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Abstract

The evaluation of acoustic fields induced in inhomogeneous spheres by external sources, based on volume integral

equations, is simplified considerably using Ivakin’s integral equation and the use of the well-known expansion for the Green

dyadic. The method presented here overcomes the difficulties of calculation arising from the possible step discontinuities in the

density, allowing a quick and accurate evaluation of the fields. So the simple hybrid (analytical–numerical) scalar method,

developed previously for spheres with variable, even discontinuous compressibility, is easily extended to the general case of

inhomogeneous density in a manner requiring the least possible analytical and computational effort.

r 2007 Elsevier Ltd. All rights reserved.

1. Introduction

The evaluation of acoustic fields induced in inhomogeneous bodies by external sources [1–6] is a basic
problem whose solution finds practical applications to questions related to radiation hazards, to the setting of
reliable safety field strength limits, geophysical explorations, seismic engineering and underwater acoustics.
For general shape inhomogeneities, the analysis is performed using numerical schemes [3–6]. However, in the
case of inhomogeneous spheres analytical procedures are, up to a certain point, possible. So the study of
inhomogeneous spheres is, apart from its own interest, useful in the assessment of the quality and efficiency of
the previously mentioned numerical methods.

The problem of interest is as follows: An incident acoustic pressure field FincðrÞ impinges on an
inhomogeneous spherical volume V of radius a and induces the total (unknown) scalar pressure field FðrÞ (see
Fig. 1). A harmonic time dependence expðiotÞ is assumed. The differential equation satisfied by FðrÞ is [3–6]

r �
rFðrÞ
rðrÞ

� �
¼ �o2bðrÞFðrÞ; (1)

where rðrÞ, bðrÞ are the varying density and compressibility of the medium in V; V is surrounded by a medium
of constant r0, b0 values. We note in passing that this equation appears also in Ref. [2], but with a
typographical error on the right-hand side. The boundary conditions are continuity at all interfaces for both
the field FðrÞ and for the normal component of particle velocity, rFðrÞ=rðrÞ.
ee front matter r 2007 Elsevier Ltd. All rights reserved.
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Nomenclature

a radius of the inhomogeneous sphere
b(r) compressibility of the inhomogeneous

medium
b0 compressibility of the free space
g(r,r0) scalar Green function, see Eq. (3)
G(r,r0) dyadic Green function, see Eq. (9)
hð2Þn ðxÞ spherical Hankel function of the second

kind jn � inn of order n

I(X,Y) overlap integral of X and Y over the
volume of the sphere, see for example
Eqs. (A.1), (A.4), and (A.9)

I identity dyadic
jnðxÞ spherical Bessel function of order n

k0 the wavenumber of the free space
oðb0r0Þ

1=2

LS
mn‘ the non-orthogonal ða=gmn‘ÞrCmn‘ vec-

tors obtained through rF in Eq. (21)
MðiÞmn;N

ðiÞ
mn;L

ðiÞ
mn spherical eigenvectors of the ith

kind defined in Eqs. (11)–(13) for con-
tinous k. The upperscripts i ¼ 1 or 4
imply the use of jn or hð2Þn ¼ jn � inn,
respectively, for the radial dependence.
When i ¼ 1 the upperscipt is usually
omitted.

M̂mn; N̂mn; L̂mn same as Mmn, etc., where the
angular part of Mmn, etc. has been
replaced by its complex conjugate

Mmn‘;Nmn‘;Lmn‘ spherical eigenvectors for the
spherical cavity, with discrete values of
k ¼ gM

mn‘=a; g
N
mn‘=a; g

L
mn‘=a; ‘ ¼ 1; 2; . . . ,

respectively
nnðxÞ spherical Neumann function of order n

Pmn;Bmn;Cmn surface spherical harmonic vectors
defined in Eqs. (14)–(16)

S matrix of the expansion coefficients of
LS

mn‘ in terms of Lmn‘ see Eq. (42)
tnm; tM

nm; t
N
nm; t

L
nm constants arbitrarily chosen for

scalar expansions (19) and (20) see
Eq. (22) and the vector ones in Eq. (21),
see Eqs. (A.2), (A.7), and (A.10)

Tmn‘ðk0Þ expansion coefficients of jnðk0rÞ see
Eq. (29)

A, B, G, D, Z expansion coefficients see
Eqs. (19)–(21)

gmn‘; g
M
mn‘; g

N
mn‘; g

L
mn‘ roots of the eigenvalue pro-

blems defined in Eqs. (22), (A.2), (A.7),
and (A.10)

rðrÞ density of the inhomogeneous medium
r0 density of the free space
FðrÞ;FincðrÞ total and incident acoustic pressure

field, respectively
Cmnðk; rÞ solution of the scalar Helmholtz equa-

tion ðr2 þ k2
ÞC ¼ 0, see Eq. (11)

Y mnðy;fÞ surface spherical harmonics
Pm

n ðcos yÞe
imf
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In two previous papers [1,2], the treatment was based on a volume integral equation derived by a technique
proposed by Chew [3]. However, this equation, like that used by Martin [7], contained the derivative of the
density in its integrand. To carry out the calculations correctly we had split in Ref. [2] the non-continuous part
Fig. 1. Geometry of the problem.
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of the density with the use of step functions and this led (through differentiation) to Dirac d-functions. The
necessity for a special treatment of step discontinuities in the density is, also, the basis of Martin’s approach
[7], who adds a term proportional to the density discontinuity in the integral equation.

In this paper, we begin our investigation using another integral equation which has been derived by Ivakin
[4, Eq. (5)]:

FðrÞ ¼ FincðrÞ þ

Z
V

k2
0

bðr0Þ

b0
� 1

� �
Fðr0Þgðr; r0ÞdV 0 �

Z
V

r0
rðr0Þ
� 1

� �
r0Fðr0Þ � r0gðr; r0ÞdV 0. (2)

No restrictions have been imposed on rðrÞ. Clearly, this equation overcomes the previously mentioned
difficulty, since it does not contain any derivative of the density. A simple check for the validity of Eq. (2) can
be done in the case of a sphere of constant density r1ar0. This will be done later. In Eq. (2), gðr; r0Þ is the
scalar Green’s function of free space

gðr; r0Þ ¼ e�ik0R=4pR; R ¼ jr� r0j; k0 ¼ oðb0r0Þ
1=2, (3)

which obeys the following equation:

ðr2 þ k2
0Þgðr; r

0Þ ¼ �dðr� r0Þ. (4)

In what follows we will apply the convenient method developed in Refs. [1,2] to solve integral equation (2).
The essence of the approach consists in expanding the radial part of F in a Dini series. We have explained in
Refs. [1,2], that the Dini expansions in terms of Bessel functions have a clear advantage over other possible
orthogonal sets of functions, since, among other things, they converge faster and allow an analytical
evaluation of certain integrals involving the Green’s function (of free space here) [8,9]. However, the approach
it is not devoid of difficulties, which arise from the appearance of the term rF � rg in the integrand of Eq. (2).
The steps required to transform the integral equation into a more convenient form are presented in Section 2.
The method of its solution using Dini series is outlined in Section 3. In Section 4, we present numerical
results, which make clear the advantages of the present approach. Finally, in Section 5, some conclusions are
derived.

2. Transformation of the integral equation

We start by transforming Eq. (2) in a more convenient form. Using the well-known property

r0gðr; r0Þ ¼ �rgðr; r0Þ (5)

the last integral in Eq. (2) is written as

r �

Z
V

r0
rðr0Þ
� 1

� �
r0Fðr0Þgðr; r0ÞdV 0. (6)

The last integrand is further transformed using the identity

E ¼ I � E ¼ E � I, (7)

where E is a vector and I the identity dyadic. Finally, we get

FðrÞ ¼ FincðrÞ þ

Z
V

k2
0

bðr0Þ

b0
� 1

� �
Fðr0Þgðr; r0ÞdV 0 þ r �

Z
V

r0
rðr0Þ
� 1

� �
r0Fðr0Þ � ðIgðr; r0ÞÞdV 0. (8)

The expansion of the Green’s dyadic in spherical coordinates is given in Ref. [10, p. 1875] in terms of the even/
odd spherical eigenvectors of the vector Helmholtz equation. Here, we use a more convenient form in terms of
the complex form of these vectors as contained in Ref. [3]:

Gðr; r0Þ ¼ I
e�ik0jr�r

0j

jr� r0j
¼ �

ik0

4p

X1
n¼0

2nþ 1

nðnþ 1Þ

Xn

m¼�n

ðn�mÞ!

ðnþmÞ!
Mð1Þmnðk0; ro; y;fÞ
�

M̂
ð4Þ

mnðk0; r4; y
0;f0Þ

þNð1Þmnðk0; ro; y;fÞN̂
ð4Þ

mnðk0; r4; y
0;f0Þ þ nðnþ 1ÞLð1Þmnðk0; ro; y;fÞL̂

ð4Þ

mnðk0; r4; y
0;f0Þ

i
. ð9Þ
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One can easily show that is equivalent to that of Ref. [10]. In Eq. (9), r4ðroÞ denotes the larger (smaller) of r,
r0, while upperscripts (1), (4) imply the use of jnðk0rÞ, hð2Þn ðk0rÞ ¼ jn � inn, respectively, for the radial
dependence of the eigenvectors. As in Ref. [3], the hat on the vectors implies the complex conjugate of the
angular part only. The dyadic Green function in Eq. (9) is that of Morse and Feshbach [10], being in fact only
the dyadic expansion of the scalar Green function gðRÞ. Thus, it does not contain any higher singularities than
the last scalar function. So it should not be confused with the dyadic Green function used by Chew [3], defined
as ðIþ rrÞgðRÞ, where the appearance of the del operators increases the order of singularity by 2, when both
source and observation points are located at the same point. Using the surface harmonic function

Y mnðy;fÞ ¼ Pm
n ðcos yÞe

imf ðn ¼ 0; 1; 2; . . . ; m ¼ �n to nÞ, (10)

we give below the definitions of the spherical eigenvectors denoting in general their radial spherical Bessel
function by znðkrÞ:

Lmnðk; rÞ ¼
1

k
r½znðkrÞY mnðy;fÞ� �

1

k
r½Cmnðk; rÞ�

¼
1

k

d

dr
½znðkrÞ�Pmnðy;fÞ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nðnþ 1Þ

p 1

kr
znðkrÞBmnðy;fÞ, ð11Þ

Mmnðk; rÞ ¼
1

k
r � ½Nmnðk; rÞ� ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nðnþ 1Þ

p
znðkrÞCmnðy;fÞ, (12)

Nmnðk; rÞ ¼
1

k
r � ½Mmnðk; rÞ� ¼ nðnþ 1Þ

znðkrÞ

kr
Pmnðy;fÞ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nðnþ 1Þ

p 1

kr

d

dr
½rznðkrÞ�Bmnðy;fÞ. (13)

In Eqs. (11)–(13) P, B, C are the surface spherical harmonic vectors which form an orthogonal and complete
set over the spherical surface ð0pypp; 0pfp2pÞ and help separate the radial dependence of the L, M, N
vectors from their angular one [10, pp.1898–1900]:

Pmnðy;fÞ ¼ r̂Y mnðy;fÞ, (14)

Bmnðy;fÞ ¼ r̂� Cmnðy;fÞ ¼
eimfffiffiffiffiffiffiffiffiffiffiffi
nðnþ

p
1Þ

dPm
n ðcos yÞ
dy

ĥþ
im

sin y
Pm

n ðcos yÞ/̂
� �

, (15)

Cmnðy;fÞ ¼ �r̂� Bmnðy;fÞ ¼
eimfffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

nðnþ 1Þ
p im

sin y
Pm

n ðcos yÞĥ�
dPm

n ðcos yÞ
dy

/̂

� �
. (16)

From Eqs. (14) to (16), it is obvious that

Pmn � Bm0n0 ¼ Pmn � Cm0n0 ¼ Bmn � Cm0n0 ¼ 0, (17)

while it is easily proved thatZ p

0

Z 2p

0

Xmn � X̂m0n0 sin y dfdy ¼
4p

2nþ 1

ðnþmÞ!

ðn�mÞ!
dnn0dmm0 , (18)

where X ¼ P or B or C.
3. Solution of the integral equation

To solve the equation we expand the unknown field quantities in terms of scalar and vector wave functions
in the interval ½0; a�. Namely, expanding the radial part in Dini series, which constitute a full orthogonal set in
½0; a�, we write [1,9]

FðrÞ ¼
X1
n¼0

Xn

m¼�n

X1
‘¼1

Amn‘jn

gmn‘

a
r

� �
Pm

n ðcos yÞ e
imf

h i
, (19)
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bðrÞ

b0
� 1

� 	
FðrÞ ¼

X1
n¼0

Xn

m¼�n

X1
‘¼1

Bmn‘jn

gmn‘

a
r

� �
Pm

n ðcos yÞ e
imf

h i
, (20)

r0
rðrÞ
� 1

� 	
rFðrÞ ¼

X1
n¼0

Xn

m¼�n

X1
‘¼1

Gmn‘Mmn‘
gM

mn‘

a
; r

� 	
þ Dmn‘Nmn‘

gN
mn‘

a
; r

� 	
þ Zmn‘Lmn‘

gL
mn‘

a
; r

� 	� �
, (21)

where gmn‘ have been chosen as roots of the equation [1]

gmn‘j
0
nðgmn‘Þ=jnðgmn‘Þ ¼ �tmn ð‘ ¼ 1; 2; . . .Þ. (22)

Here, tmn is an arbitrary constant; in fact with different choices of tmn we should obtain the same results. The
sets Mmn‘ and Nmn‘ are included here for completeness. Their coefficients need not be calculated (see below).
Anyway gM

mn‘; g
N
mn‘ and gL

mn‘ have been chosen so as to construct a full orthogonal set of vectors M, N, and L,
respectively, over the volume of the sphere 0prpa, 0pypp, 0pfp2p. Moreover, all vectors Mmn‘;Nmn‘,
and Lmn‘ in those orthogonal relations are vectors of the first kind, i.e., Mmn‘ ¼M

ð1Þ
mn‘, with upperscript (1)

deleted herein throughout. The details are found in Appendix A.
Furthermore, taking into account that the vectors Nmn and Lmn are not in general mutually orthogonal [11]

over the surface of the sphere (i.e., in y, f), we have selected gN
mn‘ as the roots of the indicial equation

jnðg
N
mn‘Þ ¼ 0; this ensures the orthogonality between the Nmn‘ and Lmn‘ sets in the interval 0prpa. The details

are given in Appendix A.
The calculation is carried out with the help of the following intermediate results:

IðM �GÞ ¼

Z
V

dV 0Mmn‘ðk; r
0Þ �Gðr; r0Þ

¼
1

k2
� k2

0

fMmn‘ðk; rÞ � ik0a
2½�kj0nðkaÞhnðk0aÞ þ k0h

0
nðk0aÞjnðkaÞ�Mmnðk0; rÞg, ð23Þ

IðN �GÞ ¼

Z
V

dV 0Nmn‘ðk; r
0Þ �Gðr; r0Þ ¼

1

k2
� k2

0

Nmn‘ðk; rÞ � ik0a2 kjnðkaÞ
1

k0a
xhnðxÞ½ �

0
x¼k0a

�


� k0hnðk0aÞ
1

ka
xjnðxÞ
� �0

x¼ka

�
Nmnðk0; rÞ

�
� ik0a

2nðnþ 1Þ
jnðkaÞhnðk0aÞ

akk0
Lmnðk0; rÞ, ð24Þ

IðL �GÞ ¼

Z
V

dV 0Lmn‘ðk; rÞ �Gðr; r
0Þ ¼

1

k2
� k2

0

fLmn‘ðk; rÞ � ik0a2½kjnðkaÞh0nðk0aÞ

� k0hnðk0aÞj0nðkaÞ�Lmnðk0; rÞg � ik0a
2 jnðkaÞhnðk0aÞ

akk0
Nmnðk0; rÞ. ð25Þ

In all the above equations k ¼ gX
mnl=a, with X ¼M or N or L, respectively. The derivation of these results is

accomplished after much labor, using properties (14)–(18) of the surface spherical harmonic vectors P, B, C,
and certain relations satisfied by the Bessel functions.

We next use the following differential equations satisfied by the M, N, L vectors:

r �M ¼ r �N ¼ 0, (26)

r � Lmn ¼
1

k
r2Cmnðk; rÞ ¼ �kCmnðk; rÞ. (27)

Here, it is obvious that the choice jnðg
N
mn‘Þ ¼ 0 is very convenient since, in addition to assuring orthogonality, it

allows flexibility in the choice of the L set and leads to the disappearance of the N set. Therefore our previous
assertion, that the M and N sets play no role in the solution, is confirmed and we can safely disregard them in
what follows.

We now expand the incident field as in Ref. [1]

Finc ¼
X
m;n

Ainc
mnjnðk0rÞP

m
n ðcos yÞ e

imf� �
¼
X
m;n;‘

Ainc
mnTmn‘ðk0Þjn

gmn‘

a
r

� �
Pm

n ðcos yÞe
imf

h i
, (28)
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where Tmn‘ðk0Þ are obviously the expansions coefficients of jnðk0rÞ in the Dini series corresponding to the roots
of Eq. (22)

jnðk0rÞ ¼
X1
‘¼1

Tmn‘ðk0Þjn

gmn‘

a
r

� �
. (29)

Substituting Eqs. (19)–(21) and (27) and (28), as well as the simple standard integral formulas for Bessel
functions (Eqs. (14) and (15) of Ref. [1]) in Eq. (8) we end up withX

m;n;‘

Amn‘jn

gmn‘

a
r

� �h
Pm

n ðcos yÞ e
imf� ¼X

m;n;‘

Ainc
mnTmn‘ðk0Þjn

gmn‘

a
r

� �
Pm

n ðcos yÞ e
imf

h i

þ k2
0

X
mn‘

Bmn‘

ðgM
mn‘=aÞ2 � k2

0

jn

gmn‘

a
r

� �
� ik0a2

(
�
gmn‘

a
j0nðgmn‘Þhnðk0aÞ þ k0h

0
nðk0aÞjnðgmn‘Þ

h i

�
X

p

Tmnpðk0Þjn

gmnp

a
r

� �)
Pm

n ðcos yÞ e
imf þ

X
mn‘

Zmn‘

ðgL
mn‘=aÞ2 � k2

0

�
gL

mn‘

a
jn

gL
mn‘

a
r

� 	
þ ik2

0a
2

(

�
gL

mn‘

a
jnðg

L
mn‘Þh

0
nðk0aÞ � k0hnðk0aÞj

0
nðg

L
mn‘Þ

� �X
p

Tmnpðk0Þjn

gmnp

a
r

� �)
Pm

n ðcos yÞ e
imf. ð30Þ

Finally, we obtain the system of equations

Amn‘ ¼ Ainc
mnTmnlðk0Þ þ k2

0

Bmn‘

ðgL
mn‘=aÞ2 � k2

0

� ik3
0a2Tmn‘ðk0Þ

�
X

p

½�ðgmnp=aÞj0nðgmnpÞhnðk0aÞ þ k0h0nðk0aÞjnðgmnpÞ�

ðgmnp=aÞ2 � k2
0

Bmnp �
ðgmn‘=aÞZmn‘

ðgmn‘=aÞ2 � k2
0

þ ik2
0a

2Tmn‘ðk0Þ
X

p

½ðgmnp=aÞjnðgmnpÞh
0
nðk0aÞ � k0hnðk0aÞj0nðgmnpÞ�

ðgmnp=aÞ2 � k2
0

Zmnp. ð31Þ

We now correlate the group of unknowns. The relationship between {A} and {B} is obvious and simple as in
Ref. [1]:

Bmn‘ ¼
1

Nmn‘

X
mnl

QðCmnl;C�mn‘ÞAmnl (32)

in which

Q ¼

Z 2p

0

Z p

0

Z a

0

bðrÞ

b0
� 1

� 	
jn

gmn‘

a
r

� �
jn

gmnl
a

r
� �

Pm
n ðcos yÞP

m
n ðcos yÞ e

iðm�mÞfr2 sin ydrdydf (33)

and

Nmn‘ ¼
4p

2nþ 1

ðnþmÞ!

ðn�mÞ!

Z a

0

j2n
gmn‘

a
r

� �
r2 dr ¼

2p
2nþ 1

ðnþmÞ!

ðn�mÞ!
a3j2nðgmn‘Þ 1�

ðnþ 1� tnÞðnþ tnÞ

g2mn‘

� �
, (34)

while for the relationship between {Z} and {A} set we write formally

r0
rðrÞ
� 1

� 	
rF ¼

r0
rðrÞ
� 1

� 	X
mn‘

gmn‘

a

h
Amn‘L

S
mn‘

gmn‘

a
; r

� �i
. (35)

Here, serious questions arise. First, the differentiation of the Dini series is in general not allowed [1,9]. In our
calculations, however, the derivative of a function f ðrÞ that is being expanded appears inside an integral. Let us
consider a typical one:

T ¼

Z
r0
2
dr0

df

dr0
r0
rðr0Þ
� 1

� 	
jnðk0roÞhnðk0r4Þ, (36)
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which after integration by parts can be written

T ¼ r2f ðrÞ
r0
rðrÞ
� 1

� 	
jnðk0roÞhnðk0r4Þ �

Z
f ðrÞ

d

dr0
r0
2 r0

rðr0Þ
� 1

� 	
jnðk0roÞhnðk0r4Þ

� �
dr0. (37)

Here, we can substitute f ðrÞ by a Dini series

f ðrÞ ¼
X1
m¼1

amjn

gnm

a
r

� �
(38)

and since the series converges as 1=m2 we may change the order of summation and integration to obtain

T ¼
X
m

amr2jn

gnm

a
r

� � r0
rðr0Þ
� 1

� 	
jnðk0roÞhnðk0r4Þ

�
X
m

am

Z
jn

gnm

a
r

� � d

dr0
r0
2 r0

rðr0Þ
� 1

� 	
jnðk0roÞhnðk0r4Þ

� �
dr0. ð39Þ

Next reversing the integration by parts we get

T ¼
X
m

am

Z
r0
2 djnððgnm=aÞrÞ

dr0
r0
rðr0Þ
� 1

� 	
jnðk0roÞhnðk0r4Þdr0. (40)

The last series converges with m at least as 1=m3 [1]. So although the differentiation of the Dini series is not
allowed it can safely be used for the calculation of the above integral, in the manner indicated: that is first
integrating and then summing the resulting terms as shown in Eq. (40). On the other hand, it would have been
erroneous to calculate df =dr first from the Dini series and then use the result to carry out the integration in
Eq. (36).

Secondly, as seen from Eqs. (22) and (A.10), the LS vectors that result from the differentiation of C are not,
in general, orthogonal themselves. One can try to work with the non-orthogonal LS set, but this leads to
difficulties. So, it is necessary to use an orthogonal L set (and especially the one that has already been
incorporated in Eq. (21)), different from the non-orthogonal LS set (where LS

mn‘ððgmn‘=aÞrÞ ¼ ða=gmn‘ÞrCmn‘).
They are related as follows:

LS
mn‘ ¼

X
m;n;l

½SðLS
mn‘; L̂mnlÞLmnl� (41)

with

SðLS
mn‘; L̂mnlÞ ¼

IðLS
mn‘; L̂mnlÞ

IðLmnl; L̂mnlÞ
. (42)

The I’s are defined in Appendix A. Next, we expand the terms ððr0=rðrÞÞ � 1ÞLmn‘ in the orthogonal
Lmn‘ set

r0
rðrÞ
� 1

� 	
Lmn‘

� �
L

¼
X
mnl

W ðLmn‘; L̂mnlÞ

IðLmnl; L̂mnlÞ
Lmnl �

X
mnl

FmnlLmnl (43)

with

W ðX; ŶÞ ¼

Z
V

dV 0
r0
rðrÞ
� 1

� 	
Lmn‘

gL
mn‘

a
; r

� 	
� L̂mnl

gL
mnl

a
; r

 !
. (44)

In general, when r depends on y, f, expansion (43) should contain also M and N vectors. However, as before,
due to the del operator outside the integral any such term will disappear. Next after the integration, the
application of the r� operator gives rise to a scalar set, which is non-orthogonal and should be re-expanded in
terms of the original scalar orthogonal Dini set. This step, however, can be avoided by simply re-expanding
the orthogonal Lmn‘ set in the non-orthogonal LS

mn‘ using the inverse S�1 of the matrix in Eq. (42). So, finally,
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we get the following matrix relation:

Z ¼ S�1FSðAxÞ, (45)

where Z, Ax are column vectors with elements Zmn‘, Amn‘ðgmn‘=aÞ, respectively, while the elements of F have
been defined in Eq. (43).

Apparently, a simpler choice would have been to choose jnðgmn‘Þ ¼ jnðg
L
mn‘Þ ¼ 0 as common roots for both

sets. However, contrary to the general 1=‘2 rate of convergence of Dini series [1], further calculations with the
above choice show that the convergence deteriorates to 1=‘1þ� with e40, a small number, rendering the whole
solution extremely unstable and very sensitive to truncation size.

Finally, we obtain a system of equations for the unknown expansion coefficients Amn‘, which is solved by
truncation.

4. Numerical results and discussion

The solution we derive in this manner was compared with the one obtained with the method previously
developed in Ref. [2]. In the cases we tested rðrÞ ¼ r1 ¼ const, rðrÞ ¼ 20r0 expð�200r2Þ and rðrÞ ¼
r0ð3þ 2 cosðpr=aÞ a very good agreement between the two methods has been obtained. Especially for the case
rðrÞ ¼ r1 ¼ constant a simple analytical treatment is possible, producing the correct result and thus
eliminating any doubt on the validity of Eqs. (2) and (8). The procedure is given in Appendix B. These cases,
as well as others in which the density does not contain step discontinuities dependent on y are treated more
easily with the use of the delta function approach in Ref. [2]. Actually, if such was the case, it could have been
solved through the use of another Lippmann–Schwinger integral equation [12]. Namely, the incident field
could have been chosen as the solution of the problem for a sphere with constant density equal to the density
just inside the inhomogeneity. Thus, no discontinuity would have appeared and no use of for delta functions
would be necessary.

However, the strength of the present approach is obvious when a more complicated case is considered. Let
us consider, for instance, the case

rðr; yÞ ¼
r0

ð2=3Þ þ ð1=3Þðr=aÞ2 cos y
; bðr; yÞ ¼ 2b0 (46)

that is a case where the inhomogeneity across the boundary of the sphere depends on y. This problem has been
treated in Ref. [2] in a rather complicated manner, by using as additional unknowns the values of the
expansions coefficients just inside the inhomogeneity. This approach, although formally correct, complicates
the whole procedure, and it becomes prohibitively complex when rðrÞ contains internal discontinuities
dependent on y.

In Figs. 2–4, the total internal acoustic pressure is plotted for an incident plane wave from the z direction,
with k0a ¼ 12:5751, 16.7668 and 20.9584, respectively. We have chosen the rðrÞ given by Eq. (46) while
bðrÞ ¼ 2b0 for simplicity. Here, we have worked without any optimum tmn and we had no results from the
literature to compare with. However, we have obtained exactly the same field results using other random
choices for tmn; we consider this as a confirmation of our approach in this general case.

To demonstrate the efficiency of the method we have included results in which the values of n and ‘ in
the infinite series (19)–(21) have been truncated to finite values nmax and ‘max, respectively. So we present in
Table 1 the truncation parameters for the case described in Eq. (46) for various values of k0a, all for 1%
accuracy, that is we find the values at which the maximum relative difference for the field values F from those
obtained from higher values of n and ‘ are less than 1%. For the simpler r-dependent case the final values so
obtained are not essentially different from the ones presented in Refs. [1,2]. However, when rðrÞ is
discontinuous at the boundary r ¼ a the values of ‘max should be taken a little greater.

As far as the applicability of the method is concerned, the analytic evaluation of the coefficients of the
algebraic matrix system is possible here due to the spherical coordinate system. It can also be done in the
circular cylindrical one, in the case of two-dimensional scattering. In other coordinate systems, the more
complex form of the Green function expansion (if it exists at all), as well as the absence of suitable orthogonal
sets, like that of Dini series, may hinder or even make impossible the applicability of the present approach.
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Table 1

Number of truncation parameters for 1% accuracy in the case of Eq. (46)

k0a nmax ‘max

2.0958 4 8

4.1917 10 14

8.3834 16 19

12.5751 21 23

16.7668 25 27

20.9584 28 30
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A peculiar advantage that makes the whole procedure feasible here is the existence of indefinite integrals [1,13]
of Bessel functions of the same order but different argument. This seems to limit the procedure to the previous
systems only. However, the whole procedure may be applied in other shapes (non-circular cylindrical or non-
spherical) with the aid of the recently developed conformal mapping technique [14,15]. As it is explained there,
the PDE for a non-circular/spherical scatterer is transformed with the aid of a suitably chosen mapping
function to a PDE for a non-homogeneous circular/spherical scatterer. However, this point is a matter of
further research.

Finally, the method can be applied to other type of inhomogeneous (especially graded) materials
of spherical shape like elastic, piezoelectric [16], or piezoceramic [17]. The present method, based
on integral equations can be considered as an alternative to differential equation methods like that of
Frobenius [18].

5. Conclusion

Acoustic fields induced by external sources in media with inhomogeneous density and compressibility
have been treated by modifying the direct hybrid (analytical–numerical) method developed previously [1,2].
The modification provides a unified treatment of all cases, regardless of possible step discontinuities
in the density. This was accomplished by using a different volume integral equation that has been derived by
Ivakin, extracting once out of the volume integral the one differential operator and by using the Green’s
dyadic in connection with an expansion of the derivative of the pressure field in terms of L vectors. The final
algebraic equation is quite simple. The matrix sizes required are not larger than those of the previous
approach; so the present approach is a powerful method that can tackle any acoustic field with radial
dependence described by a Dini series; even the case of internal step discontinuities is also easily treated
without resorting to the use of delta functions with their inherent analytical complications that were apparent
in the previous approach [2].
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Appendix A. Selection of the proper orthogonal sets Mmn‘, Nmn‘, Lmn‘

The construction of the proper sets of vectors Mmn‘, etc., fully orthogonal over the volume of the
sphere, as mentioned in connection with Eq. (21), is based on the orthogonal properties of the surface
spherical harmonics vectors Pmn, Bmn, Cmn and a suitable choice of the arguments of the Bessel
functions, expressing the radial dependence of the vectors, in a way similar to that used for the corres-
ponding Dini’s expansions in the scalar case [1,2]. For the M set, the procedure leads, via Eq. (10), directly to
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the integral

IðMmn‘; M̂mnpÞ ¼

Z 2p

0

Z p

0

Z a

0

Mmn‘
gM

mn‘

a
; r

� 	
� M̂mnp

gM
mnp

a
; r

 !
r2 sin ydrdydf

¼ 4p
nðnþ 1Þ

2nþ 1

ðnþmÞ!

ðn�mÞ!
dmmdnn

Z a

0

jn

gM
mn‘

a
r

� 	
jn

gM
mnp

a
r

 !
r2 dr

¼ 4p
nðnþ 1Þ

2nþ 1

ðnþmÞ!

ðn�mÞ!
dmmdnn

a3jnðg
M
mn‘Þjnðg

M
mnpÞ

ðgM
mn‘Þ

2
� ðgM

mnpÞ
2

gM
mn‘j

0
nðg

M
mn‘Þ

jnðg
M
mn‘Þ

�
gM

mnpj0nðg
M
mnpÞ

jnðgM
mnpÞ

" #
; ‘ap. ðA:1Þ

Similar relations were found in Refs. [1,2]. We can now establish full orthogonality of the set over the volume
of the sphere by selecting gM

mn‘ as the roots of the ‘‘M-eigenvalue equation’’

gM
mn‘j

0
nðg

M
mn‘Þ

jnðg
M
mn‘Þ

� tM
nm ð‘ ¼ 1; 2; . . .Þ (A.2)

in which tM
nm may be any chosen constant. Moreover, the index m in Eq. (A.2) is not deleted, in order to imply

that for each m a different choice of tnm and gmn‘ is possible. As before [1,2] a proper choice of tM
nm helps

improve the convergence of series expansions over ‘ ¼ 1; 2; . . . . With such values for gM
mn‘ (A.1) becomes

(see also Ref. [1])

IðMmn‘; M̂mnpÞ ¼ 4p
nðnþ 1Þ

2nþ 1

ðnþmÞ!

ðn�mÞ!

a3

2
½j2nðg

M
mn‘Þ � jn�1ðg

M
mn‘Þjnþ1ðg

M
mn‘Þ�dmmdnnd‘p. (A.3)

The orthogonality of the above M set to any N or L vectors from the other sets follows directly from their
y, f dependence, as in Stratton [11].

Following the same procedure for the N set, using Eq. (13) and the abbreviations gM
mn‘=a ¼ kN

‘ , g
M
mnp=a ¼ kN

p

we get

IðNmn‘; N̂mnpÞ ¼

Z
V

dV 0Nmn‘ðk
N
‘ ; rÞ � N̂mnpðk

N
p ; rÞ ¼ 4p

nðnþ 1Þ

2nþ 1

ðnþmÞ!

ðn�mÞ!
dmmdnn

Z a

0

TNr2 dr, (A.4)

where Z a

0

TNr2 dr ¼
nðnþ 1Þ

kN
‘ kN

p

Z a

0

jnðk
N
‘ rÞjnðk

N
p rÞdrþ

1

kN
‘ kN

p

Z a

0

d

dr
½rjnðk

N
‘ rÞ�

d
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½rjnðk

N
p rÞ�dr

¼
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kN
‘ kN

p

Z a

0
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N
‘ rÞjnðk

N
p rÞdrþ

1

kN
‘ kN

p

ajnðk
N
‘ aÞ½jnðk

N
p aÞ þ kN

p aj0nðk
N
p aÞ�




�
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0

rjnðk
N
‘ rÞ½2kN

p j0nðk
N
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p Þ
2rj00nðk

N
p rÞ�

�
dr. ðA:5Þ

Using the Bessel differential equation, we substitute

j00nðxÞ ¼ �
2

x
j0nðxÞ þ

nðnþ 1Þ

x2
� 1

� �
jnðxÞ

to obtain Z a

0

TNr2 dr ¼
1

kN
‘ kN

p

ajnðk
N
‘ aÞ½xjnðxÞ�

0
x¼gN

mn‘
þ ðkN

p Þ
2

Z a

0

r2jnðk
N
‘ rÞjnðk

N
p rÞdr


 �

and the end result isZ a

0

TNr2 dr ¼
akN

‘ kN
p jnðk

N
‘ aÞjnðk

N
p aÞ

ðkN
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2
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N
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N
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( )
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Orthogonality of the N-set over the volume of the sphere is then established if we choose gN
mn‘ as the roots of

the ‘‘N-eigenvalue’’ equation’’

½gN
mn‘jnðg

N
mn‘Þ�

0

ðgN
mn‘Þ

2jnðg
N
mn‘Þ
� tN

nm ð‘ ¼ 1; 2; . . .Þ. (A.7)

Then,

IðNmn‘; N̂mnpÞ ¼ 4p
nðnþ 1Þ

2nþ 1

ðnþmÞ!

ðn�mÞ!

a3

2
j2nðg

N
mn‘Þ 1�
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ðgN
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2

" #
þ j0n

2
ðgN

mn‘Þ þ 3j0nðg
N
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( )
dmmdnnd‘p

(A.8)

Following the same procedure with the L-set of vectors we get

IðLmn‘; L̂mnpÞ ¼

Z
V

dV 0Lmn‘ðk
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L
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Orthogonality of the L-set over the volume of the sphere is then established if gL
mn‘ are chosen as the roots of

the ‘‘L-eigenvalue equation’’

j0nðg
L
mn‘Þ

gL
mn‘jnðg

L
mn‘Þ
� tL

nm ð‘ ¼ 1; 2; . . .Þ. (A.10)

Then,

IðLmn‘; L̂mnpÞ ¼ 4p
1

2nþ 1
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Finally, we must consider the orthogonality between the L and N sets, which is not assured from their angular
(y,f) part only. However, over the volume of the sphere we have

IðNmn‘; L̂mnpÞ ¼

Z
V

dV 0Nmn‘ðk
N
‘ ; rÞ � L̂mnpðk

L
p ; rÞ ¼ 4p
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0

TNLr2 dr, (A.12)

where from Eqs. (11) and (13), and integration by parts we get for all values of ‘; pZ a
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Orthogonality and decoupling between the L and N sets is now established over the volume of the sphere

if we choose as gN
mn‘ or g

L
mnp the roots of either jnðg

N
mn‘Þ ¼ 0 or jnðg

L
mnpÞ ¼ 0. The first choice is more convenient

here, since it leaves gL
mn‘ unchanged from our previous choice (A.10). So now, IðNmn‘; L̂mnpÞ ¼ 0 even

when ‘ ¼ p.

Appendix B

In the case of a sphere of constant density r1ar0 (as well as of constant compressibility b1ab0), integral
equation (4) takes the form

FðrÞ ¼ FincðrÞ þ k2
0

b1

b0
� 1

� � Z
V

Fðr0Þgðr; r0ÞdV 0 �
r0
r1
� 1

� � Z
V

r0Fðr0Þ � r0gðr; r0ÞdV 0. (B.1)

Let us try a solution of the form

FðrÞ ¼
X1
n¼1

Xn

m¼�n

½AmnjnðkrÞPm
n ðcos yÞ e

imf�. (B.2)
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Here, there is no need for extra expansion like that described in Eq. (43). We work with
Lmnðk; rÞ ¼ ð1=kÞr½jnðkrÞY mnðy;fÞ�. In fact using Eqs. (25), (27), the first of Eq. (28), as well as Eqs. (14)
and (15) of Ref. [1] we end up with

AmnjnðkrÞ ¼ Ainc
mnjnðk0rÞ þ r0

o2ðb1 � b0Þ

k2
� k2

0

AmnfjnðkrÞ þ ik0a
2jnðk0rÞ½kj0nðkaÞhnðk0aÞ � k0jnðkaÞh0nðk0aÞ�g

þ Amn

r0
r1
� 1

� �
k

k2
� k2

0

f�kjnðkrÞ þ ik2
0a

2jnðk0rÞ½kjnðkaÞh0nðk0aÞ � k0hnðk0aÞj0nðkaÞ�g. ðB:3Þ

If we choose k ¼ k1 ¼ o
ffiffiffiffiffiffiffiffiffi
b1r1

p
the terms of jnðk1rÞ are cancelled out and we obtain

Amn ¼ �
1=ik0a

2

ðr0=r1Þkj0nðkaÞhnðk0aÞ � k0jnðkaÞh0nðk0aÞ
(B.4)

the same expression as that found with the separation of variables method.
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