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Abstract

Flow-induced vibration of a single cylinder in a cross-flow is mainly due to vortex shedding, which is usually considered

as a forced vibration problem. It is shown that flow-induced vibration of a cylinder in the lock-in region is a combination

of forced resonant vibration and fluid-damping-induced instability, which leads to time-dependent-fluid-damping-induced

parametric resonance and constant-negative-damping-induced instability. The time-dependent fluid damping can be

modeled as a bounded noise. The dynamic stability of a two-dimensional system under bounded noise excitation with a

narrow-band characteristic is studied through the determination of the moment Lyapunov exponent and the Lyapunov

exponent. The case when the system is in primary parametric resonance in the absence of noise is considered and the effect

of noise on the parametric resonance is investigated. For small amplitudes of the bounded noise, analytical expansions of

the moment Lyapunov exponents and Lyapunov exponents are obtained, which are shown to be in excellent agreement

with those obtained using Monte Carlo simulation. The theory of stochastic stability is applied to explore the stability of a

cylinder in a cross-flow. The analytical and numerical results show that the time-dependent-fluid-damping-induced

parametric resonance could occur, which suggests that parametric resonance also contributes to the vibration of the

cylinder in the lock-in range.

r 2007 Published by Elsevier Ltd.
1. Introduction

In view of its fundamental importance, vortex-induced vibrations have been studied extensively, using
experimental, numerical, and theoretical modeling methods. A number of review articles are available on this
subject, e.g., Refs. [1–4]) Since the present study is concerned with the theoretical modeling of vortex-induced
vibrations, only relevant work is reviewed and discussed.

Due to the complex nature of fluid–structure interaction in vortex-induced vibration, theoretical
modeling is usually carried out in a semi-analytical and semi-empirical way. The developed models
can be classified into two groups; one is the force decomposition model, and the other is the wake oscillator
model.
ee front matter r 2007 Published by Elsevier Ltd.
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In the force decomposition model, the force acting on the cylinder is decomposed into several components
representing the forces due to vortex shedding and arising from fluid–structure interaction. This type of model
was first proposed by Sarpkaya [5], who divided the total force into a fluid inertia and a fluid damping
component. Griffin and Koopmann [6] and Griffin [7] decomposed the total force into a fluid excitation
component and a fluid reaction component, the latter representing the force arising from fluid–structure
interaction. It was found that fluid damping decreased dramatically in the lock-in range. This implies that fluid
damping plays a crucial role in vortex-induced vibration. Based on unsteady flow theory, Chen et al. [8]
represented the force arising from the fluid–structure interaction by three linear motion-dependent
components, i.e., a fluid inertia, a fluid damping, and a fluid stiffness component. They were combined
with a vortex-induced excitation force to give the total force, and Chen et al. [8] concluded that vortex-induced
vibration is made up of instability and forced vibration. However, they did not point out explicitly which
component is the source that leads to instability.

In the wake oscillator model, a van der Pol oscillator was invoked to represent the dynamics of the lift force
due to vortex shedding. It was combined with the equation of motion of the cylinder to form the governing
equations for the fluid–structure system. Certain terms related to cylinder motion were assumed in the wake
oscillator to represent the effect of structural motion on the lift force, thereby taking the fluid–structure
interaction into account. Hartlen and Currie [9] were the first to propose the wake-oscillator model. The model
was later modified by a number of researchers, e.g., Skop and Griffin [10], Landl [11], Berger [12], and
Balasubramanian and Skop [13], in order to obtain better agreement with experimental measurements and to
replicate experimental observations.

Wang et al. [14] proposed a model for vortex-induced vibration in both cross-flow and stream-wise
directions. In the model, the quasi-steady flow theory was invoked to account for fluid–structure interactions.
This model avoids using the assumed fluid–structure interaction terms as in the wake-oscillator model, but is
limited to weak fluid–structure interaction cases only. The reason is because the condition for the quasi-steady
flow theory to hold is that the velocity of structural vibration is small compared to the free-stream velocity of
the approach flow. If the fluid–structure interaction is strong, the induced structural vibration becomes
significant, and the velocity of structural vibration is large, thus the quasi-steady flow theory might not be
applicable. An analytical expression of vortex-induced force could be obtained when a linear approximation
of fluid–structure interaction was made. This model requires only the parameters for a stationary cylinder
compared with the wake-oscillator model, thus avoiding the use of the assumed fluid–structure interaction
terms whose coefficients are to be determined from free or forced vibration tests. Using this model, an
analytical expression of vortex-induced force could be deduced using a linear approximation of fluid–structure
interaction. The expression is similar to that proposed by Sarpkaya [5], but additional nonlinear terms arising
from fluid–structure interaction were present. In the Wang et al. [14] model, vortex-induced lift and drag
forces acting on the stationary cylinder were represented by sinusoidal functions. The model was modified
using the bounded noise process to represent vortex-induced lift and drag forces acting on the stationary
cylinder [15] and based on the narrow-band characteristic of the vortex-induced force shown by Vickery and
Basu [16]. The modified model was validated against experimental measurements in the literature. The
predicted power spectra of the flow-induced force and the cylinder vibration are very similar to experimental
results.

In the present study, the model developed by Wang et al. [15] is further extended to include the motion-
dependent fluid forces, in an attempt to investigate whether they could induce instability which co-exists with
vortex-induced vibration and to identify the source of instability. The motion-dependent forces are taken into
account using a linear model proposed by Chen et al. [8], and the vortex shedding forces are modeled by a
bounded noise. The resultant model will be analyzed by the determination of Lyapunov exponents and
moment Lyapunov exponents which are introduced in Section 2 for stochastically excited systems.

In previous models of vortex-induced vibration, vortex-induced forces are usually represented by sinusoidal
functions. However, the shape of the narrow-banded spectrum is very similar to that of a bounded noise
(see, e.g., Refs. [16]). Therefore, a bounded noise would be a more appropriate model. In this model, vortex-
induced lift and drag forces are modeled by bounded noise processes, while the fluid–structure interaction is
accounted for using a quasi-steady flow theory. As a result, the interaction between the drag and lift directions
in taken into account. The equations of motion for a cylinder in a cross-flow are set up in Section 3.
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Systems excited by stochastic processes in the damping term or stiffness term could become unstable
through parametric resonance. Xie [17] studied the parametric stability of a two-dimensional system under
real noise excitation. In Section 4, the Lyapunov exponent and moment Lyapunov exponent of the system
under bounded noise excitation in the damping term are determined. Analytical results and numerical results
are compared to validate the approach.

In Section 5, the results obtained in Section 4 are used to explore the stability of a cylinder in a cross-flow. It
is shown that parametric instability could occur, other than the large-amplitude forced vibration, in the lock-
in range, which gives more insight into the mechanism of the lock-in phenomenon.

2. Dynamic stability of structures

The equation of motion for many problems of flow-induced vibration is of the general form

q00ðtÞ þ ½2�0bþ �0mBðtÞ�q0ðtÞ þ o2
0qðtÞ þ f ½q; q0; �0BðtÞ� ¼ 0, (1)

where the prime denotes differentiation with respect to the time variable t, q is the generalized coordinate,
b the damping constant, o0 the circular natural frequency, e0 a small fluctuation parameter, f[q, q0, e0z (t)]
a nonlinear function, and z(t) a stochastic process describing the random property of the flow

It is natural to ask how the parametric random fluctuation z(t) can influence the dynamic stability of system
(1). The dynamical stability of the trivial solution of system (1) is governed by the stability of the trivial
solution of the linearized equation

q00ðtÞ þ ½2�0bþ �0mBðtÞ�q0ðtÞ þ o2
0qðtÞ ¼ 0. (2)

The sample or almost-sure stability of the trivial solution of system (2) is determined by the Lyapunov
exponent, which characterizes the average exponential rate of growth of the solutions of system (2) for large r
and is defined as

lqðtÞ ¼ lim
t!1

1

t
log jjqðtÞjj, (3)

where q(t) ¼ {q(t),q0(t)}T and ||q|| ¼ (qTq)1/2 is the Euclidean norm. If the largest Lyapunov exponent is
negative, the trivial solution of system (2) is stable with probability 1; otherwise, it is unstable almost surely

On the other hand, the stability of the pth moment E[||q||p] of the solution of system (2) is governed by the
pth moment Lyapunov exponent defined by

LqðtÞðpÞ ¼ lim
t!1

1

t
log E½jjqðtÞpjj�, (4)

where E[ � ] denotes the expected value. If Lq(r) (p) is negative, then the pth moment is stable; otherwise, it is
almost surely unstable.

The relationship between the sample stability and the moment stability was formulated by Arnold [18]. The
pth moment Lyapunov exponent Lq(r) (p) is a convex analytic function in p that passes through the origin and
the slope at the origin is equal to the largest Lyapunov exponent lq(t), i.e.

lqðtÞ ¼ lim
p!1

LqðtÞðpÞ

p
. (5)

The moment Lyapunov exponents are important in obtaining a complete picture of the dynamic stability of
the trivial solution of system (2). Suppose the largest Lyapunov exponent lq(t) is negative, implying that the
trivial solution of system (2) is sample stable, the pth moment typically grows exponentially for large enough
p, implying that the pth moment of the trivial solution is unstable. This can be explained by large deviation.
Although the solution of the system ||q|| goes to zero as time t approaches infinity with probability one at an
exponential rate lq(t), there is small probability that ||q|| is large, which makes the expected value E[||q||p] of
this rare event large for large enough values of p, leading to the pth moment instability.

A systematic study of moment Lyapunov exponents is presented by Arnold et al. [19] for linear Itô systems
and by Arnold et al. [20] for linear stochastic systems under real noise excitations. A systematic presentation of
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the theory of random dynamical systems and a comprehensive list of references are provided by Arnold [21].
The theory and techniques of studying the stability of stochastic systems are presented in Ref. [22].

3. Equations of motion of a single cylinder in a cross-flow

Consider an elastically supported rigid cylinder in a cross flow. The approaching flow is assumed to be
uniform and two dimensional. The equations of motion of the cylinder can be written as

€X ðtÞ þ 2zso0
_X ðtÞ þ o2

0X ðtÞ ¼
F X ðtÞ

M
, (6a)

€Y ðtÞ þ 2zso0
_Y ðtÞ þ o2

0X ðtÞ ¼
F Y ðtÞ

M
, (6b)

where X(t) and Y(t) are cylinder displacements in the stream-wise and the cross-flow directions, respectively,
o0 is the natural frequency, zs is the structural damping coefficient, and M is the mass per unit length of the
cylinder.

In Eqs. (6a, b), FX(t) and FY(t) are flow-induced forces per unit length acting on the cylinder in the stream-
wise and the cross-flow directions, respectively. For the present case, flow-induced forces may be divided into
two components: one arising from vortex shedding, and the other due to the feedback effect of cylinder
motion. Hence, they can be written as

F X ðtÞ ¼ FX
V ðtÞ þ F X

MðtÞ, (7a)

F Y ðtÞ ¼ FY
V ðtÞ þ F Y

MðtÞ, (7b)

where the subscripts ‘V’ and ‘M’ represent ‘vortex-induced’ and motion-dependent’, respectively.
When the cylinder is stationary, the motion-dependent fluid forces, FX

M ðtÞ and FY
M ðtÞ; are absent, and only

vortex-induced forces are applied to the cylinder. These are denoted as F X
V0
ðtÞ and FY

V0
ðtÞ in order to

differentiate them from their counterparts when the cylinder is in motion. Once the cylinder is vibrating under
the action of vortex-induced forces, its motion can alter vortex shedding, thus changing vortex-induced forces
not only in their magnitudes but also in their dominant frequencies.

In addition to vortex-induced excitation, fluid flow will also affect the dynamics of the cylinder in the form
of added mass, fluid damping, etc. They are all included into the motion-dependent forces, F X

MðtÞ and F Y
MðtÞ;

in the present formulation.
In general, both vortex-induced and motion-dependent forces are nonlinear and dependent on a number of

parameters, such as the Reynolds number, the reduced velocity, structural damping, and their expression are
complex. In order to carry out a theoretical analysis, approximate modeling is necessary.

3.1. Modeling of vortex-induced forces

In the present study, a model proposed by Wang et al. [15] is invoked for vortex-induced forces. In the
model, vortex-induced forces acting on a vibrating cylinder are modeled based on the quasi-steady flow
theory, and the basic idea is illustrated in Fig. 1. When the velocity of cylinder vibration is small compared
with the flow velocity, the quasi-steady theory is valid. Vortex-induced forces acting on a vibrating cylinder are
equal to those acting on the same but stationary cylinder at the instantaneous position, with the direction of
the approach flow changed by the velocity of cylinder vibration. Vortex-induced forces are thus expressed as:

F X
V ðtÞ ¼ F X

V0
ðtÞ cos yðtÞ þ F Y

V0
ðtÞ sin yðtÞ, (8a)

F Y
V ðtÞ ¼ F Y

V0
ðtÞ cos yðtÞ þ F X

V0
ðtÞ sin yðtÞ, (8b)

where y is the angle between the x-axis and the instantaneous velocity vector of cylinder vibration given by

yðtÞ ¼ tan�1
_Y

U � _X
. (9)
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Fig. 1. Illustration of the quasi-steady flow theory: (a) a cylinder subjected to a cross flow; (b) vortex-induced forces acting on the

vibrating cylinder according to the quasi-steady flow theory.
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In Eqs. (8a, b), FX
V 0
ðtÞ and F Y

V0
ðtÞ are the drag and lift forces acting on the stationary cylinder subjected to a

cross flow of free-stream velocity V ðtÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðU � _X Þ2 þ _Y

2
q

at the angle y. When the cylinder velocity is much

smaller than the flow velocity, i.e., _X ðtÞ5U and _Y ðtÞ5U ;

V ðtÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðU � _X Þ2 þ _Y

2
q

� U . (10)

Therefore, the lift and drag forces acting on the stationary cylinder can be used to deduce vortex-induced
forces applied to the vibrating cylinder. In the literature, the lift and drag forces are usually repre-
sented by sinusoidal functions at the Strouhal and the double Strouhal frequencies, respectively. However,
Vickery and Basu [16] have shown that the spectrum of vortex-induced force is of narrow-band, even
though the approaching flow is uniform. Wang et al. [15] showed that the bounded noise process has
similar spectral distribution to that of the vortex-induced force, and is thus appropriate for the force
modeling. Using the bounded noise process, the drag and lift forces acting on the stationary cylinder can be
expressed as

F X
V0
ðtÞ ¼ FDðtÞ ¼

1
2
rU2DC̄D þ

1
2
rU2DCD cos ½nDtþ sDW ðtÞ þ fD�, (11a)

F Y
V0
ðtÞ ¼ FLðtÞ ¼

1
2
rU2DCL cos ½nLtþ sLW ðtÞ þ fL�, (11b)

where r is the density of the fluid, C̄D is the mean drag coefficient, CD(CL) is the amplitude of the fluctuating
drag(lift) coefficients, nD(vL) and sD(sL) are the frequency and bandwidth of the vortex-induced force in the
drag(lift) direction, respectively, W(t) is the standard Wiener process, and fD and fL are uniformly distributed
random numbers to make the bounded noise processes stationary.

In general, an iteration process is needed to obtain the expressions of vortex-induced forces using
Eqs. (8a, b) since the flow-induced forces and the cylinder vibrations have an interactive relationship through
the angle y, which is nonlinearly related to cylinder motion. For small amplitude vibration, however, a linear
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approximation can be invoked in the present study, i.e.,

sin yðtÞ ¼
_Y ðtÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

½U � _X ðtÞ�2 þ _Y
2
ðtÞ

q �
_Y ðtÞ

U
, (12a)

cos yðtÞ ¼
U � _X ðtÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

½U � _X ðtÞ�2 þ _Y
2
ðtÞ

q � 1. (12b)

It follows then that the vortex-induced forces can be expressed as

FX
V ðtÞ ¼ F DðtÞ þ F LðtÞ

_Y ðtÞ

U
, (13a)

FY
V ðtÞ ¼ F LðtÞ � FDðtÞ

_Y ðtÞ

U
, (13b)

Substituting Eqs. (13a, b) into Eqs. (6a, b), the equations of motion are written as

€X ðtÞ þ 2zso0
_X ðtÞ þ o2

0X ðtÞ ¼
1

M
F DðtÞ þ F LðtÞ

_Y ðtÞ

U
þ F X

MðtÞ

� �
, (14a)

€Y ðtÞ þ 2zso0
_Y ðtÞ þ o2

0Y ðtÞ ¼
1

M
F LðtÞ þ FDðtÞ

_Y ðtÞ

U
þ F Y

MðtÞ

� �
. (14b)

Since the present study is focused on the cylinder vibration in the cross-flow direction, only Eq. (14b) is
retained and re-written as

€Y ðtÞ þ 2zso0 þ
1

M

FDðtÞ

U

� �
_Y ðtÞ þ o2

0Y ðtÞ ¼
1

M
FLðtÞ þ FY

M ðtÞ
� �

. (15)

3.2. Modeling of motion-dependent forces

Cylinder vibration also induces other fluid forces, such as the added mass and the fluid damping force,
which are not considered in the above model. In the present study, they are included in the motion-dependent
fluid force as

FY
M ¼ �

rpD2

4
cm

€Y þ
rU2

ō0
cd
_Y þ rU2ckY , (16)

where cm, cd, and ck are the added mass, the fluid damping, and the fluid stiffness coefficients, respectively, and
ō0 is the natural frequency of the system, whose expression is given in Section 3.3. In general, cm ¼ 1 since the
added mass is considered to be equal to the mass of fluid displaced by the vibrating cylinder. As a first
approximation, the fluid damping force is assumed to be proportional to the velocity of cylinder vibration.
The fluid stiffness term only affects the natural frequency of the fluid–structure system.

3.3. Model for vortex-induced vibration

Substituting Eq. (16) into Eq. (15) yields

€Y ðtÞ þ 2zso0 þ
1

M

FDðtÞ

U

� �
_Y ðtÞ þ o2

0Y ðtÞ

¼
1

M
F LðtÞ �

rpD2

4
cm

€Y þ
rU2

ō0
cd
_Y þ rU2ckY

� �
. (17)
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After some manipulation, Eq. (17) can be written as

M þ
rpD2

4

� �
€Y ðtÞ þ 2zso0M þ

F DðtÞ

U
�

rU2

ō0
cd

� �
_Y ðtÞ

þ ðMo2
0 � rU2ckÞY ðtÞ ¼ F LðtÞ. (18)

Using Eqs. (11a, b), Eq. (18) can be simplified as

€Y ðtÞ þ 2z̄sō0 þ
U ½C̄D þ CD cos ZDðtÞ�

2DMr

�
U2

ō0D2Mr

cd

	 

_Y ðtÞ þ ō2

0Y ðtÞ ¼
U2

2DMr

CL cos ZLðtÞ, (19)

where

M̄ ¼M þ
rpD2

4
; Mr ¼

M̄

rD2
,

ō0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Mo2

0 � rU2ck

M̄

s
; z̄s ¼

o0M

ō0M̄
zs,

ZDðtÞ ¼ nDtþ sDW ðtÞ þ fD; ZLðtÞ ¼ nLtþ sLW ðtÞ þ fL.

Non-dimensionalizing Eq. (19) with respect to U and D, and applying the time scaling t ¼ ō0t; the equation
becomes

Y 00ðtÞ þ 2z̄s þ
Ūr0

2p
C̄D þ CD cos ~ZDðtÞ

2Mr

�
Ū

2
r0

4p2
cd

Mr

" #
Y 0ðtÞ þ Y ðtÞ ¼

Ū
2
r0

4p2
CL

Mr

cos ~ZLðtÞ, (20)

where

Ūr0 ¼
2pU

ō0D
¼ the reduced velocity,

~ZDðtÞ ¼ ~vDtþ ~sDW ðtÞ þ fD; ~vD ¼
vD

ō0
; ~sD ¼

sDffiffiffiffiffiffi
ō0

p ,

~ZLðtÞ ¼ ~vLtþ ~sLW ðtÞ þ fL; ~vL ¼
vL

ō0
; ~sL ¼

sLffiffiffiffiffiffi
ō0

p .

Letting

b ¼ 2z̄s þ
Ūr0

2p
C̄D

2Mr

�
Ū

2
r0

4p2
cd

Mr

; mD ¼
Ūr0

2p
CD

Mr

,

mL ¼
Ū

2
r0

4p2
CL

Mr

. (21)

Eq. (20) can be written as

Y 00ðtÞ þ ½bþ mD cos ~ZDðtÞ�Y
0ðtÞ þ Y ðtÞ ¼ mL cos ~ZLðtÞ. (22)

From Eq. (22), one can see that two sources are responsible for cylinder vibration: mL cos ~ZLðtÞ; which may
lead to the main resonance if ~nL ¼ nL=ō0 ¼ 1; and bþ mD cos ~ZDðtÞ; which may give rise to a negative-
damping-induced instability or a parametric instability depending on the relationship between b, mD, and
~ZDðtÞ. This is studied in detail in the following section.

4. Stability of a two-dimensional system under stochastic parametric excitation

For a single degree-of-freedom system described by (22), there exist two types of excitations: the forcing
excitation mL cos ~ZLðtÞ on the RHS of the equation and the parametric excitation on the LHS of the equation.
The forcing excitation induces main resonance when its frequency is close to the natural frequency of the
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system, at which point large amplitude vibration occurs when the system damping is small. In particular, if the
system is undamped, the amplitude of response grows linearly with time.

The significance of the parametric excitation depends on the damping of the system, bþ mD cos ~ZDðtÞ: The
system damping consists of a constant component and a time-dependent component expressed in the form of a
bounded noise. When the constant system damping b is negative, the system becomes unstable regardless of
the value of mD cos ~ZðtÞ: It can be seen that b is related to three quantities: the structural damping zs, the mean
drag coefficient C̄D, and the motion-dependent fluid damping cd. Both zs and C̄D are positive and their effect is
to increase the system damping, thus would not induce unstable motion of the system. The one which may
induce negative system damping is the fluid damping coefficient cd. The condition for bo0 is given by

cd4
4p2Mr

U2
r

2z̄s þ
Ūr0

2p
C̄D

2Mr

� �
. (23)

Eq. (23) shows that once cd is large enough, the system becomes unstable. Such instability can be termed as a
constant-fluid-damping-induced instability.

When b is positive and its absolute value is larger than mD ðb4mDÞ; the system is stable. In this case, the
resonance plays a dominant role in the response. When b is positive and its value is smaller than mD ðb4mDÞ;
the stability of the system depends on the time-dependent fluid-damping component mD cos ~ZðtÞ; Whatever
value b might have, the time-dependent fluid-damping component mD cos ~ZðtÞ; always tends to destabilize the
system provided that its dominant frequency is in the vicinity of twice the natural frequency of the system.
Parametric instability is induced, and the amplitude of cylinder vibration grows exponentially even in the
presence of damping. In this case, parametric resonance becomes more pronounced than the main resonance.
The theory of stochastic instability has to be used to investigate the parametric stability of the system, as given
below. Since the forcing term does not affect the parametric instability, it is dropped in the following analysis.

4.1. Formulation

Consider the dynamic behavior of the following parametrically excited, two-dimensional system

d2qðtÞ
dt2
þ ½2�0bþ �0m cos ZðtÞ�

dqðtÞ
dt
þ o2

0qðtÞ ¼ 0,

nðtÞ ¼ v0tþ s0W ðtÞ þ y (24)

in which cos Z(t) is a bounded noise, and y is a uniformly distributed random number in (0, 2p) that makes
cos Z(t) a stationary process.

For the two-dimensional system (24), the damping term can be removed by the transformation qðtÞ ¼
xðtÞe��0bt and further simplified using the time scaling t ¼ ot where o2 ¼ o2

0 � o2
0b

2; to yield

d2xðtÞ

dt2
þ �m cos ~ZðtÞ

dxðtÞ

dt
þ ½1� �2mb cos ~ZðtÞ�xðtÞ ¼ 0; d~ZðtÞ ¼ vdtþ sdW ðtÞ,

where e ¼ e0/o, v ¼ v0/o, and s ¼ s0=
ffiffiffiffi
o
p

. The Lyapunov exponents and the moment Lyapunov exponents of
systems (24) and (25) are related by

lqðtÞ ¼ ��0bþ olxðtÞ; LqðtÞðpÞ ¼ �p � �0bþ oLxðtÞðpÞ.

In the absence of noise, i.e. when a ¼ 0, the bounded noise reduces to a sinusoidal function and system (25)
is in primary parametric resonance when v is in the vicinity of 2 (see, e.g., Ref. [22]). In order to have an
understanding of the effect of noise on the parametric resonance, it is important and interesting to study the
dynamic stability of system (25) under the excitation of a narrow-band process about v ¼ 2, which can be
achieved with the bounded noise for small values of s.

Hence, the following two-dimensional system under bounded noise excitation is considered

d2yðtÞ

dt2
þ �m cos ZðtÞ

dyðtÞ

dt
þ ½1� �2mb cos ZðtÞ� yðtÞ ¼ 0; dZðtÞ ¼ vdtþ �1=2sdW ðtÞ. (26)
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The introduction of the scaling parameter e1/2 in the noise fluctuation term sdW(t) renders the bounded
noise a narrow-band process for � ¼ oð1Þ and a ¼ Oð1Þ.

The eigenvalue problem governing the moment Lyapunov exponent of system (26) can be set up using
Wedig’s approach [23]. System (26) can be rewritten as a three-dimensional system

d

y1

y2

Z

8><
>:

9>=
>; ¼ �½1� �2mb cos Z�

y2

y1 � �mZy2

	 

dtþ

0

0

�1=2s

8><
>:

9>=
>;dW .

Khasminskii’s transformation

cosj ¼
y1

a
; sinj ¼ y2=a a ¼ jjyjj ¼ ðy2

1 þ y2
2Þ

1=2

can be applied to transform the Cartesian coordinates (y1, y2) to the polar coordinates (a, j), and the pth norm
of y is defined as P ¼ ap. The Itô equations for P and j can be derived using Itô’s Lemma

dP ¼ pP sinj cos Zð��m sinjþ �2bm cosjÞdt,

dj ¼ ð�1� �m sinj cosj cos Zþ �2mb cos2j cos ZÞdt.

Applying a linear stochastic transformation

S ¼ TðZ;jÞP; P ¼ T�1ðZ;jÞS; �1oZoþ1; 0pjop;

the Itô equation for the transformed pth norm process S can also be derived using Itô’s Lemma

dS ¼
1

2
�s2TZZ þ uTZ � ð1þ �m sin j cos j cos Z� �2mb cos2j cos ZÞTj

�

þ pP sin j cos Zð��m sin jþ �2bm cos jÞT
�

pdtþ �1=2sTZpdW . (27)

For bounded and non-singular transformation T(Z,j), both processes P and S are expected to have the
same stability behavior. Therefore, T(Z,j), is chosen so that the drift term of the Itô differential equation (27)
is independent of the noise process Z(t) and the phase process so j that

dS ¼ LS dtþ �1=2sTZT�1SdW . (28)

Comparing Eqs. (28) and (27), it is seen that such a transformation T(Z,j), is given by the following equation:

1
2
�s2TZZ þ vTZ � ð1þ �m sinj cosj cos Z� �2mb cos2jcos ZÞTj

þ pP sin j cos Z ð��m sinj þ �2bm cosjÞT ¼ LT ; �1oZoþ1; 0pjop (29)

in which T(Z,j) is a periodic function in j of period p and is bounded when Z-7N Eq. (29) defines an
eigenvalue problem of a second-order differential operator with L being the eigenvalue and T(Z,j) the asso-
ciated eigenfunction. From Eq. (28), the eigenvalue L is seen to be the Lyapunov exponent of the pth moment of
system (26), i.e. L ¼ Ly(t)(p).

4.2. Weak noise expansions of the moment Lyapunov exponent

4.2.1. Perturbation expansion

For weak noise excitation, i.e. for 0oe51, perturbation methods can be applied to solve the partial
differential eigenvalue problem (29) for the perturbative expansions of the moment Lyapunov exponent Ly(t)

(p). Since the small parameter e appears as a coefficient of the term TZZ, a method of singular perturbation
(see, e.g., Ref. [24]) must be applied.

Define v ¼ v0+eD, where v0 ¼ 2 corresponds to the primary parametric resonance in the absence of noise
and D is the detuning parameter. Applying the transformation

Z ¼ �1=2x� v0j; x ¼ ��1=2ðZþ v0jÞ,
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Eq. (29) becomes

s2

2
Txx � Tj þ �

1=2DTx þ m cosj cos ð�1=2x� 2jÞð�� sinjþ �2b cosjÞðTj þ 2��1=2TxÞ

þ mp sinj cosð�1=2x� 2jÞð�� sinjþ �2b cosjÞT ¼ LT , (30)

in which the eigenfunction T is treated as a function of x, j and e. Denoting z ¼ e1/2x, the eigenfunction
T(x, z, e.) becomes Y(x, z, j). It can be shown that

Tx ¼ Y x þ �
1=2Y z; Txx ¼ Y xx þ 2�1=2Y xz þ �Y zz. (31)

Substituting Eq. (31) into Eq. (30) leads to

LðPÞY ¼ LyðtÞY ; LðpÞY ¼L0Y þ �1=2L1Y

þ �L2Y þ �
3=2L3Y þ �2L4Y , (32)

where

L0Y ¼
1
2
s2Y xx � Yj,

L1Y ¼ s2Y xz þ ½D� 2m cos ðz� 2jÞsinj cosj�Y x,

L2Y ¼
1
2
s2Y zz þ DY z � m cosðz� 2jÞsinj cosjð2Y z þ YjÞ � mp cosðz� 2jÞsin2jY �,

L3Y ¼ 2mb cosðz� 2jÞ cos2jY x,

L4Y ¼ m cosjðz� 2jÞ½b cosjð2Y z þ YjÞ þ p sinjY �,

The eigenvalue Ay(t) (p) and the eigenfunction Y(x, z, j) can be expanded in powers series of e1/2 as

LyðtÞðpÞ ¼
X1
n¼0

�n=2Ln; Y ðx; z;jÞ ¼
X1
n¼0

�n=2Y nðx; z;jÞ, (33)

where Yn(x, z, j) are periodic functions in j of period p. Substituting Eqs. (33) into Eq. (32) yields
the following sequence of equations:

Oð1Þ : L0Y 0 ¼ L0Y 0;

Oð�1=2Þ : L0Y 1 þL1Y 0 ¼ L0Y 1 þ L1Y 0;

Oð�1Þ : L0Y 2 þL1Y 1 þL2Y 0 ¼
P2
i¼0

LiY n�i;

Oð�3=2Þ : L0Y 3 þL1Y 2 þL2Y 1 þL3Y 0 ¼
P3
i¼0

LiY n�i;

Oð�n=2Þ : L0Yn þL1Y n�1 þL2Y n�2 þL3Y n�3 þL4Y n�4 ¼
P3
i¼0

LiY n�i n ¼ 4; 5; � � � :

4.2.2. Zeroth-order perturbation

The zeroth-order perturbation equation is L0 Y0 ¼ L0 Y0, or

s2

2

q2Y 0

qx2
�

q2Y 0

qj
¼ L0Y 0. (35)

Since the moment Lyapunov exponent Ly(t) (p) passes through the origin, i.e.

LyðtÞð0Þ ¼ L0ð0Þ þ �
1=2L1ð0Þ þ �L2ð0Þ þ � � � ¼ 0;

one obtains L0(0) ¼ L1(0) ¼ L2(0) ¼? ¼ 0. Because Eq. (35) does not contain p explicitly, L0(0) ¼ 0 implies
L0(p) ¼ 0. Applying the method of separation of variables and noting that Y0(x, z, j) ¼ Y0(x, z, j+p), one
obtains Y0(x, z, j) ¼ Z0(z), where Z0(z) is an arbitrary function of z.
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The adjoint Equation of Eq. (35) is

s2

2

q2Y �0

qx2
�

q2Y �0
qj
¼ L0Y �0. (350)

Similarly, one can obtain Y0
*(x, z, j,) ¼ Z0

*(z), where Z0
*(z) is an arbitrary function of z.
4.2.3. First-order perturbation

Since L0 ¼ 0, the first-order perturbation equation becomes

L0Y 1 ¼ L1Y 0 �L1Y 0. (36)

From the Fredholm Alternative, for Eq. (36) to have a non-zero solution, it is required that

ðL1Y 0 �L1Y 0; Y �0Þ ¼ 0 (37)

where (f, g) denotes the inner product of functions f(x, z, j) and g(x, z, j) defined as

ðf ; gÞ ¼

Z þ1
z¼�1

Z þ1
x¼�1

Z p

j¼0
f ðx; z;jÞgðx; z;jÞdjdxdz.

Since Y0(x, z, j) ¼ Z0(z), which leads to L1Y 0 ¼ 0, Eq. (37) results in L1(p) ¼ 0. Eq. (36) then becomes
L0Y 1 ¼ 0. Following the same procedure as in Section 4.2.2, it is easy to show that Y1(x, z, j) ¼ Z1(z).
4.2.4. Second-order perturbation

Since L0 ¼ L1 ¼ 0, L1Y 1 ¼ 0; the second-order perturbation equation becomes

L0Y 2 ¼ L2Y 0 �L2Y 0. (38)

From the Fredholm Alternative, for Eq. (38) to have non-trivial solutions, it is required that

ðL2Y 0 �L2Y 0; Y �0Þ ¼ 0,

which can be reduced toZ þ1
z¼�1

Z�0ðzÞ

Z p

j¼0

s2

2

	
€Z0ðzÞ þ ½D� 2m sin

	
j cosj cosðz� 2jÞ� _Z0ðzÞ

þ ½�mp sin2j cosðz� 2jÞ � L2�Z0ðzÞ



dj


dz ¼ 0, (39)

Since Eq. (39) holds for arbitrary Z*
0(z), it results in

1
2
s2Zn

0ðzÞ þ ðD�
1
2
m sin zÞ _Z0ðzÞ þ

1
4
mp cos z� L2

� �
Z0ðzÞ ¼ 0. (40)

This is a second-order ordinary differential eigenvalue problem. L2 is the eigenvalue and Z0(z) is the
corresponding eigenfunction. Eq. (40) can be solved using the Fourier series

Z0ðzÞ ¼ C0 þ
Xn

n¼1

ðCn cos nzþ Sn sin nzÞ; (41)

where C0, Cn, Sn, n ¼ 1, 2, y,N, are constant coefficients to be determined. For the calculation efficiency, the
Fourier series is truncated to include N sine and cosine terms.

Substituting Eq. (41) into Eq. (40), multiplying the resulting equation by cos nz and sin nz, for n ¼ 0, 1,y,N,
respectively, lead to a set of 2N+1 homogeneous linear algebraic equations for C0, Cn, Sn, n ¼ 1, 2,y, N.
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These equations can be written as the matrix form

A� LðNÞ2 B
h i

X ¼ 0, (42)

where the superscript ‘‘(N)’’ signifies that the Fourier series is truncated to include N harmonic terms,
X ¼ {C0; C1, S1; C2, S2;y; CN, SN}

T ,and A, B are matrices of dimension (2N+1)� (2N+1).
For system (42) to have non-trivial solutions, the determinant of the coefficient matrix must be zero, i.e.

jA� LðNÞ2 Bj ¼ 0,

which leads to a polynomial equation for L2 of degree 2N+1

LðNÞ2

h i2Nþ1

þ d
ðNÞ
2N LðNÞ2

h i2N

þ d
ðNÞ
2N�1 LðNÞ2

h i2N�1

þ � � � þ d
ðNÞ
1 LðNÞ2 þ d

ðNÞ
0 ¼ 0. (43)

Solving Eq. (43), one can obtain an approximation of LðNÞ2 . As a result, the moment Lyapunov exponent can
be approximated by

LyðtÞðpÞ � �L
ðNÞ
2 . (44)

Using Eq. (5), an approximation of the Lyapunov exponent can be easily obtained

lyðtÞ � �l
ðNÞ
2 ; lðNÞ2 ¼ lim

p!0

LðNÞ2

p
. (45)

Eq. (45) implies that LðNÞ2 ¼ OðpÞ as p-0, and hence LðNÞ2

h in

¼ OðpÞ, for nX2. From Eq. (43), one obtains

lðNÞ2 ¼ � lim
p!0

d
ðNÞ
0

d
ðNÞ
1 p

. (46)

Three-dimensional plots of LðNÞ2 are shown in Fig. 2 for s ¼ 1.0. It is clearly seen that, for small noise
fluctuation parameter s, i.e. when the bounded noise is a narrow-band process, the effect of parametric
resonance is very significant. When the value of s is increased, the bandwidth of the bounded noise process Z(t)
increases, resulting in a less prominent effect of the parametric resonance.
Fig. 2. Second-order perturbation of the moment Lyapunov exponent L(12)
2 (s ¼ 1.0).
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Eq. (26) can be discretized using the Euler scheme, for iterations k ¼ 0, 1, 2, y,

yk
1 ¼ yk�1

1 þ yk�1
2 � Dt

yk
2 ¼ yk�1

2 � ½ð1� �2mb cosZk�1Þyk�1
1 þ �m cos Zk�1yk�1

2 � � Dt,

Zk ¼ Zk�1 þ v � Dtþ �1=2s � DW k�1.

These equations can be simulated iteratively and the numerical algorithm for determining the Lyapunov
exponents [25] can be applied to evaluate ly(t). In the Monte Carlo simulation, the time step is chosen as
Dt ¼ 0.0005, and the number of iterations is 109. A comparison of the Lyapunov exponents ly(t) obtained
using Eqs. (45)–(46) and Monte Carlo simulation as shown in Fig. 3 reveals that there is an excellent
agreement between the two results.

A three-dimensional plot of the second-order perturbation of the Lyapunov exponent l(16)2 as obtained using
Eq. (46) is shown in Fig. 4. The significant effect of the parametric resonance can be clearly seen for small
values of s.

According to the presented results, the stability of system (24) depends on the values of the damping b and
parameters of bounded noise—the amplitude m, the central frequency v, and the bandwidth s. The system is
unstable if the damping b is negative, which means that energy is fed into the system. The existence of the
bounded noise makes the system more unstable. If the damping b is positive, the stability of the system
depends on the characteristics of bounded noise. Our main concern here is the primary parametric instability,
namely when v is in the vicinity of 2. According to the present analysis, the primary parametric instability may
occur when proper values of m and s are taken. The parametric instability becomes more significant for larger
m or smaller s. The Lyapunov exponents can be used to determine the range of the primary parametric
instability.

In the following, the results of this section is applied to a single cylinder in cross-flow to study its stability in
the lock-in region.

5. Flow-induced instability of a single cylinder in a cross-flow

Stability analysis of the system (22) shows that vortex-induced vibration of a cylinder is a combination of
main resonance and parametric instability in the lock-in region. While the lock-in is associated with main
resonance, the parametric instability may occur when the parameters of the time-dependent damping
component take proper values and become more significant.
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In the present section, an example is given to demonstrate the behavior of parametric instability. In the
example, a rigid cylinder supported by elastic springs and viscous dampers in cross-flow is considered.
Reynolds number is set at Re ¼ 2760, where data for motion-dependent force coefficients are available in the
literature [26]. Fluid inertia coefficients are calculated based on potential flow theory and are approximately
unity for all Ur0 values investigated. Motion-dependent fluid damping and stiffness coefficients are plotted in
Figs. 5 and 6, respectively.

According to So et al. [27], the Strouhal number for a stationary cylinder at Re ¼ 2500 is St ¼ 0.2052, and
the rms lift coefficient is C0L ¼ 0.68. These values are assumed for the present case. The mean and rms drag
coefficients can be found in Ref. [28], being C̄D ¼ 1:0 and C0D ¼ 0.07, respectively. It is assumed that the
bandwidths of both the lift and drag coefficients are equal, being ~sL ¼ ~sD ¼ 0:01. The reduced velocity is
varied in the usual lock-in range of Ūr0 ¼ 5:0 to 6.6, where it is assumed that ~vL � 1 and ~vD ¼ 2~vL � 2. The
parameters are chosen so that the vibration level is similar to that reported by Chen et al. [26]. In the present
case, the structural damping factor is zs ¼ 0.02, and the mass ratio is varied from Mr ¼ 15 to 18 in order to
study its effect on the stability.
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For Mr ¼ 18, the values of b and mD as a function of Ūr0 are calculated and plotted in Fig. 7. It can be seen
that p is positive in the range of Ūr0 concerned, hence constant-fluid-damping-induced instability is not
present. However, mD4b in the range of Ūr0 ¼ 5.6 to 6.2, so it is possible for parametric instability to occur.
In order to study this possibility, the Lyapunov exponents are obtained following the procedure in Section 4,
and the results are shown in Fig. 8.

The Lyapunov exponents for system (22) can also be obtained by Monte Carlo simulation. In the
simulation, the number of iterations is 2� 109 and the time step is Dt ¼ 10�6. The two results shown in Fig. 8
agree with each other quite well.

It can be seen that parametric instability occurs in the range of Ūr0 ¼ 5.85–6.05. Noting that the usual lock-
in range is Ūr0 ¼ 4.0 to 6.0, it can be seen that parametric instability may co-exist with the main resonance due
to lock-in.

When the mass ratio is decreased to Mr ¼ 17, the values of b and mD as a function of Ūr0 are plotted in
Fig. 9. It can be seen that this case covers all three situations discussed in Section 3, namely, bo0, b40 and
b4mD, b40 and bomD. It is seen that bo0 for Ūr0 ¼ 5.72–6.15, suggesting constant-fluid-damping-induced
instability occurs in this range. The Lyapunov exponents are calculated and plotted in Fig. 10, from which the
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range of instability is determined to be Ur0 ¼ 5.6–6.22. This means that the parametric resonance enlarges the
range of instability. Again, this range overlaps the usual lock-in range. Besides the enlarged instability range,
the Lyapunov exponent is bigger than that given by only constant-fluid-damping-induced instability alone. It
is clearly shown that the time-dependent fluid-damping component mD cos ~ZðtÞ tends to destabilize the system
by enlarging the instability range and enabling the response to increase faster (larger Lyapunov exponent).

In Section 3, it has been shown that the fluid damping coefficient, cd, is a crucial parameter. In the present
example, its effect on parametric instability is studied by varying cd by 710% from its original value as
reported by Chen et al. [26]. The ranges of instability, as determined by the Lyapunov exponents, for the case
Mr ¼ 17 and a series of cd values are shown in Fig. 11. It is seen that the range of instability increases with the
increasing of cd, but decreases when cd is decreased. It even diminishes as cd is decreased by 5% or more
(the system becomes stable in the whole range of Ūr0 considered). This is expected since decreasing cd will
increase b, which leads the system towards stable behavior. When the mass ratio is reduced further to Mr

¼ 15, however, the system is always unstable in a certain range of Ūr0 regardless of the variation of cd as
shown in Fig. 12. In fact, the effect of decreasing Mr is to destabilize the system, which is clearly shown in
Fig. 13.
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This range overlaps partially with the usual lock-in range of Ur from 4.0 to 6.0, suggesting that the large-
amplitude vibration of the cylinder observed in the lock-in region could include the contribution of parametric
instability. It should be noted that the one-cylinder case is a limiting case of multiple cylinders when the
distance between adjacent cylinders is large enough. Hence, it is expected that parametric instability might also
play a significant role in flow-induced vibration of multiple cylinders. Therefore, a study of instability of
multiple cylinders in a cross-flow is in order.

6. Conclusions

In this paper, a model previously proposed to study vortex-induced vibration of a single cylinder in a
cross-flow is extended to include motion-dependent fluid forces, in an attempt to understand its dynamic
behavior, especially in the lock-in region. Possible instability is discussed based on the extended model.
It is found that, apart from the usual vortex-induced large-amplitude vibration in the lock-in region
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and the instability induced by constant fluid-damping force, for which a condition for its occurrence
is given, a parametric instability is also possible if the parameters of the system are appropriately
selected.

The developed model can be generalized to represent a class of two-dimensional dynamic systems subjected
to parametric excitations in the damping term, which is described by a narrow-band bounded noise process.
The dynamic stability of the system is studied by determining the moment Lyapunov exponents and the
Lyapunov exponents. The partial differential eigenvalue problem governing the moment Lyapunov exponent
is established using the theory of stochastic dynamical system. For weak noise excitations, a singular
perturbation method is employed to obtain second-order expansions of the moment Lyapunov exponents. The
Lyapunov exponent is then obtained using the relationship between the moment Lyapunov exponent and the
Lyapunov exponent. The accuracy of the approximate analytical results are validated and assessed by
comparing with numerical results. It is observed that there is an excellent agreement between the analytical
results and the numerical results.
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Based on the stability analysis results of a two-dimensional general dynamic system, an example is given to
demonstrate the role of parametric instability in vortex-induced vibration of a single cylinder in a cross flow.
When appropriate values of the system parameters are taken, it is shown that the vibration of the cylinder is
made up of main resonance due to the lock-in forcing, parametric instability due to time-variant fluid
damping, and constant-fluid-damping-induced instability in the usual lock-in range. In particular, the primary
parametric resonance enlarges the range of instability. The effects of some crucial parameters, such as the mass
ratio and the fluid damping coefficient, are studied. It is shown that decreasing the mass ratio or increasing the
constant fluid damping has a positive influence on the instability of the system.
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