs, denoted by S and T, do not contribute to the
partial derivatives of the closed-loop system. However, the solutions of AREs for the improved
coprime controller introduced in Section 3.2 have partial derivatives with respect to the actuator and sensor
locations.

The derivatives of AREs (11) and (12) with respect to design parameters p, which are the coordinates of the
actuator/sensor pairs (é; . éiv“), are:

(AT — 2513213T) oS §(A — o’SBIBy) + 0 =0, (35)

oT aT

(A — TCTC2) (AT TC,C,) + P =0, (36)

where Q and P are:

oAT 0A 0B, oBT  acT oC,
=——S+S——’S——BIS—’SB, —2S+—_2C,+C) —=
°=% o o w o T 2T,
and
0A oAT OB, OBT ,0CT 0C,
P=_—T+T—-T——B]T-TB,— 2T 2 >cT
» o o 2y THE g Gt G,
respectively.

Egs. (35) and (36) are Lyapunov equations and their solutions are obtained in the same manner as in
finding the solutions Eqs. (11) and (12). Since the system equations of the generalized plant is put into the first
modal state space representation, Eqs. (35) and (36) can be solved for each mode separately. For the ith mode,
they are:

0s;
(1 + 20‘ S‘z"ch)“'élz(Ul p + Sl (4C1 l) + OC 7((B2 BT )(2 2)) ((C;CZ,')(ZJ)) = 07 (37)

ot; 0 0
1+ 2tzW01)4Czwz o L+ [z (4Ciwi) + t,2 &((Czczi)(z,z)) —o? @((Bz,—BZ)(z,z)) =0, (38)
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where the partial derivatives of (B2,-B;,-)(2,2) and (CZCZi)(z,z) are:
0 0
—((B2,BY),,) = — By, |I2
ap (( 2; 21)2,2) 617 ” 2i ||2

ab, 617, 6b[
=2(ba 2t bp =2 by, )
op op op

0 0
@((Czczf)z,z) =% I1C5, 115

Ocy; 0ca; Ocy,i
=2 eyt e S by )
<Cl o + o + + bin, o )

In Egs. (37) and (38), the only unknown quantities are 0s;/0p and 0t;/0p and hence can be found immediately.
So, the partial derivatives of S and T are

@ = diag{% aSN},

ap ap p
O _ g Jon o
> g > o)

4.3. Partial derivative of Ppin

For taking the partial derivative of the closed-loop matrix A, in Eq. (29) with respect to the design
parameter p, the partial derivative of y,;, in Eq. (31) is also required.
OVmin _ 1 O0Amax(ST)

B 2T+ Zmax(ST)  Op

where
O/max(ST) 1
e =)
Op
k is the index of the maximum eigenvalue of ST as
Jmax = 4k = max A(ST), i=1:N,
1

osT,
ap k’

and uy, is the kth eigenvector of ST.
The distinct eigenvalue derivative of 0/max(.)/0p is taken according to Refs. [15,16].

4.4. Optimization procedure

Using the improved coprime controller design and the ARE derivatives, a gradient-based unconstrained
optimization is utilized for the optimal location selection of point actuator and sensor pairs. The optimization
procedure is done using the following steps:

(1) Required data: The disturbance locations, the boundary conditions and the dimensions of the structure is
given.

(2) Initial guess: The initial guesses (5;...55 ) are selected, where the objective function and its gradient will be
evaluated. To be used in step size selection, some optimization parameters are chosen.

(3) The physical structure modeling: The structure is modeled and put into the first modal state space form
(A, Biut, Buiz, Coits Coi2, D1, Diiias D1, Diino). The partial derivatives of the state space matrices By,
Cn1 and C,,, are taken with respect to the current actuator and sensor locations.
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(4) The generalized plant: For the given signal weightings the state space matrices of the shaped plant are
obtained. Using the coordinate transformation it is put into to the first modal form with block diagonal
state matrix (A, By, By, C;, C,, Dy1, Dy3, Doy, D2)).

(5) Controller synthesis and closed-loop system: The AREs are solved and the coprime controller is obtained.
The closed-loop state space matrices (A, B., C., D.) are calculated.

(6) Objective function and its gradient. # »-norm is calculated and its square is set as the objective function J.
The gradient of J is evaluated at the current actuator and sensor location.

(7) The new actuator and sensor locations: Using gradient of J, the search direction of the kth iterations is
established as s* = Ax/[|Ax| where Ax is given in Eq. (39). The next iterations’s points become
XK+ = xk 4 5% with ¢ being the step size. ¢ is chosen according to the backtracking line search technique
in Ref. [14]. If the difference ||x**! — xX||<e, the optimization procedure is stopped. Otherwise, the
procedure is returned to the second step with the next actuator and sensor points.

The negative gradient of the square of /#, norm of the closed-loop system in Eq. (32) is defined as
oJ
o,
Ax=—-| : |, (39)

o7
ai—Nu

a

where 0J /65; is calculated from Eq. (34).

5. Examples

As an example consider a simply supported Euler—Bernoulli beam shown in Fig. 4. ¢ and y denote the
horizontal coordinate and the vertical deflection, respectively. w(f) and u/(f) with i =1,2 are the single
disturbance and the two point actuator forces, respectively. The disturbance is located at &,,. The control
forces from the first and the second actuators are acting at horizontal positions ffl for i = 1,2. Since the rate
sensors are collocated, they are at the same location as the actuators. The equation of motion and the
boundary conditions are:

4 2 = 2
Er L ps TR0 — o - £+ Y w06 - )
i=1
O*Y(0, 1) OY(L, 1)
v(0,0)=0, yY(L,1)=0, lgT =0, lgT =0. (40)

EI p, S and L are the flexural density, the density, cross-section area and the length of the beam, respectively.
Their values are selected as: E=1Pa, I = Im* p=1kgm™3, S = Im? L = 1m. The parameters required

— I Qeas

Fig. 4. Simply supported beam with two point control forces and a single disturbance.
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for the controller design step are o = 100, f = 1.02 and the performance outputs is described by the vector
z= [w(é_l), zp({?), W(&,), u',u?]". Assumed modes method is used to discretize the problem. The number of
modes are taken as N = 10. The damping for each mode is assumed to be { = 0.001.

With the assumed modes approach, Eq. (40) can be solved by assuming the vertical displacement (¢, f) to
be of the following form:

N
YE D= qpid),
i=1

2 . iné
(&) = \/;Smf, (41)

where ¢,(t) and ¢,(&) are the modal displacements and the normalized mode shapes, respectively. Ly, L, and
the natural frequencies are:

Lw = [q)l(fw) (p2(éw) o (pN(éw)]Tv

o€ eaE) o oen@d]’
@) e - en(@)]

EI
. N2 . . .
w; = (UT withi=1: N, respectively.

5.1. Optimal actuator and sensor locations for &, = 0.35L

The single disturbance is located at the point &, = 0.35L and the initial places of the actuators are
¢l =025L, & =0.65L.
The signal weightings of the generalized plant (in Fig. 2) have the transfer functions

Waist = % (disturbance weight),
W = S (sensor noise weight),
We =1 (performance output weight),
Win = % (control input weight). (42)

The resulting optimal actuator and sensor locations can be seen in Fig. 5. Starting from the initial locations
(0.25L,0.65L), in nearly 55 iterations, the actuator/sensor pairs (é}l,éi) converge to the final locations
(0.35L,0.35L). The objective function J = /f% converges to its minimum also, as can be seen in Fig. 6.

To verify the obtained results, the #;-norm on the whole domain of the beam is calculated and the
variation of J with the change in the actuator coordinates 5}, and 52 is plotted in Figs. 7 and 8.

As can be seen in Figs. 7 and 8, there are actuator/sensor location pairs (5;, éi), for which the ', norm are
equivalent or very close.

Figs. 9 and 10 shows the results obtained by the formulation given in Hiramoto et al. [10]. That is,
the damping is neglected. The disturbance input and sensor noise weightings are not present in this
formulation. The obtained optimal locations with this formulation are given in Fig. 9 and the square of the
H# >-norm of the closed-loop system in Eq. (10) are different than those achieved in Figs. 5 and 6. Because
of possibility of including weights and damping in the formulation, our formulation should give more
realistic results.
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Fig. 5. Iterations and convergence to the optimum locations.
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Fig. 6. Iterations and the minimized #73.

5.2. Effect of the design parameter o and the filter coefficient Cy,,

To see the effect of the signal weightings on the resulting optimal actuator/sensor locations, some
parametric studies are done (Figs. 11-14). For simulations in Figs. 1518, the initial points are é}l = 0.35L and
5(14 = 0.65L. The disturbance force is located at £,, = 0.5L. The signal weightings and the parameter « for each
simulation in Figs. 1518 are listed in Table 1.

In Figs. 15-18, the, the minimized optimization metric J and the optimal actuator/sensor locations (é;, 6(2,)
are plotted versus the changing the parameter « and the coefficient Cpy,, of a low-pass filter, which is
interconnected to the physical plant.

In Fig. 15, as o increases, the square of the closed-loop #>-norm at the optimal actuator and sensor
location decreases. Since the #,-norm is the norm of the closed-loop transfer function between the
disturbance inputs and the performance outputs, for the disturbance rejection purpose o need to be selected as
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Fig. 10. Iterations and the minimized #73 with the method presented in Ref. [10].
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Fig. 11. Impulse response of the beam with actuators at initial locations (5114 =0.25L, 5(11 = 0.65L).

high as possible as mentioned in Hiramoto et al. [10]. Fig. 16 shows the variance of the optimal actuator and
sensor location with o.

In Figs. 17 and 18, « is kept constant, but the coefficient Cy,, of the disturbance input weight is changed.
As Cyp, increases, the minimized optimization function decreases. That is, as there are less disturbances
acting in higher frequencies, the closed-loop #,-norm decreases at the optimal location of actuator and
sensor pair.

5.3. Effect of disturbance weights

To further illustrate the effect of signal weights, the bandpass filter

1652

14 ist =
IS 456575 + 312552 + 8794s + 2.417°
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Fig. 12. Impulse response of the beam with actuators at final locations (étl, =0.35L, g’{ll =0.35L).
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Fig. 13. Control effort impulse response of the beam with actuators at initial locations (é}, =0.25L, 5,14 =0.65L).

is applied as the disturbance input filter. This second-order Butterworth filter is depicted in Fig. 19 and is used
to stop all modes other than the second one.

However, if the bandpass filter in Fig. 19 is selected as the disturbance input filter, the optimal locations
converges to the points (0.25L,0.25L), which is one of the antinodes of the second mode of a simply supported
beam, as can be seen in Fig. 20.

If the simply supported beam is excited only at its second mode, the maximum deflections occur at points
0.25L and 0.75L and the point 0.50L becomes the node where the deflections vanish. Hence, the optimal
locations in the Butterworth filter example seem to reflect this phenomenon correctly and the optimal
locations converge to points 0.25L or 0.75L, but not the point 0.35L, where the disturbance is acting. This
result shows that the optimization technique introduced in the study can be can effectively handle the plants
shaped with different signal weightings. However, the formulation given in Hiramoto et al. [10] does not
consider the signal weightings in the controller design stage.
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Fig. 14. Control effort impulse response of the beam with actuators at final locations (é}, =0.35L, 5}; =0.35L).

Table 1
The signal weightings used simulation in Figs. 15-18

Figs. 15 and 16

Figs. 17 and 18

o ot 1
W dist 10 10
0.03s+ 1 Cwws + 1

W 1 il
25 25

Wer 1 1

W il i
10° 10°

o, takes: 1,2,3,4,5,10,20,20,...,80,90,100.
> Cy takes: 0, 0.0333, 0.0667, 0.1, 0.1333, 0.1667, 0.2, 0.2333, 0.2667, 0.3.

Yariation of J with design parameter o

90 100

Fig. 15. The minimized J = /f% versus design parameter o.
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5.4. The optimal actuator and sensor locations for &, =[0.35L,0.45L]

One another advantage of our approach is the possibility of using different signal weightings for different
channels. This is demonstrated by three cases.

In case 1, both of the disturbances are applied the input signal weighting, Wi = 10/0.03s + 1, in Eq. (42).
In this case the optimal locations of the collocated actuator and sensor pair converges to locations where the
disturbance input act (Fig. 21).

In case 2, the signal weight for the disturbance input at ¢, = 0.35L is kept, whereas the bandpass filter
in Fig. 19 is used for the disturbance input at &, = 0.45L. The obtained optimal locations are to be seen
in Fig. 22.

In case 3, the bandpass filter is applied to the disturbance input at &, = 0.35L and the input at £, = 0.45L is
filtered with the low-pass filter (see Fig. 23). In this case, both of the optimal locations converge to point 0.45,
whereas the optimal locations approach the point 0.35L in case 2.
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Fig. 19. The disturbance input filter (wy, are the natural frequencies of the beam).

In case 4, the bandpass filter is applied to both of the disturbance inputs (&, = 0.35L, &, = 0.45L). Similar
to the example given in Section 5.3, the optimal locations converge the first antinode of the second mode of the
simple supported beam as can be in Fig. 24.

If the disturbances act at different frequencies, the improved coprime controller takes this into account,
whereas the controller used by Hiramoto et al. [10] can not.

6. Conclusions and future work

A closed-loop optimal location selection method for actuator and sensor pairs in flexible structures is
developed and an example with simple supported beam is given to show the effectiveness of the developed
optimization approach.

Using a coordinate transformation, the state matrix of the generalized plant is block diagonalized such that
each mode can be dealt individually. This enables the solutions of the generalized AREs to be assumed in the
diagonal form. This makes it possible to solve the AREs in the closed form, using quadratic equations.
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Fig. 21. The actuator/sensor locations (case 1).

Using the concept introduced in Hiramoto et al. [10], a coprime 4, controller is designed. However, modal
dampings are not neglected as in Hiramoto et al. [10] an the signal weights are incorporated into ARE solutions.
For a gradient-based optimization procedure, partial derivatives of the closed-loop system are derived.
The derivatives of the closed-loop system include not only the derivatives of the open-loop system, but also the
derivatives of the AREs. Hence, differentiating the AREs the Lyapunov equations are obtained. The
approximate solutions of the Lyapunov equations are calculated in the same simple fashion as the AREs. When
the necessary derivatives are at hand, the gradient of the optimization metric is obtained and the search for the
optimal actuator and sensor locations is found with an unconstrained nonlinear optimization algorithm.

The developed optimization technique has several advantages over the methods in the literature:

e It uses the generalized plant with signal weights.

e The control and filter AREs and their are solved approximately by reducing them to simple quadratic
equations. In the iterations of the optimal locations selection procedure, solving these quadratic equations
consumes less time compared to solving the AREs fully.
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Fig. 22. The actuator/sensor locations (case 2).
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Fig. 23. The actuator/sensor locations (case 3).

e Hiramoto et al. [10] neglect the damping fully, whereas the developed technique uses modal dampings.

e The optimization is done using a closed-loop selection criteria. That is, the objective function is the square
of the #,-norm of the closed-loop generalized plant with the designed controller.

e Closed-loop objectives are incorporated to actuator/sensor location, procedure, through addition of
signal weights and forming a generalized plant.

Several additions are possible to our current work. Possible future work includes:

e The best location selection strategy can be applied to smart structures with piezoelectric pathes of
arbitrary type of sensors.

e In this study, rate sensors, coupled with first modal form were used so that AREs could be approximately
solved. However, using other modal forms one may get also simple solutions of the AREs for
displacement sensors.
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Fig. 24. The actuator/sensor locations (case 4).

e The coprime # -controller is not obtained for the complete generalized plant P, but for the lower right
part of it, Py,. Using the approximate ARE solutions, other types of &, and #, controllers, which use
the complete generalized plant, may utilized because they are based on similar ARE:s.

e The finite element method can be applied to the flexible structures and the optimal actuator/sensor
selections technique, which is introduced here, can be applied to discrete models resulting from a finite
element analysis with some modifications.
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