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Abstract

An asymptotic solution is presented for the natural frequencies, mode shapes of a cantilevered, coupled beam model.

A three-term expansion is obtained for the frequency, which shows good agreement with exact values over a wide range of

the stiffness parameter a. The first three mode shapes are also presented for large a, and show good agreement for the first

and second modes. Agreement for the third mode improves as a gets larger. The modeled structure behaves essentially as a

shear beam except in the immediate neighborhood of the ends.

r 2007 Elsevier Ltd. All rights reserved.
1. Introduction

The following equation was proposed by Miranda and Taghavi [1] to describe the transverse mode of a
uniform, coupled beam model:

fiv
ðxÞ � a2f00ðxÞ � ðro2L4=EIÞf ¼ 0. (1)

The mass per unit length is r, the length (height) is L and EI is the flexural rigidity. The natural frequency is o,
the parameter a2 ¼ GAL2=EI and GA is the shear rigidity. The solution of Eq. (1) for a cantilever
(0pXpL; x ¼ X=L) is subject to the following boundary conditions:

fðx ¼ 0Þ ¼ 0; f0ðx ¼ 0Þ ¼ 0; f00ðx ¼ 1Þ ¼ 0; f000ðx ¼ 1Þ � a2f0ðx ¼ 1Þ ¼ 0. (2)

This equation was originally proposed by Heidebrecht and Smith [2] as a model for shear wall-frame
buildings.

Exact solutions of Eq. (1) for arbitrary a have been presented in Refs. [1,2]. However, for large values of the
parameter a, calculations are difficult due to the appearance of exponentially large terms. In order to address
this difficulty, we propose an approximate solution of Eq. (1) for ab1 obtained by the method of matched
asymptotic expansions as proposed by Kevorkian and Cole [3]. This method has been used previously [4] by
the author to analyze the transverse vibrations of a beam string. The current study was motivated by the
observation that the coupled beam model and the beam string are governed by the same differential equation.
ee front matter r 2007 Elsevier Ltd. All rights reserved.
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It should also be noted that this analogy was observed earlier by Traum and Zalewski [5] in the case of static
loading.

As a preliminary, let us define the small parameter � ¼ 1=a, and rewrite Eq. (1) in the form

��2fiv
ðxÞ þ f00ðxÞ þ O2f ¼ 0; O2 ¼ ro2L2=GA. (3)

This equation with attendant boundary conditions can be identified as a singular perturbation problem—on
setting e ¼ 0, we obtain an equation of lower order which cannot satisfy all the required boundary conditions.

2. Asymptotic solution

For structures for which e51, we expect that the mode shape should approximate solutions of

f00ðxÞ þ O2f ¼ 0.

However, it is not clear which of the boundary conditions (Eq. (2)) are appropriate for this equation. Hence,
let us represent the solution of Eq. (3) in the form of an asymptotic series given by

fðx; �Þ ¼ h0ðxÞ þ �h1ðxÞ þ �
2 h2ðxÞ þOð�3Þ. (4)

where the dependency of the frequency on e is taken in the form

O2 ¼ O2
0ð1þ �l1 þ �

2l2 þOð�3ÞÞ. (5)

When these forms are substituted into Eq. (3), we obtain the following sequence of governing equations:

h000ðxÞ þ O2
0h0 ¼ 0;

h001ðxÞ þ O2
0ðh1 þ l1h0Þ ¼ 0;

h002ðxÞ þ O2
0ðh2 þ l1h1 þ l2h0Þ � O4

0h0 ¼ 0:

Solutions of these equations readily follow as

h0ðxÞ ¼ A0 sin O0xþ B0 cos O0x,

h1ðxÞ ¼ A1 sin O0xþ B1 cos O0xþ xðO0l1=2ÞðA0 cos O0x� B0 sin O0xÞ,

h2ðxÞ ¼ A2 sin O0xþ B2 cos O0xþ xðF 1 sin O0xþ F2 cos O0xÞ,

� x2ðl21O
2
0=8ÞðA0 sin O0xþ B0 cos O0xÞ,

where

�2F1=O0 ¼ B0ðl2 � O2
0 � l21=4Þ þ l1B1; 2F 2=O0 ¼ A0ðl2 � O2

0 � l21=4Þ þ l1A1.

This solution is regarded as the ‘‘outer’’ solution, and is valid in a region away from the ends.
Following Refs. [2,3], we construct an ‘‘inner’’ solution near x ¼ 0, expressed in terms of the coordinate

~x ¼ x=�, in the form

fðx; �Þ ¼ �g0ð ~xÞ þ �
2g1ð ~xÞ þOð�3Þ. (6)

When this form is substituted into Eq. (3), we find that both g0; g1 satisfy

giv
i ð ~xÞ � g00ð ~xÞ ¼ 0 ði ¼ 0; 1Þ,

with the boundary conditions that require

gið ~x ¼ 0Þ ¼ 0; g0ið ~x ¼ 0Þ ¼ 0 ði ¼ 0; 1Þ.

It readily follows that

gið ~xÞ ¼ Cið ~x� 1þ e� ~xÞ ði ¼ 0; 1Þ (7)

satisfy the boundary conditions and avoid exponential growth as ~x!1.
The constants of integration that appear in the ‘‘inner’’ solution can be expressed in terms of those of the

‘‘outer’’ solution by means of applying the matching process in an intermediate layer. At this stage, we omit
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the details of the process as it is similar to that presented in Ref. [4]. In summary, the results include:

B0 ¼ 0; C0 ¼ O0A0 ¼ �B1; C1 ¼ O0ðA1 þ l1A0=2Þ ¼ �B2. (8)

Again, following Refs. [2,3], we construct an ‘‘inner’’ solution near x ¼ 1, expressed in terms of the
coordinate xþ ¼ ðx� 1Þ=�, in the form

fðx; �Þ ¼ f 0ðx
þÞ þ �f 1ðx

þÞ þ �2f 2ðx
þÞ þ �3f 3ðx

þÞ þOð�4Þ. (9)

When this form is substituted into Eq. (3), we find that the functions f iðx
þÞ must satisfy

f iv
i ðx
þÞ � f 00i ðx

þÞ ¼ 0 ði ¼ 0; 1Þ,

f iv
2 ðx
þÞ � f 002ðx

þÞ ¼ O2
0f 0,

f iv
3 ðx
þÞ � f 003ðx

þÞ ¼ O2
0ðf 1 þ l1f 0Þ,

subject to the boundary conditions that

f 00i ð0Þ ¼ 0,

f 000i ð0Þ � f 0ið0Þ ¼ 0.

It readily follows that

f 0 ¼ D0; f 1 ¼ D1,

f 2 ¼ D2 þ O2
0D0ðe

xþ � ðxþÞ2=2Þ,

f 3 ¼ D3 þ O2
0ðD1 þ l1D0Þðe

xþ � ðxþÞ2=2Þ, ð10Þ

satisfy the boundary conditions and avoid exponential growth as xþ ! �1.
The final determination of the unknown constants requires applying the matching process near x ¼ 1. In

summary, the results include

cos ¼ O0 ¼ 0; O0 ¼ ð2n� 1Þp=2 ðn ¼ 1; 2; 3; . . .Þ,

l1 ¼ 2; l2 ¼ 3þ O2
0,

D0 ¼ A0 sin O0; D1 ¼ A1 sin O0; D2 ¼ ðA2 þ O2
0A0=2Þ sin O0. ð11Þ

Finally, if we arbitrarily assign fðx ¼ 1; �Þ ¼ 1, it follows that

f 0ðx
þ ¼ 0Þ ¼ 1; f iðx

þ ¼ 0Þ ¼ 0; ði ¼ 1; 2; . . .Þ

so we obtain

D0 ¼ 1; D1 ¼ 0; D2 ¼ �O2
0,

A0 ¼ sin O0; A1 ¼ 0; A2 ¼ �ð3O2
0=2Þ sin O0,

B1 ¼ B2 ¼ �O0 sin O0. ð12Þ
Table 1

Squared ratio of exact to predicted frequencies for the first three modes

a O2ðexactÞ
O2ð3�termÞ

h i
mode�1

O2ðexactÞ
O2ð3�termÞ

h i
mode�2

O2ðexactÞ
O2ð3�termÞ

h i
mode�3

10 1.001 0.9900 0.9767

15 1.002 0.9982 0.9932

20 1.002 0.9992 0.9990

25 1.000 1.001 0.9986

30 1.000 0.9994 1.001
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3. Numerical results and discussion

As a measure of the accuracy of the asymptotic results, we compare the resulting frequencies and mode
shapes with those obtained from the exact analysis [1]. It should be noted, however, that the process of
obtaining numerical results from the exact analysis is difficult due to the presence of exponentially large terms.
Fig. 1. Exact ( ) and asymptotic ( ) mode shapes for the second mode with a ¼ 20.

Fig. 2. Exact ( ) and asymptotic ( ) mode shapes for the second mode with a ¼ 30.
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The calculated frequencies for the first three modes are given in Table 1 as a function of the stiffness
parameter a. As can be seen, the frequencies obtained from the three-term asymptotic theory equation (5)
approach those obtained from the exact analysis as the stiffness parameter increases. Further, the
correspondence for moderate values of the stiffness parameter decreases as the mode number increases.
Fig. 3. Exact ( ) and asymptotic ( ) mode shapes for the third mode with a ¼ 20.

Fig. 4. Exact ( ) and asymptotic ( ) mode shapes for the third mode with a ¼ 30.
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As the relative accuracy for frequency seems to be satisfactory for the higher values of the stiffness
parameter, we present only the mode shapes for a ¼ 20; 30. Further, since the asymptotic results for the first
mode are indistinguishable from the exact results, we present only the results for the second and third modes.
It should also be noted that we only plot the outer solution component associated with the asymptotic solution
as it is only in the immediate neighborhood of the end points that the inner solution is significant. The results
for the second mode are presented in Figs. 1 and 2 and show that the nodes and the peaks occur at essentially
the same place. The peak ordinates for a ¼ 30 seem to coincide whereas the peak ordinate for a ¼ 20 is slightly
underestimated by the asymptotic theory. The results for the third mode presented in Figs. 3 and 4 again show
that the nodes and peaks appear to coincide at the same point. However, the peak ordinates are
underestimated by the asymptotic theory for both values of the stiffness parameter.

In summary, it has been found that the asymptotic results are a reasonable approximation to the exact
results—particularly for large values a420 of the stiffness parameter. Further, the general character of the
motion is essentially that of a shear beam: the mode shape is a sine wave. The effects of the Euler–Bernoulli
beam component is to introduce boundary layers near each end of the beam within which the boundary
conditions adjust from the exact conditions to those of a shear beam. If we pick ~x ¼ 3; xþ ¼ �3 as defining
the essential width of the boundary layers, then this adjustment width is approximately 3�L.
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