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Abstract

A closed-loop optimal location selection method for actuators and sensors in flexible structures is developed. The

introduced technique simultaneously designs a computationally simple H1 controller and optimizes the location with a

gradient-based unconstrained minimization. The H1 controller is a modified version of a normalized coprime controller

and obtained by solving control and filter algrebraic Riccati equations (CARE and FARE) approximately. Different types

of weights (disturbance input, performance output, sensor noise inputs, etc.) are incorporated to the generalized plant.

Hence, the approximate ARE solutions take into consideration the signal weightings in the system. Since an iterative

gradient search algorithm is used, the partial derivatives of the approximate AREs with respect to the design parameters

are taken. Developed method is detailed and illustrated by a Euler–Bernoulli beam example.

r 2007 Elsevier Ltd. All rights reserved.
1. Introduction

Vibration suppression in flexible structures such as beams, plates, space shuttles, large antennas, etc. is a
common engineering problem. Exposed to external disturbances, a flexible structure deforms. These
deformations need to be eliminated or reduced to a certain level by means of control forces applied by the
actuators. The control forces are determined by a controller using the feedback of the deformations obtained
by the sensors. Most often, the number of actuators and sensors are limited. Therefore, one has to find the best
actuator and sensor locations to achieve the maximum possible vibration suppression. This problem is called
the best (optimal) location selection of actuators and sensors.

To mention a few of the different I/O selection methods [1], one can use a naive and simple approach for I/O
selection that accepts configurations, which are both state controllable and state observable. These qualitative
properties of a system can be checked in various ways such as controllability/observability Gramians,
matrices, etc. [2,3]. In literature there are rare optimal selection methods based on this simple idea. The
quantitative measures of controllability and observability are preferred since they can give enough
information for comparing the different combinations of actuator and sensor locations.
ee front matter r 2007 Elsevier Ltd. All rights reserved.
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Among the techniques, which are used for checking controllability and observability, Gramians can
serve as an more rigorous quantitative measure. For optimal actuator and sensor locations, Georges [4] defines
transient controllability and observability Gramians at a time T and uses a function of them as an energy-
based optimization metric. Hać and Liu [5] has dealt with optimal placement of actuators and sensors of
flexible structures which are exposed to external transient and persistent disturbances. They develop a certain
criterion which contains some measure of controllability and observability Gramians. Another study about
optimal actuator and sensor location selection, which uses controllability and observability Gramians, is the
paper of Gawronski and Lim [6]. They derive some structural properties of flexible structures in modal and
balanced coordinates where the controllability and observability Gramians are equal. The diagonal entries of
Gramians are Hankel singular values, which give a measure for controllability and observability.

Maghami and Joshi [7] develop an optimal actuator and sensor location selection technique for large-order
flexible space structure, where the placement of actuators and sensors is optimized in order to move the zeros
in right-half-plane to the left-half-plane.

Another group of I/O selection methods use different measures of singular value decompositions (SVD) of a
configuration such as the minimum singular value, the maximum singular value, the condition number, the
relative gain array. Morari [8] suggests to chose combinations with large minimum singular value ðsðPÞÞ to
improve the tracking following and disturbance rejection properties of a plant.

Arabyan et al. [9] deal with the physical plant. They obtain an expression for the residual deformation of the
system and the maximum singular value of this expression needs to be kept small according to their best
location selection criteria. The actuator and sensor location with the smallest residual deformation is the best
place for the point actuators.

The robust coprime controller design Hiramoto et al. [10] has developed is a modified version of the robust
stabilization of coprime factors [2,11].

With the exception of Ref. [10], none of the methods mentioned above use closed-loop criteria to select the
location of actuators and sensors. Signal weights, which are an integral part of controller design, are also not
considered.

Our study introduces a closed-loop actuator/sensor selection technique, which includes a coprime controller
design. The optimization metric to be minimized is the H2-norm of the closed-loop plant including the signal
weights.

Our study introduces a closed-loop actuator/sensor selection technique, which includes a coprime controller
design. The optimization metric to be minimized is the H2-norm of the closed-loop plant including the signal
weights.

The designed controller is an improved version of the coprime controller developed Hiramoto et al. [10].
Their controller was designed for the physical plant without signal weightings and assumed zero damping.
However, in our study the modal damping is preserved and the physical plant is augmented with signal
weightings. By putting the generalized plant (with signal weightings) into more convenient modal state space
form, approximate but simple solutions of the generalized algebraic Riccati equations (AREs), and hence
simple H1 controllers are obtained.

The point actuators and the rate sensors are assumed to be collocated. That is, the rate sensors are installed
at the same locations with the actuators.

In the optimization part, a simple gradient-based algorithm is used to obtain the optimum locations. An
simply supported Euler–Bernoulli beam example is given to illustrate the developed approach.
2. Model of the structure

The equation of motion of the flexible structure with collocated point actuators and sensors can be given in
nodal form as

M€qþ C_qþ Kq ¼ Lwdþ Luu,

z ¼ Czqqþ Czv _q,
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y ¼ Cyqqþ Cyv _q, (1)

where q is the vector of displacements, w and u are the vectors of disturbances and control inputs acting on the
nodes, respectively. y is Ny � 1 the output vector. The matrix Lu of dimensions N �Nu, is a function of the
point actuators. N and Nu denote the degree of freedom of the structure and the number of point actuators,
respectively.

Cyq is the Nr �N measured output displacement matrix, and Cyv is the Nr �N measured output velocity
matrix.

z is the performance output vector of dimensions Nz � 1, where Czq and Czv are performance output
displacement and performance output velocity matrices, respectively.

If only rate sensors are installed and are collocated with actuators, no displacement is measured, Cyq ¼ 0,
and Cyv becomes

Cyv ¼ LT
u .

Assuming proportional damping and following the procedure in Ref. [12], Eq. (1) can be transformed to the
equation of motion in the modal coordinates aso

€qm þ 2ZX_qm þX2qm ¼ Lw;mdþ Lu;mu,

z ¼ Czq;mqm þ Czv;m _qm,

y ¼ Cyv;m _qm. ð2Þ

In Eqs. (2), the newly defined variables are q � Uqm, Lw;m � UTLw, Lu;m � UTLu, Czv;m � CzvU, Czq;m � CzqU,
Cyv;m � CyvU, X � diag o1;o2; . . .oNf g and Z � diagfz1; z2; . . . zNg, where U is the mode shape matrix.

The state space realization of Eqs. (2) is

_̂x ¼ Âx̂þ B̂1dþ B̂2u,

z ¼ Ĉ1x̂,

y ¼ Ĉ2x̂, ð3Þ

where x̂ ¼ ½qTm; _qTm�
T and,

Â ¼
0 I

X2 2ZX

" #
; B̂1 ¼

0

Lw;m

" #
; B̂2 ¼

0

Lu;m

" #
,

Ĉ1 ¼
Czq;m 0

0 Czv;m

" #
; Ĉ2 ¼ ½0 Cyv;m�.

Using an appropriate coordinate transformation [12], Expression (3) can be converted to the first modal state
space form as

_xm ¼ Amxm þ Bm1dþ Bm2u,

z ¼ Cm1xm,

y ¼ Cm2xm, ð4Þ

where the state matrix is

Am ¼ diag
0 o1

�o1 �2z1o1

 !
. . .

0 oN

�oN �2zNoN

 !( )
. (5)
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2.1. Signal weightings for the best location selection

Most often in control engineering, it is necessary to emphasize some of the desired control objectives and
also some re-scalings of the inputs and outputs is required (Fig. 1). This is done by using the signal weightings
as shown in Fig. 2. Some measurement noise is also modeled.

In Fig. 2, each system (Wdist;Wsn;Wer;Win and Plant) has its own state space realization. If these subsystems
are interconnected, the generalized plant in Fig. 2 has the state space representation

_x ¼ Agxg þ Bg1wþ Bg2u,

z ¼ Cg1xg þDg11wþDg12u,

y ¼ Cg2xg þDg21wþDg22u, (6)

where w, z and y are ½dT nT�T, ½eT uTm�
T and ym, respectively.
2.2. Obtaining modal models of the generalized plant

Hiramoto et al. [10] designs their controller for the physical plant and neglect damping. Since in our work
we aim to design a coprime controller for the plant shaped with signal weightings and keep the modal
damping, we need to put the generalized plant into a modal state space form, where the state matrix is block
diagonal and each mode can be dealt individually.
Fig. 2. The weighted generalized plant with the controller.

Fig. 1. The generalized control configuration.
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In Expression (6), Ag, Bg1 , Bg2 , Cg1 , Cg2 , Dg11 , Dg12 , Dg21 and Dg22 are:

Ag ¼

Am Bm1Cw 0 0 0

0 Aw 0 0 0

BzCm1 BzDm11Cw Az 0 0

0 0 0 Au 0

0 0 0 0 As

2
666666664

3
777777775
,

B1g ¼

Bm1Dw 0

Bw 0

BzDm11Dw 0

0 0

0 Bs

2
666666664

3
777777775
,

B2g ¼ ½B
T
m2 0 ðBzDm12Þ

T BT
u 0�T,

C1g ¼
0 0 0 Cu 0

DzCm1 DzDm11Cw Cz 0 0

" #
,

C2g ¼ � ½Cm2 Dm21Cw 0 0 Cs�,

D11g ¼
0 0

DzDm11Dw 0

" #
,

D12g ¼
Du

DzDm12

" #
,

D21g ¼ � ½Dm21Dw Ds�,

D22g ¼ �Dm22. ð7Þ

Using a coordinate transformation the global state matrix Ag can be put into a block diagonal form as

A ¼ blockdiagfAm; Aw; Az; Au; Asg. (8)

This form of the state matrix will enable us to obtain simple and approximate solutions of the AREs in the
controller synthesis step.

Since the eigenvalues of the global state matrices in Eqs. (7) and (8) are equal, there exists a single diagonal
eigenvalue matrix K for both of the state matrices in Eqs. (7) and (8) which obey

Ag ¼ XKX�1,

A ¼ X̂KX̂�1,

where K ¼ diagfl1; l2; . . . li; . . . lng.
Hence, the state matrix in Eq. (7) can be easily put into the form in Eq. (8) by the coordinate transformation

x̂ ¼ Zx, where Z ¼ X̂�1X. The obtained state space matrices are:

A ¼ Z�1AgZ,

B1 ¼ B1gZ; B2 ¼ B2gZ,

C1 ¼ Z�1Cg1; C2 ¼ Z�1Cg2 ,

D11 ¼ Dg11; D12 ¼ Dg12,

D21 ¼ Dg21; D22 ¼ Dg22. ð9Þ
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3. Controller design

Since most controller design methods are time consuming, the location selection problem becomes
computationally complex. Therefore, most optimal location selection methods try to bypass the controller
design step. Hence, if one desires to apply a closed-loop location selection method, the controller design part
should not take much computation time. For this purpose Hiramoto et al. [10] suggest a simple controller
design procedure. They obtain a coprime controller for the lower part of the generalized plant Pyu, by
manipulating the corresponding generalized ARE such that it has a predefinite simple solution. The robust
coprime controller design Hiramoto et al. [10] has developed is a modified version of the robust stabilization of
coprime factors [2,11].

3.1. Controller used by Hiramoto et al. [10]

Hiramoto et al. [10] augment the plant Pyu as Pa ¼ aPyu and obtain a feedback controller Ka (see Fig. 3),
where a serves as a design parameter and b is used to obtain suboptimal controller by selecting b slightly
greater than one. For improving disturbance rejection properties of a controller, one should increase a.
However, for obtaining the robustness of the closed-loop system, a should be kept as small as possible. Hence,
there is a tradeoff for this parameter as discussed detailed in Hiramoto et al. [10]. In Fig. 3, the Pyu has the
state space realization

ð10Þ

The controller that is used in the optimization part of Ref. [10] is K1 ¼ aKa and Ka is obtained by solving the
ARE of the augmented plant Pa:

ATSþ SA� a2SB2B
T
2Sþ CT

2C2 ¼ 0, (11)

ATþ TAT
� TCT

2C2Tþ a2B2B
T
2 ¼ 0. (12)

The diagonal positive-definite matrices

S ¼ diagfs1; s1; s2; s2; . . . ; sN ; sNg, (13)

T ¼ diagft1; t1; t2; t2; . . . ; tN ; tNg, (14)

are assumed as the solutions of the Eqs. (11) and (12).
To obtain Expressions (13) and (14), Hiramoto et al. [10] neglect the modal damping for all modes and solve

the simplified AREs (11) and (12) for zero-damping state space matrices. However, in our study we keep the
damping, add new signal weights to the generalized plant and still obtain approximate ARE solutions, which
lead to simple but more efficient H1 controller design.
Fig. 3. Closed-loop system with Pyu and H1 controller [10].
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3.2. Improved coprime controller

The approximate solutions of Eqs. (11) and (12) can be determined using the following property:
controllability and observability Gramians of diagonally dominant state matrices are also diagonally
dominant and their off-diagonal terms can be neglected [12]. Hence, for state space realizations in one of the
modal forms [12], one can solve the generalized ARE in Eqs. (11) and (12) approximately.

The Gramians are used to express the controllability and observability properties of a system qualitatively
and are defined as [13]

WcðtÞ ¼

Z t

0

expðAtÞBBT expðATtÞdt,

WoðtÞ ¼

Z t

0

expðAtÞCTC expðATtÞdt.

The exact (full) controllability and observability Gramians are obtained alternatively from the Lyapunov
equations

AWc þWcA
T
þ BBT ¼ 0,

ATWo þWoAþ CTC ¼ 0.

The generalized plant has N modes. The first Np modes are the physical modes and the remaining Nw modes
are relating the signal weights. For the first ith modes (i ¼ 1 to N), the Lyapunov equations simplify to

wciðAi þ AT
i Þ þ BiB

T
i ¼ 0, (15)

woiðAi þ AT
i Þ þ CT

i Ci ¼ 0, (16)

where

Ai ¼
0 oi

�oi �2zioi

" #
,

BiB
T
i ¼

0 0

0 kBik
2
2

" #
; kBik

2
2 ¼ ðb

2
i1 þ b2

i2 þ � � � þ b2
iNu
Þ,

CT
i Ci ¼

0 0

0 kCik
2
2

" #
; kCik

2
2 ¼ ðc

2
i1 þ c2i2 þ � � � þ c2iNu

Þ.

Bi is the ith mode’s contribution to the input matrix

B ¼

0 0 � � � 0

b11 b12 � � � b1Nu

0 0 � � � 0

b21 b21 � � � b2Nu

..

. ..
.

0 0 � � � 0

bN1 bN2 � � � bNNu

2
6666666666664

3
7777777777775

(17)
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and Ci is the ith mode’s contribution to the output matrix

C ¼

0 c11 0 c21 � � � 0 cN1

0 c12 0 c22 0 cN2

..

. ..
. ..

. ..
. ..

.

0 c1Ns 0 c2Ns � � � 0 cNNs

2
666664

3
777775. (18)

So, if Ai, Bi and Ci are inserted into Eqs. (15) and (16), the approximate controllability and observability
Gramians for the ith mode are:

wci ffi
kBik

2
2

4zioi

, (19)

woi ffi
kCik

2
2

4zioi

. (20)

If only ith mode is considered, AREs (11) and (12) become

AT
i siI2 þ siI2Ai � a2siI2BiB

T
i siI2 þ CT

i Ci ¼ 0,

AitiI2 þ tiI2A
T
i � tiI2C

T
i CitiI2 þ a2BiB

T
i ¼ 0,

which can be expressed as

siðA
T
i þ AiÞ � a2s2i BiB

T
i þ CT

i Ci ¼ 0, (21)

tiðAi þ AT
i Þ � t2i C

T
i Ci þ a2BiB

T
i ¼ 0. (22)

Since it is clear from Eqs. (15) and (16) that

BiB
T
i ¼ �wciðAi þ AT

i Þ,

CT
i Ci ¼ �woiðAi þ AT

i Þ,

where

Ai þ AT
i ¼

0 0

0 �4zioi

" #
,

Eqs. (21) and (22) become scalar quadratic equations of si and ti as

s2i a
2wci þ si � woi ¼ 0,

t2i woi þ ti � a2wci ¼ 0.

Since the solutions of Eqs. (11) and (12) must be positive definite (si40 and ti40), the positive solutions of the
scalar quadratic equations

si ¼
�1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4a2wciwoi

p
2a2wci

, (23)

ti ¼
�1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4a2wciwoi

p
2woi

(24)

are taken as the approximate solutions of the control and filter AREs.
For each of the Nw modes from i ¼ Np þ 1 to N, which are concerned with signal weights, the

Gramians are:

ww
ciðai þ aT

i Þ þ bib
T
i ¼ 0, (25)
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ww
oiðai þ aT

i Þ þ bTi bi ¼ 0. (26)

Here ai is scalar and is ith mode’s contribution to the global block diagonalized state matrix A. bib
T
i and

cTi ci are:

bib
T
i ¼ kbik

2
2 ¼ ðb

2
i1 þ b2

i2 þ � � � þ b2
iNu
Þ,

cTi ci ¼ kcik
2
2 ¼ ðc

2
i1 þ c2i2 þ � � � þ c2iNu

Þ.

bi is the ith mode’s contribution to the input matrix

b ¼

b11 b12 � � � b1Nu

b21 b21 � � � b2Nu

..

. ..
.

bNw1 bNw2 � � � bNwNu

2
666664

3
777775

and ci is the ith mode’s contribution to the output matrix

c ¼

c11 c21 � � � cNw1

c12 c22 cNw2

..

. ..
. ..

.

c1Ns c2Ns � � � cNwNs

2
666664

3
777775.

The first 2�Np entries of the diagonal approximate Gramian are calculated from Eqs. (19) and (20). The
remaining Nw entries of the Gramian are calculated from Eqs. (25) and (26) as follows:

ww
ci ffi �

bib
T
i

2ai

; i ¼ 1 : Nw,

ww
oi ffi �

cTi ci

2ai

; i ¼ 1 : Nw.

The controllability and observability Gramians of the weighted generalized plant can be obtained
approximately as

Wc ¼ diagfwc1;wc1;wc2;wc2; . . .wcNp ;wcNp ;w
w
c1;w

w
c2; . . .w

w
cNw
g, (27)

Wo ¼ diagfwo1;wo1;wo2;wo2; . . .woNp ;woNp ;w
w
o1;w

w
o2; . . .w

w
oNw
g. (28)

The solutions of Eqs. (21) and (22) for the weighting modes from Np þ 1 to N ¼ Np þNw have the same
expressions as si and ti in Eqs. (23) and (24). Hence, once the Gramians in Expressions (27) and (28) are
calculated, the solutions of AREs for the generalized plant can be obtained directly from Eqs. (23) and (24).

The controller K1 in Fig. 3 is obtained by solving the Riccati equations (11) and (12) approximately and by
choosing the parameters a40, b41. With the controller K1, the state space realization of the closed-loop
system GzwðsÞ is

_xc ¼ Acxc þ Bcw, (29)

zc ¼ Ccxc, (30)

where

xc ¼
x

xKa

" #
; Ac ¼

A aB2ðLuÞCKaðLuÞ

BKaðLuÞC2ðLuÞ AKaðLuÞ

" #
,

Bc ¼ ½B
T
1 0�T; Cc ¼ ½C1 aD12CKa �.
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AKa , BKa and CKa are the state space matrices of the controller in Fig. 3 and have the expressions

AKa ¼ A� aB2B
T
2Sþ ðbgminÞ

2
ðW�1ÞTTCT

2C2,

BKa ¼ ðbgminÞ
2
ðW�1ÞTTCT

2 ,

CKa ¼ aBT
2S, ð31Þ

with W ¼ ð1� ðbgminÞ
2
ÞIþ ST; gmin ¼ ðIþ lmaxðSTÞÞ

1=2.

lmaxð:Þ is the maximum eigenvalue. The closed-loop system GzwðsÞ includes open-loop plant and controller
matrices which are functions of the configuration of the actuators and sensors.

4. Optimization of the actuator and sensor locations

The problem of optimal placement of the actuators and sensors can stated as follows: Given the closed-loop
system with the state space representation in Eqs. (29) and (30), find the actuator/sensor placement matrix Lu,
which minimizes the optimization metric that is chosen by the designer.

The H2 norm of the closed-loop system is selected as the optimization criterion for the optimal placement
as in the approach developed by Hiramoto et al. [10]. However, since they design their controller for the
physical system without any signal weightings and neglect the damping, they solve AREs simply and do not
need the derivatives of AREs.

Unlike their controller design technique, we use the signal weightings and the damping. So, the partial derivatives
of AREs in Eqs. (11) and (12) are required to obtain the gradient of the objective function. Hence, in this section the
partial derivatives of approximate ARE solutions are introduced as another significant contribution.

4.1. Selection of the objective function

The optimization metric J which is the square of the H2-norm can be given as

J ¼ kGzwk
2
2 ¼ traceðCcLcC

T
c Þ, (32)

where Lc is the controllability Gramian of the closed-loop system and satisfies the equation

AcLc þ LcA
T
c þ BcB

T
c ¼ 0. (33)

Since the optimization function J is partially differentiable with respect to the locations xi
a, a gradient descent

method can be applied to obtain the optimal locations of the collocated actuator/sensor pairs [14].
If the location of the ith actuator/sensor pair is given by the coordinate xi

a, the partial derivative of J in
Eq. (32) with respect to xi

a is

qJ

qxi
a

¼ trace
qCc

qxi
a

LcCc
T
þ Cc

qLc

qxi
a

CcT þ CcLc

qCcT

qxi
a

 !
(34)

where qCc=qx
i
a is

qCc

qxi
a

¼
qC1

qxi
a

aD12
qCKa

qxi
a

" #
.

qLc=qx
i
a in Eq. (34) is to be obtained by the equation that is achieved by differentiating Eq. (33) with respect to

the actuator/sensor locations xi
a as

AcYþ YAT
c þQ ¼ 0,

where

Y ¼
qLc

qxi
a

; Q ¼
qAc

qxi
a

Lc þ Lc

qAT
c

qxi
a

þ
qBc

qxi
a

BT
c þ Bc

qBT
c

qxi
a
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qAc=qx
i
a is simply the derivative of the state matrix of the closed-loop system with respect to xi

a

qAc

qxi
a

¼

0 a
qB2

qxi
a

þ
qCKa

qxi
a

 !

qBKa

qxi
a

C2 þ BKa

qC2

qxi
a

qAKa

qxi
a

2
66664

3
77775,

where ðqAKa=qx
i
a; qBKa=qx

i
a; qCKa=qx

i
aÞ are the derivatives of the controller matrices in Eqs. (31), which are

functions of the open-loop generalized plant in Eqs. (9). So, to compute qAc=qx
i
a, the derivatives of Eqs. (9) are

required. In Eq. (9), Z is made of the eigenvectors of the state matrices A and Ag. Since the natural frequencies
and the signal weightings do not change with actuator/sensor locations, the eigenvector X̂ associated with Â

and the eigenvector X of A can be assumed to have zero partial derivatives. Hence, for calculating the
derivatives of Eqs. (9), one should differentiate only the terms, which are functions of Lu in Eqs. (7). These
terms are Bm2;Cm1;Cm2 in Eqs. (4).
4.2. Approximate ARE derivatives

In Hiramoto et al. [10], the solutions of AREs, denoted by S and T, do not contribute to the
partial derivatives of the closed-loop system. However, the solutions of AREs for the improved
coprime controller introduced in Section 3.2 have partial derivatives with respect to the actuator and sensor
locations.

The derivatives of AREs (11) and (12) with respect to design parameters p, which are the coordinates of the
actuator/sensor pairs ðx1a . . . x

Nu
a Þ, are:

ðAT
� a2SB2B

T
2 Þ

qS
qp
þ

qS
qp
ðA� a2SBT

2B2Þ þQ ¼ 0, (35)

ðA� TCT
2C2Þ

qT
qp
þ

qT
qp
ðAT
� TCT

2C2Þ þ P ¼ 0, (36)

where Q and P are:

Q ¼
qAT

qp
Sþ S

qA
qp
� a2S

qB2

qp
BT
2S� a2SB2

qBT
2

qp
Sþ

qCT
2

qp
C2 þ CT

2

qC2

qp

and

P ¼
qA
qp

Tþ T
qAT

qp
� T

qB2

qp
BT
2T� TB2

qBT
2

qp
Tþ a2

qCT
2

qp
C2 þ a2CT

2

qC2

qp
,

respectively.
Eqs. (35) and (36) are Lyapunov equations and their solutions are obtained in the same manner as in

finding the solutions Eqs. (11) and (12). Since the system equations of the generalized plant is put into the first
modal state space representation, Eqs. (35) and (36) can be solved for each mode separately. For the ith mode,
they are:

ð1þ 2a2siwciÞ4zioi

qsi

qp
þ si

q
qp
ð4zioiÞ þ a2s2i

q
qp
ððB2i

BT
2i
Þð2;2ÞÞ �

q
qp
ððCT

2i
C2i
Þð2;2ÞÞ ¼ 0, (37)

ð1þ 2tiwoiÞ4zioi
qti

qp
þ ti

q
qp
ð4zioiÞ þ t2i

q
qp
ððCT

2i
C2i
Þð2;2ÞÞ � a2

q
qp
ððB2i

BT
2i
Þð2;2ÞÞ ¼ 0, (38)
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where the partial derivatives of ðB2i
BT
2i
Þð2;2Þ and ðC

T
2i
C2i
Þð2;2Þ are:

q
qp
ððB2i

BT
2i
Þ2;2Þ ¼

q
qp
kB2i
k22

¼ 2 bi1
qbi1

qp
þ bi2

qbi2

qp
þ � � � þ biNu

qbiNu

qp

� �
,

q
qp
ððCT

2i
C2i
Þ2;2Þ ¼

q
qp
kC2i
k22

¼ 2 c1i

qc1i

qp
þ c2i

qc2i

qp
þ � � � þ biNu

qcNui

qp

� �
.

In Eqs. (37) and (38), the only unknown quantities are qsi=qp and qti=qp and hence can be found immediately.
So, the partial derivatives of S and T are

qS
qp
¼ diag

qs1

qp
. . .

qsN

qp

� �
,

qT
qp
¼ diag

qt1

qp
. . .

qtN

qp

� �
.

4.3. Partial derivative of gmin

For taking the partial derivative of the closed-loop matrix Ac in Eq. (29) with respect to the design
parameter p, the partial derivative of gmin in Eq. (31) is also required.

qgmin

qp
¼

1

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Iþ lmaxðSTÞ

p qlmaxðSTÞ

qp
,

where

qlmaxðSTÞ

qp
¼ uT

k

qST
qp

uk,

k is the index of the maximum eigenvalue of ST as

lmax ¼ lk ¼ max
i

liðSTÞ; i ¼ 1 : Np

and uk is the kth eigenvector of ST.
The distinct eigenvalue derivative of qlmaxð:Þ=qp is taken according to Refs. [15,16].

4.4. Optimization procedure

Using the improved coprime controller design and the ARE derivatives, a gradient-based unconstrained
optimization is utilized for the optimal location selection of point actuator and sensor pairs. The optimization
procedure is done using the following steps:
(1)
 Required data: The disturbance locations, the boundary conditions and the dimensions of the structure is
given.
(2)
 Initial guess: The initial guesses ðx1a:::x
Nu
a Þ are selected, where the objective function and its gradient will be

evaluated. To be used in step size selection, some optimization parameters are chosen.

(3)
 The physical structure modeling: The structure is modeled and put into the first modal state space form

(Am, Bm1, Bm2, Cm1, Cm2, Dm11, Dm12, Dm21, Dm22). The partial derivatives of the state space matrices Bm2,
Cm1 and Cm2 are taken with respect to the current actuator and sensor locations.
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M. Güney, E. Es-kinat / Journal of Sound and Vibration 312 (2008) 210–233222
(4)
 The generalized plant: For the given signal weightings the state space matrices of the shaped plant are
obtained. Using the coordinate transformation it is put into to the first modal form with block diagonal
state matrix (A, B1, B2, C1, C2, D11, D12, D21, D22).
(5)
 Controller synthesis and closed-loop system: The AREs are solved and the coprime controller is obtained.
The closed-loop state space matrices (Ac, Bc, Cc, Dc) are calculated.
(6)
 Objective function and its gradient: H2-norm is calculated and its square is set as the objective function J.
The gradient of J is evaluated at the current actuator and sensor location.
(7)
 The new actuator and sensor locations: Using gradient of J, the search direction of the kth iterations is
established as sk ¼ Dx=kDxk where Dx is given in Eq. (39). The next iterations’s points become
xkþ1 ¼ xk þ tsk, with t being the step size. t is chosen according to the backtracking line search technique
in Ref. [14]. If the difference kxkþ1 � xkko�, the optimization procedure is stopped. Otherwise, the
procedure is returned to the second step with the next actuator and sensor points.
The negative gradient of the square of H2 norm of the closed-loop system in Eq. (32) is defined as

Dx � �

qJ

qx1a

..

.

qJ

qxNu
a

2
66666664

3
77777775
, (39)

where qJ=qxi
a is calculated from Eq. (34).

5. Examples

As an example consider a simply supported Euler–Bernoulli beam shown in Fig. 4. x and c denote the
horizontal coordinate and the vertical deflection, respectively. wðtÞ and uiðtÞ with i ¼ 1; 2 are the single
disturbance and the two point actuator forces, respectively. The disturbance is located at xw. The control
forces from the first and the second actuators are acting at horizontal positions xi

a for i ¼ 1; 2. Since the rate
sensors are collocated, they are at the same location as the actuators. The equation of motion and the
boundary conditions are:

EI
q4cðx; tÞ

qx4
þ rS

q2cðx; tÞ
qt2

¼ wðtÞdðx� xwÞ þ
X2
i¼1

uiðtÞdðx� xi
aÞ

cð0; tÞ ¼ 0; cðL; tÞ ¼ 0;
q2cð0; tÞ

qx2
¼ 0;

q2cðL; tÞ

qx2
¼ 0. (40)

EI, r, S and L are the flexural density, the density, cross-section area and the length of the beam, respectively.
Their values are selected as: E ¼ 1Pa, I ¼ 1m4, r ¼ 1 kgm�3, S ¼ 1m2, L ¼ 1m. The parameters required
Fig. 4. Simply supported beam with two point control forces and a single disturbance.
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for the controller design step are a ¼ 100, b ¼ 1:02 and the performance outputs is described by the vector
z ¼ ½cðx1zÞ;cðx

2
zÞ;cðxwÞ; u

1; u2�T. Assumed modes method is used to discretize the problem. The number of
modes are taken as N ¼ 10. The damping for each mode is assumed to be z ¼ 0:001.

With the assumed modes approach, Eq. (40) can be solved by assuming the vertical displacement cðx; tÞ to
be of the following form:

cðx; tÞ ¼
XN

i¼1

qiðtÞjiðxÞ,

jiðxÞ ¼

ffiffiffiffi
2

L

r
sin

ipx
L

, (41)

where qiðtÞ and jiðxÞ are the modal displacements and the normalized mode shapes, respectively. Lw, Lu and
the natural frequencies are:

Lw ¼ ½j1ðxwÞ j2ðxwÞ . . . jNðxwÞ�
T,

Lu ¼
j1ðx

1
aÞ j2ðx

1
aÞ . . . jN ðx

1
aÞ

j1ðx
2
aÞ j2ðx

2
aÞ . . . jN ðx

2
aÞ

" #T
,

oi ¼ ðipÞ
2

ffiffiffiffiffiffiffiffiffiffiffi
EI

rSL4

s
with i ¼ 1 : N; respectively.
5.1. Optimal actuator and sensor locations for xw ¼ 0:35L

The single disturbance is located at the point xw ¼ 0:35L and the initial places of the actuators are
x1a ¼ 0:25L, x2a ¼ 0:65L.

The signal weightings of the generalized plant (in Fig. 2) have the transfer functions

Wdist ¼
10

0:03sþ 1
ðdisturbance weightÞ,

W sn ¼
1

105
ðsensor noise weightÞ,

W er ¼ 1 ðperformance output weightÞ,

W in ¼
1

25
ðcontrol input weightÞ. ð42Þ

The resulting optimal actuator and sensor locations can be seen in Fig. 5. Starting from the initial locations
ð0:25L; 0:65LÞ, in nearly 55 iterations, the actuator/sensor pairs ðx1a; x

2
aÞ converge to the final locations

ð0:35L; 0:35LÞ. The objective function J ¼H2
2 converges to its minimum also, as can be seen in Fig. 6.

To verify the obtained results, the H2-norm on the whole domain of the beam is calculated and the
variation of J with the change in the actuator coordinates x1a and x2a is plotted in Figs. 7 and 8.

As can be seen in Figs. 7 and 8, there are actuator/sensor location pairs ðx1a; x
2
aÞ, for which the H2 norm are

equivalent or very close.
Figs. 9 and 10 shows the results obtained by the formulation given in Hiramoto et al. [10]. That is,

the damping is neglected. The disturbance input and sensor noise weightings are not present in this
formulation. The obtained optimal locations with this formulation are given in Fig. 9 and the square of the
H2-norm of the closed-loop system in Eq. (10) are different than those achieved in Figs. 5 and 6. Because
of possibility of including weights and damping in the formulation, our formulation should give more
realistic results.
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Fig. 6. Iterations and the minimized H2
2.

Fig. 5. Iterations and convergence to the optimum locations.
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5.2. Effect of the design parameter a and the filter coefficient CW w

To see the effect of the signal weightings on the resulting optimal actuator/sensor locations, some
parametric studies are done (Figs. 11–14). For simulations in Figs. 15–18, the initial points are x1a ¼ 0:35L and
x1a ¼ 0:65L. The disturbance force is located at xw ¼ 0:5L. The signal weightings and the parameter a for each
simulation in Figs. 15–18 are listed in Table 1.

In Figs. 15–18, the, the minimized optimization metric J and the optimal actuator/sensor locations ðx1a; x
2
aÞ

are plotted versus the changing the parameter a and the coefficient CWw of a low-pass filter, which is
interconnected to the physical plant.

In Fig. 15, as a increases, the square of the closed-loop H2-norm at the optimal actuator and sensor
location decreases. Since the H2-norm is the norm of the closed-loop transfer function between the
disturbance inputs and the performance outputs, for the disturbance rejection purpose a need to be selected as
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Fig. 7. The minimized J ¼H2
2 versus actuator locations.

Fig. 8. The minimized J ¼H2
2 versus actuator locations.

Fig. 9. Iterations and convergence to the optimum locations with the method presented in Ref. [10].
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Fig. 10. Iterations and the minimized H2
2 with the method presented in Ref. [10].

Fig. 11. Impulse response of the beam with actuators at initial locations ðx1a ¼ 0:25L; x1a ¼ 0:65LÞ.
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high as possible as mentioned in Hiramoto et al. [10]. Fig. 16 shows the variance of the optimal actuator and
sensor location with a.

In Figs. 17 and 18, a is kept constant, but the coefficient CWw of the disturbance input weight is changed.
As CWw increases, the minimized optimization function decreases. That is, as there are less disturbances
acting in higher frequencies, the closed-loop H2-norm decreases at the optimal location of actuator and
sensor pair.

5.3. Effect of disturbance weights

To further illustrate the effect of signal weights, the bandpass filter

Wdist ¼
16s2

s4 þ 5:657s3 þ 3125s2 þ 8794sþ 2:4176
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Fig. 12. Impulse response of the beam with actuators at final locations ðx1a ¼ 0:35L; x1a ¼ 0:35LÞ.

Fig. 13. Control effort impulse response of the beam with actuators at initial locations ðx1a ¼ 0:25L; x1a ¼ 0:65LÞ.
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is applied as the disturbance input filter. This second-order Butterworth filter is depicted in Fig. 19 and is used
to stop all modes other than the second one.

However, if the bandpass filter in Fig. 19 is selected as the disturbance input filter, the optimal locations
converges to the points ð0:25L; 0:25LÞ, which is one of the antinodes of the second mode of a simply supported
beam, as can be seen in Fig. 20.

If the simply supported beam is excited only at its second mode, the maximum deflections occur at points
0:25L and 0:75L and the point 0:50L becomes the node where the deflections vanish. Hence, the optimal
locations in the Butterworth filter example seem to reflect this phenomenon correctly and the optimal
locations converge to points 0:25L or 0:75L, but not the point 0:35L, where the disturbance is acting. This
result shows that the optimization technique introduced in the study can be can effectively handle the plants
shaped with different signal weightings. However, the formulation given in Hiramoto et al. [10] does not
consider the signal weightings in the controller design stage.
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Fig. 14. Control effort impulse response of the beam with actuators at final locations ðx1a ¼ 0:35L; x1a ¼ 0:35LÞ.

Table 1

The signal weightings used simulation in Figs. 15–18

Figs. 15 and 16 Figs. 17 and 18

a ac
a 1

Wdist 10

0:03sþ 1

10

CWwsþ 1
b

W in 1

25

1

25
W er 1 1

W sn 1

105
1

105

aac takes: 1; 2; 3; 4; 5; 10; 20; 20; . . . ; 80; 90; 100.
bCWw takes: 0, 0:0333, 0:0667, 0:1, 0:1333, 0:1667, 0:2, 0:2333, 0:2667, 0:3.

Fig. 15. The minimized J ¼H2
2 versus design parameter a.
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Fig. 16. The actuator/sensor locations versus design parameter a.

Fig. 17. The minimized J ¼H2
2 versus change in disturbance weight coefficient CWw .
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5.4. The optimal actuator and sensor locations for xw ¼ ½0:35L; 0:45L�

One another advantage of our approach is the possibility of using different signal weightings for different
channels. This is demonstrated by three cases.

In case 1, both of the disturbances are applied the input signal weighting, Wdist ¼ 10=0:03sþ 1, in Eq. (42).
In this case the optimal locations of the collocated actuator and sensor pair converges to locations where the
disturbance input act (Fig. 21).

In case 2, the signal weight for the disturbance input at xw ¼ 0:35L is kept, whereas the bandpass filter
in Fig. 19 is used for the disturbance input at xw ¼ 0:45L. The obtained optimal locations are to be seen
in Fig. 22.

In case 3, the bandpass filter is applied to the disturbance input at xw ¼ 0:35L and the input at xw ¼ 0:45L is
filtered with the low-pass filter (see Fig. 23). In this case, both of the optimal locations converge to point 0:45,
whereas the optimal locations approach the point 0:35L in case 2.
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Fig. 18. The actuator/sensor locations versus change in disturbance weight coefficient CWw .

Fig. 19. The disturbance input filter (oNi
are the natural frequencies of the beam).
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In case 4, the bandpass filter is applied to both of the disturbance inputs ðxw ¼ 0:35L; xw ¼ 0:45LÞ. Similar
to the example given in Section 5.3, the optimal locations converge the first antinode of the second mode of the
simple supported beam as can be in Fig. 24.

If the disturbances act at different frequencies, the improved coprime controller takes this into account,
whereas the controller used by Hiramoto et al. [10] can not.

6. Conclusions and future work

A closed-loop optimal location selection method for actuator and sensor pairs in flexible structures is
developed and an example with simple supported beam is given to show the effectiveness of the developed
optimization approach.

Using a coordinate transformation, the state matrix of the generalized plant is block diagonalized such that
each mode can be dealt individually. This enables the solutions of the generalized AREs to be assumed in the
diagonal form. This makes it possible to solve the AREs in the closed form, using quadratic equations.
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Fig. 20. The actuator/sensor locations with the bandpass filter.

Fig. 21. The actuator/sensor locations (case 1).

M. Güney, E. Es-kinat / Journal of Sound and Vibration 312 (2008) 210–233 231
Using the concept introduced in Hiramoto et al. [10], a coprime H1 controller is designed. However, modal
dampings are not neglected as in Hiramoto et al. [10] an the signal weights are incorporated into ARE solutions.
For a gradient-based optimization procedure, partial derivatives of the closed-loop system are derived.
The derivatives of the closed-loop system include not only the derivatives of the open-loop system, but also the
derivatives of the AREs. Hence, differentiating the AREs the Lyapunov equations are obtained. The
approximate solutions of the Lyapunov equations are calculated in the same simple fashion as the AREs. When
the necessary derivatives are at hand, the gradient of the optimization metric is obtained and the search for the
optimal actuator and sensor locations is found with an unconstrained nonlinear optimization algorithm.

The developed optimization technique has several advantages over the methods in the literature:
�
 It uses the generalized plant with signal weights.

�
 The control and filter AREs and their are solved approximately by reducing them to simple quadratic

equations. In the iterations of the optimal locations selection procedure, solving these quadratic equations
consumes less time compared to solving the AREs fully.
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Fig. 22. The actuator/sensor locations (case 2).

Fig. 23. The actuator/sensor locations (case 3).
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�
 Hiramoto et al. [10] neglect the damping fully, whereas the developed technique uses modal dampings.

�
 The optimization is done using a closed-loop selection criteria. That is, the objective function is the square

of the H2-norm of the closed-loop generalized plant with the designed controller.

�
 Closed-loop objectives are incorporated to actuator/sensor location, procedure, through addition of

signal weights and forming a generalized plant.
Several additions are possible to our current work. Possible future work includes:
�
 The best location selection strategy can be applied to smart structures with piezoelectric pathes of
arbitrary type of sensors.

�
 In this study, rate sensors, coupled with first modal form were used so that AREs could be approximately

solved. However, using other modal forms one may get also simple solutions of the AREs for
displacement sensors.
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Fig. 24. The actuator/sensor locations (case 4).
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�
 The coprime H1-controller is not obtained for the complete generalized plant P, but for the lower right
part of it, Pyu. Using the approximate ARE solutions, other types of H2 and H1 controllers, which use
the complete generalized plant, may utilized because they are based on similar AREs.

�
 The finite element method can be applied to the flexible structures and the optimal actuator/sensor

selections technique, which is introduced here, can be applied to discrete models resulting from a finite
element analysis with some modifications.
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