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Abstract

This paper presents a systematic approach to stabilizing a kind of linear undamped systems of multiple degrees of

freedom by using both position and delayed position feedbacks, namely, PDP feedbacks for short. For the fully actuated

system, the approach enables one to complete the design of controller directly through the use of modal decoupling and a

stability chart. For the under-actuated system, the approach includes two steps. The first step is to move all the eigenvalues

of the system on the imaginary axis of the complex plane by using a position feedback, and the second step is to drag all the

eigenvalues of the system to the left half open complex plane through the use of a delayed position feedback, which can be

determined on the basis of sensitivity analysis of eigenvalues. Two examples, i.e., a fully actuated robotic manipulator and

an under-actuated double inverted pendulum, are discussed in the paper to demonstrate the design of controllers for the

two different types of systems and to support the efficacy of the proposed approach.

r 2008 Elsevier Ltd. All rights reserved.
1. Introduction

For slightly damped or undamped mechanical systems, such as a rotary crane and a robotic manipulator,
their free vibrations always decay very slowly. Over the past decades, various passive and active control
techniques have been developed to suppress the vibrations of those mechanical systems [1,2]. Even though the
passive control techniques, including various dampers, distributed damping treatments, dynamic vibration
absorbers, etc. [1,3], are widely used in engineering, they have some inherent drawbacks, such as the difficulty
in suppressing the vibration of very low frequency. The active control techniques make it possible to achieve
the better performance of vibration suppression in the fields where the passive control techniques exhibit their
limits [4], especially when a system has negative stiffness and/or damping so that the unstable equilibrium of
the system should be stabilized.

The last decade has witnessed an increasing interest toward the stabilization of unstable mechanical systems,
such as those without damping or with negative stiffness and damping. For example, Jangid studied the
parametric optimization of the multiple tuned mass dampers for an undamped primary system [5]. Coupe
proposed a design procedure of relay controller for the vibration reduction of a linear undamped system [6].
ee front matter r 2008 Elsevier Ltd. All rights reserved.
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Kobayashi stabilized an infinite-dimensional undamped system by using a low-gain adaptive velocity feedback
[7]. Hu presented how to stabilize the periodic vibration of a linear undamped oscillator by using a delayed
position feedback (DPF) or a delayed velocity feedback, or both [8], with help of the theory of stability
switches of time-delay systems [9]. As a following work, Wang and Hu studied the stabilization of linear
undamped systems of multiple degrees of freedom [10]. Moreover, the stabilization of chaotic motions has
become a hot topic since the pioneering work of Pyragas [11].

Theoretically speaking, a linear, time-invariant system can always be stabilized by using a full state
feedback, such as a linear quadratic regulator (LQR) controller, provided that the system is controllable.
However, the realization of an LQR requires the measurements of both position and velocity of the controlled
system at each degree of freedom. The velocity sensors may result in cost, space, and malfunction problems
[12] while constructing the velocity measurement from other kind of sensors usually introduce heavy noise and
deviation, which have to be removed by using additional filters. Hence, the design of controllers in the absence
of velocity measurement has become an interesting problem. Nevertheless, it is not possible to stabilize the
vibration of linear undamped system by using only a position feedback, such as a positive position feedback
controller [13]. Recent studies show that the DPF plays a part of role of the velocity feedback. For example,
Atay stabilized an inverted pendulum by using a DPF controller [14]. Jnifene used a DPF controller to
suppress the lightly damped flexible link [15]. Masound et al. constructed a nonlinear DPF to reduce the
payload pendulations on rotary cranes [16]. These studies, however, have not yet given a systematic approach
to the design of a DPF controller for the linear undamped system of multiple degrees of freedom.

The objective of this paper is to propose a systematic approach to stabilizing the unstable or critically stable
equilibrium of a kind of linear undamped systems of multiple degrees of freedom by using both position and
delayed position feedbacks. The rest part of the paper is organized as follows. In Section 2, the controlled
systems of concern are described and classified into two types, namely, the fully actuated systems and under-
actuated systems. Then, a systematic approach is presented in Section 3 to stabilize the linear undamped
systems of multiple degrees of freedom. In Section 4, two illustrative examples are given to demonstrate the
design of controllers and the efficacy of the proposed approach. Finally, some concluding remarks are made
after a brief discussion in Section 5.

2. Description of controlled systems

The study focuses on a kind of linear undamped systems of n degrees of freedom under control governed by

M €xðtÞ þ KxðtÞ ¼ BuðtÞ, (1)

where xARn is the position vector in a frame of physical coordinates, uARm the vector of independent control
input, MARn� n the mass matrix, KARn� n the stiffness matrix, BARn�m the input matrix of control,
respectively. In what follows, the mass matrix M is assumed to be positive definite as usual, whereas the
stiffness matrix K is assumed to be symmetric only so as to cover the case when the system is unstable. For
example, K is negative definite for a linearized double inverted pendulum such that the four eigenvalues of the
system are either positive or negative real numbers.

The controlled systems described by Eq. (1) can be divided into two types, namely, the fully actuated
systems if m ¼ n and the under-actuated systems if mon. This classification is essential for the design of
controllers in Section 3.

3. Design of PDP feedback

3.1. Fully actuated systems (m ¼ n and B is invertible)

A fully actuated system is subject to as many independent control inputs as its degrees of freedom. When
each degree of freedom of the system is directly driven by an actuator, the input matrix B ¼ diag[b1,b2,y, bn]
yields b1b2,y, bn 6¼0 such that B is invertible. For many practical systems, say, the continuous systems such as
beams and plates, the input force of an actuator does not correspond to a single degree of freedom, but several
or even all of them instead. In such a case, B is not a diagonal matrix, but should be full in rank. Otherwise,
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some of actuators are dependent on each other and the others are not necessary so that the definition of fully
actuated system is not true. That is, the full rank of input matrix B means that the system is fully actuated.

It is well known that the linear undamped system of n degrees of freedom described by Eq. (1) can be
decoupled into n systems of single degree of freedom in the modal space since the mass matrix M is positive
definite, and the stiffness matrix K is symmetric. This fact enables one to determine the feedback gains for the
n decoupled systems of single degree of freedom independently as following.

Let T be the modal matrix of the system described by Eq. (1). Then, one has

Mm � TTMT ¼ diag½m1;m2; . . . ;mn�; Km � TTKT ¼ diag½k1; k2; . . . ; kn�, (2)

where Mm and Km are the modal mass matrix and the modal stiffness matrix, respectively. Substituting the
following modal transform

xðtÞ ¼ TyðtÞ; y 2 Rn (3)

into Eq. (1) yields

Mm €yðtÞþKmyðtÞ ¼ vðtÞ, (4)

where v(t)�TT
Bu(t) is the control input in the modal space. Eq. (4) governs n decoupled systems of single

degree of freedom as follows:

mj €yjðtÞ þ kjyjðtÞ ¼ vjðtÞ; j ¼ 1; . . . ; n. (5)

For simplicity, the subscript j will be neglected hereinafter in this section. Now, the original problem of
controller design for a system of n degrees of freedom is converted into the one for n similar systems of single
degree of freedom as follows:

m €yðtÞ þ kyðtÞ ¼ vðtÞ; vðtÞ � kpyðtÞ þ kdpyðt� tÞ. (6)

The design of controller is to choose two proper feedback gains kp and kdp, together with a time delay t, so
as to ensure the asymptotic stability of the zero solution of Eq. (6).

As done in Ref. [14], the study begins with the characteristic equation of Eq. (6):

DðsÞ � ms2 þ ðk � kpÞ � kdp expð�stÞ ¼ 0. (7)

If all the roots of Eq. (7) stay on the left half open complex plane, then the zero solution of Eq. (6) is
asymptotically stable. If the zero solution is marginally stable, then D(s) ¼ 0 has a pair of pure imaginary
roots s ¼7io with o40 for some positive value of t. Separating the real and imaginary parts of D(7io) ¼ 0
yields

kdp sinðotÞ ¼ 0, (8a)

ðk � kpÞ �mo2 ¼ kdp cosðotÞ. (8b)

Solving Eq. (8a) gives

kdp ¼ 0 or ot ¼ jp; j ¼ 0; 1; . . . : . (9)

Substituting Eq. (9) into Eq. (8b) leads to three possible cases as following.
Case I: kdp ¼ 0, i.e., there is no DPF. In this case, Eq. (8b) has a pair of roots o1;2 ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðk � kpÞ=m

p
,

corresponding to the natural frequency of the decoupled system of single degree of freedom, if and only if
k4kp holds.

Case II: kdp 6¼0, t ¼ 0, i.e., the time delay vanishes so that the DPF joins the position feedback. In this case,

Eq. (8b) has a pair of roots o1;2 ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðk � kp � kdpÞ=m

p
, corresponding to the natural frequency of the

decoupled system of single degree of freedom, if and only if k4kp+kdp holds.
Case III: kdp 6¼0 and t 6¼0. In this case, o ¼ jp/t, j ¼ 0,1,y and Eq. (8b) becomes

ð�1Þj
kdp

m
¼

k � kp

m
�

j2p2

t2

� �
; j ¼ 0; 1; . . . . (10)
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Fig. 1. Stability regions (marked by 0) of Eq. (6) on the (kp, kdp) plane. The number in each region is the number of roots with positive real

part.
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Eq. (10) governs a set of lines on the (kp, kdp) plane as shown in Fig. 1. Hence, a pair of roots is crossing the
imaginary axis of the complex plane at s ¼7io ¼7ijp/t, j40 when the combination of feedback gains (kp,
kdp) falls at a line in Fig. 1, except for the line k ¼ kp+kdp corresponding to the case when a single real root is
crossing the imaginary axis at s ¼ 0, namely, j ¼ 0. The transition direction of the roots can be determined by
checking the sign of q[Re(s)]/qkdp. The above discussion can be summarized as the following lemma depicted
in Fig. 1, see also in Ref. [14] for details.

Lemma 1. The zero solution of Eq. (6) is asymptotically stable if and only if the following inequalities

hold true:

t40; min
ðk � kpÞ

m
�

j2p2

t2
;
ðj þ 1Þ2p2

t2
�
ðk � kpÞ

m

� �
4ð�1Þj

kdp

m
40, (11)

for any nonnegative integer j.
Once the feedback gains for every modal degree of freedom are determined, the control input in the physical

coordinates can be constructed as following:

uðtÞ ¼ B�1T�TvðtÞ

¼ B�1T�T diag½kp1; kp2; . . . ; kpn�yðtÞ þ B�1T�T diag½kdp1; kdp2; . . . ; kdpn�yðt� tÞ. (12)

From Eq. (3), the position and delayed position (PDP) feedback controller given in Eq. (12) can be recast as
a simpler form

uðtÞ ¼ KpxðtÞ þ Kdpxðt� tÞ, (13)

where Kdp � B�1T�T diag½kdp1; kdp2; . . . ; kdpn�T
�1, Kdp � B�1T�T ½kd1; kd2; . . . ; kdn�T

�1.

Remark 1. If the controlled system described by Eq. (1) is proportionally damped, the dynamic equation of
the fully actuated system is

M €xðtÞ þ C _xðtÞ þ KxðtÞ ¼ BuðtÞ, (14)

where the damping matrix C is positive semi-definite, and can be diagonalized by the modal matrix T as

Cm � TTCT ¼ diag½c1; c2; . . . ; cn�; cjX0; j ¼ 1; . . . ; n. (15)
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The corresponding characteristic equation of the damped system of single degree of freedom, with the
subscript neglected, reads

DðsÞ � ms2 þ csþ ðk � kpÞ � kdp expð�stÞ ¼ 0. (16)

It is easy to derive the sensitivity of the eigenvalue s with respect to the modal damping c as following:
qs

qc
¼ �

s

2msþ cþ kdpt expð�stÞ
. (17)

Substituting s ¼ a+io into Eq. (17) gives

sgn Re
qs

qc

� �� �
¼ �sgn 2mðo2 þ a2Þ þ acþ kdpt expð�atÞ½a cosðotÞ � o sinðotÞ�

� �
. (18)

Eq. (18) indicates that the increasing damping does not necessarily improve the performance of the PDP
feedback controller. As a matter of fact, it is possible to achieve the asymptotic stability of the controlled
system through the only use of a position feedback if the system is damped.

3.2. Under-actuated systems (mon)

The under-actuated systems cover a great variety of industrial products, such as space robots, underwater
robots, mobile robots, VTOL aircraft, etc. [17,18]. Those systems have fewer control inputs than their degrees
of freedom, and give rise to a challenging problem of controller design. Furthermore, when one or more
actuators of a fully actuated system happen to fail, the system becomes an under-actuated one and requires an
adaptive change of the control law. Thus, the proper design of controllers for under-actuated systems will
increase the reliability and fault tolerance of systems. To stabilize an under-actuated system by using a PDP
feedback controller, a two-step strategy is presented as following.

Step 1: Moving all of the eigenvalues of the controlled system onto the imaginary axis of the complex plane
by using a position feedback.

Obviously, it is not possible to achieve the asymptotical stability of Eq. (1) by using a position feedback
because the position feedback only changes the equivalent stiffness matrix of the controlled system and does
not affect the damping matrix of the system. Hence, the best result of a position feedback in stabilization is to
reach the marginal stability.

To gain an insight into Step 1, it is better to rewrite Eq. (1) in the form

€xðtÞ ¼ ~A xðtÞ þ ~B uðtÞ, (19)

where ~A � �M�1K and ~B �M�1B. Substituting the linear position feedback

upðtÞ ¼ �KpxðtÞ (20)

into Eq. (19) yields

€xðtÞ ¼ ð ~A� ~B KpÞxðtÞ. (21)

Eq. (21) is marginally stable or unstable when the real part of any eigenvalue is zero or positive. On the basis
of the theory of linear control, it is easy to reach the following Proposition 1.

Proposition 1. The eigenvalues sj, j ¼ 1, 2,y, 2n of Eq. (21) can be arbitrarily assigned on the imaginary axis if

the system described by

_yðtÞ ¼ ~A yðtÞ þ ~B uðtÞ (22)

is controllable.

Proof. The characteristic equation of Eq. (21) reads

DðsÞ � det s2I� ð ~A� ~B KpÞ
	 


¼ 0. (23)

Substituting the control input u(t) ¼ �Kpy(t) into Eq. (22) yields

_yðtÞ ¼ ð ~A� ~B KpÞyðtÞ. (24)
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The corresponding characteristic equation is

DðlÞ � det lI� ð ~A� ~B KpÞ
	 


¼ 0. (25)

The theory of linear control indicates that the roots lj, j ¼ 1, 2,y, n of Eq. (25) can be arbitrarily assigned
on the complex plane if Eq. (22) is controllable. The comparison of Eqs. (23) and (25) shows that it is possible
to assign all the roots of Eq. (25) arbitrarily on the negative real axis, namely, lj ¼ s2j o0; j ¼ 1; 2; . . . ; n,
under the assumption of the controllable Eq. (22). As a result, the eigenvalues of Eq. (21) can be arbitrarily
assigned as n pair of conjugated pure imaginary numbers

sj ¼ i
ffiffiffiffiffiffiffi
lj

�� ��q
; snþj ¼ �i

ffiffiffiffiffiffiffi
lj

�� ��q
; j ¼ 1; 2; . . . ; n: &

Remark 2. In most cases, all the eigenvalues of an undamped system stay on the imaginary axis and Step 1 can
be skipped. However, Step 1 becomes necessary in the following cases:
(1)
 Sometimes, the stiffness matrix of a system is not positive definite and even negative definite so that some
eigenvalues of the system may be pairs of positive and negative real numbers [19]. For example, the
linearized dynamic equation of a double pendulum around the inverted equilibrium has two eigenvalues
with positive real part.
(2)
 The eigenvalues of uncontrolled systems are on the imaginary axis, but may not at the desired locations.
Remark 3. Under the condition that Eq. (22) is controllable, the eigenvalues of the system can be placed on
the imaginary axis by using the suboptimal control method [20] or the pole assignment. Sometimes, the design
of a controller by using the pole assignment will encounter indeterminate problem, which makes the choice of
feedback gains very difficult due to infinite feasible options. In such a case, it is possible to design a suboptimal
control to solve the problem.

Step 2: Dragging all the eigenvalues of the controlled system to the left half open complex plane from the
imaginary axis by introducing a DPF into the controller.

In Step 1, all the eigenvalues of Eq. (21) have been placed on the imaginary axis by using the position
feedback up(t)��Kpx(t) in Eq. (20). Step 2 is to construct the following controller:

uðtÞ � upðtÞ þ udpðtÞ, (26)

where udp(t) is the DPF as follows:

udpðtÞ � �Kdp xðtÞ � xðt� tÞ½ �. (27)

The objective of this step is to determine the feedback gain matrix Kdp and the time delay t to achieve the
asymptotic stability of controlled system.

Substituting Eqs. (20), (26) and (27) into Eq. (1) yields

M €xðtÞ þ KxðtÞ ¼ �B KpxðtÞ þ Kdp½xðtÞ � xðt� tÞ�
� �

. (28)

Eq. (28) corresponds to a pair of adjoint transcendental eigenvalue problem in the form

Eðs; tÞy ¼ 0; z̄TEðs; tÞ ¼ 0, (29)

where

Eðs; tÞ � s2Mþ Kþ BðKpþKdpÞ � BKdp expð�stÞ
h i

, (30)

where y and z are the right and left eigenvectors corresponding to eigenvalue s. Note that when t ¼ 0 and
udp(t) ¼ 0, all the eigenvalues sj, j ¼ 1, 2,y, n are pure imaginary numbers with zero real part. Hence, if the
following conditions

Re
qs

qt

� �����
s¼sj ;t¼0

o0; j ¼ 1; 2; . . . ; 2n (31)
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are ensured, then every eigenvalue will come into left half open complex plane as time delay increase from zero
to a small positive value, because s depends continuously on t. Eq. (31) is, by nature, the inverse problem of
the sensitivity analysis of a nonlinear eigenvalue problem, for which Bindolino and Mantegazza suggested the
following method [21].

Lemma 2. For a pair of adjoint nonlinear eigenvalue problem

Nðs; pÞy ¼ 0; z̄TNðs; pÞ ¼ 0, (32)

where p is a real or complex parameter, the sensitivity of eigenvalue s with respect to the parameter p is

qs

qp
¼ �

z̄TðqN=qpÞy

z̄TðqN=qsÞy
. (33)

Applying Lemma 2 into Eqs. (29) and (30) leads to

qs

qt
¼ �

z̄TðqE=qtÞy
z̄TðqE=qsÞy

¼
�sz̄T BKdp expð�stÞ

	 

y

z̄T 2Msþ tBKdp expð�stÞ
	 


y
. (34)

Substituting t ¼ 0, sj ¼ io, sn+j ¼ �io, j ¼ 1, 2, y, n into Eq. (34) yields

qsj

qt

����
s¼sj ;t¼0

¼ �
z̄Tj BKdpyj

2z̄Tj Myj

; j ¼ 1; 2; . . . ; 2n, (35)

where yj and zj are the right and left eigenvectors corresponding to the jth eigenvalue sj of Eq. (29) when
t ¼ 0, namely, udp(t) ¼ 0. They are just the right and left eigenvectors of Eq. (21). As assumed, the mass
matrix M is positive definite so that z̄Tj Myj40; j ¼ 1; 2; . . . ; 2n can hold true. Then, the conditions in Eq. (31)
become

z̄Tj BKdpyj40; j ¼ 1; 2; . . . ; 2n. (36)

Because B, all yj and zj are already known after Kp is determined, Eq. (36) represents 2n inequalities
with only Kdp, whereas the first n inequalities are identical to the last n inequalities. As shown in Appendix A,
Eq. (36) has solutions provided that zTj Ba0; j ¼ 1; 2; . . . ; n hold and fyi; i ¼ 1; 2; . . . ; ng is a linear
independent family of vector. In most cases these two conditions hold. If they happened to be false, one can
always make them be satisfied by adjusting Kp since Eq. (22) is controllable. Solving the first n inequalities gives
the stability region of Eq. (28) in the parameter space of Kdp when the time delay t is slightly larger than zero.

As mentioned at the end of last paragraph, it is possible to guarantee the stability of controlled system only
if the time delay is short. Nevertheless, a longer time delay will make the system unstable even though the
elaborately designed Kdp yields Eq. (36). Therefore, it is necessary to figure out the tolerable upper bound of
the time delay to guarantee the stability of the controlled system. The consideration of this problem begins
with the characteristic equation of Eq. (28) as following:

Dðs; tÞ � det Eðs; tÞ ¼ 0, (37)

which can always be recast in the form

Dðs; zÞ �
Xm

k¼0

QkðsÞz
k ¼ 0; z � expð�stÞ, (38)

where tX0, Q0(s),y,Qm(s) are m+1 polynomials of real coefficients that have even orders only, and
deg[Q0(s)] ¼ 2n4deg[Qk(s)], k ¼ 1,y,m. As done in Refs. [10,22], one defines

DðjÞðs; zÞ � Q
ðj�1Þ
0 ð�sÞDðj�1Þðs; zÞ �Q

ðj�1Þ
mþ1�jðsÞz

mþ1�jDðj�1Þð�s; 1=zÞ, (39)

where Q
ðjÞ
k ðsÞ is the coefficient of D(j)(s, z) with D(0)(s, z)�D(s, z) and Qð0Þm ðsÞ ¼ QmðsÞ. Through a straight-

forward calculation, it is possible to see that D(m)(s, z)�D(m)(s) is independent of z and if D(s,t) has a pair



ARTICLE IN PRESS
B. Liu, H.Y. Hu / Journal of Sound and Vibration 312 (2008) 509–525516
of roots s1,2 ¼7io for t40, then D(m)(7io) ¼ 0 is true and can be simplified as a polynomial equation in o

F ðoÞ � d0o2ð2mnÞ þ � � � þ dio2ð2mn�iÞ þ � � � þ d2mn ¼ 0. (40)

For t ¼ 0, all the eigenvalues of the system are pure imaginary. Then Kdp should be selected to make sure that
the derivative of the real part of an eigenvalue with respect to t is negative so that each of the eigenvalues has a
negative real part with an increase in t from zero to a small positive value. As the time delay increases gradually,
Eq. (37) will have a pair of pure imaginary roots 7io again and lead to Eq. (40). Once a root oc of F(o) is in
hand, many routines, say, those in Ref. [10] and the references therein, are available to determine the critical time
delays tk such that D(ioc,tk) ¼ 0 holds. In fact, if F(o) has r positive real roots focg ¼ foc1;oc2; . . . ;ocrg,
substituting s ¼ iocj into Eq. (38) and separating the real and the imaginary parts, one obtains two linear
equations of m orders

f ðg;bÞ ¼ 0; gðg;bÞ ¼ 0, (41)

where g ¼ sin(ocjt) and b ¼ cos(ocjt). Eq. (41) is easy to be solved. Having g and b in hand, one can determine
the critical time delays associated with ocj by

tj;l ¼
y
ocj

þ
2lp
ocj

; l ¼ 0; 1; 2; . . . , (42)

where yA[0,2p), sin(y) ¼ g and cos(y) ¼ b. Undoubtedly, zero is a critical time delay with n positive roots of Eq.
(40). When t ¼ 0, Eq. (37) degenerates to Eq. (23). Thus, the n pairs of pure imaginary roots 7iocj, j ¼ 1,y, n
of Eq. (23) are the roots of Eq. (37) with critical time delays tj,0 ¼ 0, j ¼ 1,y, n. When t equals to the next
critical time delay, denoted by tn+1,0, at least one pair of eigenvalues will cross the imaginary axis from the left to
the right. The controlled system becomes unstable again. As discussed in Refs. [9,10], the time-delay system has
the property of stability switches as the time delay increases. One can only focus on the first interval (0, tn+1,0) of
time delay, where the controlled system is asymptotically stable.

In practice, it may not be enough if only the time-delay region is known to claim the asymptotic stability of
a controlled system. It may be desirable for the controlled system to be convergent quickly. Therefore, it is an
essential issue to properly select the time delay. This issue will be discussed through the illustrative examples in
Section 4.

Remark 4. The design of controller proposed in this section is also feasible to the linear damped systems. For
a linear damped system, the position feedback controller can asymptotically stabilize the system by using the
sub-optimal control. The corresponding eigenvalue problem of the controlled system becomes

s2Mþ sCþ ðKþ BKpÞ
	 


y ¼ 0; z̄T s2Mþ sCþ ðKþ BKpÞ
	 


¼ 0. (43)

Eq. (43) has n pairs of conjugated eigenvalues with negative real part, and n pairs of conjugated
eigenvectors. Meanwhile, in view of zjþn ¼ z̄j ; yjþn ¼ ȳj and sjþn ¼ s̄j in Eq. (43), the counterpart of
condition (31) turns to be

Re
qs

qt

� �����
sj ;t¼0
¼ �Re

sj z̄
T
j BKdpyj

z̄Tj ð2sjMþ CÞyj

 !
o0; j ¼ 1; 2; . . . ; n. (44)

The DPF udp(t) ¼ �Kdp[x(t)�x(t�t)] can improve the stability of controlled system as in the case of
undamped systems.

4. Illustrative examples

4.1. A fully actuated system

Fig. 2 presents a robotic manipulator of two degrees of freedom under direct drives similar to the model
discussed in Refs. [17,23]. The system is a fully actuated and can be described by

MðhðtÞÞ€hðtÞ þ pðhðtÞ; _hðtÞÞ ¼ uðtÞ, (45)
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Fig. 2. Schematic of a robotic manipulator.

Table 1

Physical parameters of the robotic manipulator

Parameters Values Descriptions

m1 0.0350 kg Mass of the first pendulum

m2 0.1302 kg Mass of the second pendulum

m3 0.2230 kg Mass of the lump mass

L1 ¼ 2l1 0.185m Length of the first pendulum

L2 ¼ 2l2 0.510m Length of the second pendulum

G 9.8m s�2 Gravitational acceleration
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where h(t) is the vector of angular position, u(t) is the vector of driving torque, M(h(t)) and pðhðtÞ; _hðtÞÞ are the
inertia matrix and the vector of the Coriolis force, which yield

MðhðtÞÞ �
4ðm1 þ 3m2 þ 3m3Þl

2
1 6m2l1l2 cosðy1 � y2Þ

6m2l1l2 cosðy1 � y2Þ 4m2l
2
2

2
4

3
5,

pðhðtÞ; _hðtÞÞ �
6m2l1 _y

2

2 sinðy1 � y2Þ � 3ðm1 þ 2m2 þ 2m3Þl1g sin y1

�6m2l2 _y
2

1 sinðy1 � y2Þ � 3m2l2g sin y2

2
4

3
5. (46)

The linearization of Eq. (45) at the upright equilibrium ½h; _h�Tuu ¼ ½0; 0; 0; 0�
T gives

Muu
€hðtÞ þ KuuhðtÞ ¼ uðtÞ, (47)

where

Muu �
4ðm1 þ 3m2 þ 3m3Þl

2
1 6m2l1l2

6m2l1l2 4m2l
2
2

" #
; Kuu ¼ �

3ðm1 þ 2m2 þ 2m3Þl1g 0

0 3m2l2g

" #
. (48)

Substituting the system parameters in Table 1 into Eq. (48) and decoupling it by using the following modal
transform:

hðtÞ ¼ TxðtÞ �
�1:6775 �5:7995

�4:3073 4:6655

� �
xðtÞ, (49)
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one arrives at two decoupled systems of single degree of freedom

€x1ðtÞ � 23:7834x1ðtÞ ¼ v1ðtÞ; €x2ðtÞ � 89:0607x2ðtÞ ¼ v2ðtÞ, (50)

where ½v1ðtÞ; v2ðtÞ�
T � TTuðtÞ is the vector of control input in modal space. Referring to the stability chart in

Fig. 1, one can set t ¼ 0.1 s and take the feedback gains in the leftmost zero zone in Fig. 1 so that the feedback
law in modal space reads

v1ðtÞ ¼ �200x1ðtÞ þ 80x1ðt� 0:1Þ; v2ðtÞ ¼ �240x2ðtÞ þ 100x2ðt� 0:1Þ. (51)

By recalling Eq. (13), one comes to the following control law in physical space:

uðtÞ ¼ KphðtÞ þ Kdphðt� 0:1Þ, (52)

where

Kp �
�8:1821 �3:4168

�3:4168 �6:8776

� �
; Kdp �

3:3418 1:3399

1:3399 2:7615

� �
. (53)

Fig. 3 shows the stabilization of the robotic manipulator at the upright equilibrium and verifies the efficacy
of the PDP feedback controller. In fact, the time delays chosen for different modal coordinates are not
necessarily the same. Of course, the final feedback matrix becomes a little bit complicated if the time delays are
not identical.

In practical application, there are several ways to implement the delayed control part, for example, using
various delay-lines and the method of recording and reproduction. For very short delays, from several nano-
seconds to several micro-seconds, analog implementations may actually use circuitry made up of ‘sample-and-
hold’ or ‘bucket brigade’ devices. Those devices are commonly seen in audio products and some of them, say
SAD-1024, even can produce delays up to hundreds milli-seconds. If a long time delay is desired, one may
cascade enough of these devices together. Another way of obtain an analog delay is recording the incoming
signal to a tape, and reading it by a playback head at another point on the tape. One can adjust the time delay
by changing either the tape speed, or the distance between the recording and playback heads. Actually, it is
relatively simple to realize a digital delay by adopting the circular buffer technique. In each sampling interval, a
previously stored value is read from a location in memory, and then the current value of the signal is stored
into the same memory location. The next sampling period, one applies the same operation to the next location.
When the end of the memory is reached, one loops around to the first memory location. Obviously, the time
delay is N times of sample period where N is the length of the buffer.
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Fig. 3. Angular position of the manipulator under a PDP feedback control.
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4.2. An under-actuated system

This subsection focuses on an under-actuated system as shown in Fig. 4, namely, the famous double
inverted pendulum on a cart governed by

MðhÞ€hðtÞ þ pðhðtÞ; _hðtÞÞ ¼ BðhÞ €xðtÞ, (54)

where the acceleration €xðtÞ of the cart plays the role of control input. As done in previous example, by
linearizing Eq. (54) at the upright equilibrium ½h; _h�Tuu ¼ ½0; 0; 0; 0�

T and multiplying both right and left sides by
M�1uu , one obtains

€hðtÞ þ ~Kuu hðtÞ ¼ ~Buu €xðtÞ, (55)

where

~Kuu � �
g

4m1 þ 3m2 þ 12m3

3ðm1 þ 2m2 þ 2m3Þ=l1 �9m2=2l1

�9ðm1 þ 2m2 þ 2m3Þ=2l2 3ðm1 þ 3m2 þ 3m3Þ=l2

" #
,

~Buu �
1

2ð4m1 þ 3m2 þ 12m3Þ

3ð2m1 þm2 þ 4m3Þ=l1

�3m1=l2

" #
. (56)

For €x ¼ 0, substituting the system parameters in Table 1 into Eq. (55) and solving the corresponding
characteristic equation gives two eigenvalues with positive real part. Thus, Step 1 described in Section 3.2 is
needed. To determine the gain matrix Kp of the position feedback by using suboptimal control method, let the
input weight r�1, the state weight matrix Q�I4� 4, and the output matrix Cs � I2�2; 0½ �. First, one should
calculate the gain matrix Ksf of the optimal state feedback by LQR algorithm

Ksf ¼ LQRðAs;Bs;Q; rÞ, (57)

where

As �
0 I2�2

� ~Kuu 0

" #
; Bs �

0

~Buu

" #
. (58)
x
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m3
�1

m2
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L1=2l1

Fig. 4. Schematic of a double inverted pendulum on a cart.
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Then, following Ref. [20], one calculates the gain matrix of the output (position) feedback as following:

Kp ¼ Ks f VC
T
s ðCsVC

T
s Þ
�1, (59)

where V is the solution of the following Lyapunov equation:

ðAs � BsKsf ÞVþ VðAs � BsKsf Þ
T
þQ ¼ 0. (60)

Substituting the chosen weight matrices into Eqs. (59) and (60) leads to the following position feedback law:

upðtÞ � �KphðtÞ (61)

with the feedback gain

Kp ¼ 41:0562 �32:4579
	 


. (62)

Corresponding eigenpairs of the controlled system are

s1; y1; z1
� �

¼ 1:5112i
1:0

0:2474

" #
0:9442

�1:0

" #8<
:

9=
;,

s2; y2; z2
� �

¼ 10:6642i
1:0

0:9442

" #
�0:2474

1:0

" #8<
:

9=
;. (63)

Now, one can start to figure out the stability diagram in Kdp parameter plane. Substituting yi, zi, i ¼ 1, 2 and
B into inequality (36), one obtains the following two inequalities:

5:26kdp1 þ 1:29kdp240; �1:42kdp1 � 1:34kdp240. (64)

Fig. 5 shows the diagrammatic presentation of Eq. (64).
To achieve the high control performance, Kdp should be properly chosen. Otherwise, an excessively large or

small gain matrix will lead to the poor control performance no matter how to adjust the time delay. Fig. 6
shows the locus of maximal real part of the eigenvalue of the controlled system for different Kdp with an
increase in the time delay.

In many cases, an increase of time delay in the feedback path makes the dominant eigenvalue of closed-loop
system move rightward even cross the imaginary axis and accordingly cause the instability of the system.
Therefore, time delay makes a bad impression of deteriorating control performance of the system on most
people. However, it is not always the case. If the feedback gains are properly designed, the deliberately added
time delays in the feedback path will lead the right most eigenvalue to move leftward. Therefore, the stability
-100

-80

-60

-40

-20

0

k d
p2

0 20 40 60 80 100

kdp1

kdp2=-4.04kdp1

kdp2=-1.06kdp1

(13.4,-22.5)

Stable Region

Fig. 5. Stability region of controlled system on (kdp1, kdp2) plane.
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Fig. 7. Comparison between the PDP controller and LQR in the noise-free environment.
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margin is enlarged as shown in Fig. 6 when t varies from 0 to 0.14 and Kdp ¼ ½ 13:4 �22:5 �. It is worth being
mentioned that during the numerical calculation the Pade approximation [24] can be used to estimate the
transcendental term exp(�st) so as to reduce the computational cost significantly without losing high
precision. In the following numerical simulation, Kdp ¼ ½ 13:4 �22:5 � and t ¼ 0.14 s are chosen.

In Figs. 7 and 8, the PDP controller is compared with the corresponding LQR controller u ¼ �Ksf ½h
T; _h

T
�T.

Fig. 7 shows that both PDP controller and LQR can stabilize the system very well in the noise-free
environment. LQR is a little better than PDP, because LQR produces a smaller overshoot without oscillation.
However, Figs. 8(a) and (b) show that when the system is exposed to a noisy environment, the PDP controller
gives a better steady state performance than LQR. This supports the conjecture that the PDP feedback control
is more robust to the noise in feedback signals than LQR. Furthermore, implementation of PDP controller
requires only position signals while LQR needs both position and velocity signals.

As the double inverted pendulum is a renowned benchmark for under-actuated systems, the proposed PDP
feedback control can be expected to work well for other under-actuated systems.
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5. Concluding remarks

If no velocity measurement is available to construct the state feedback, the PDP feedback control is a good
alternative so as to avoid any state estimators and to make the controlled system robust with respect to noise.
This paper presents a systematic approach to the design of a PDP feedback controller for linear undamped
systems of multiple degrees of freedom.

In the implementation of the proposed approach, two types of the controlled systems, i.e., the fully actuated
systems and the under-actuated systems, are treated separately. For a fully actuated system, the stabilization
design is relatively simple and includes the simultaneous design for the gain matrices of both position feedback
and DPF, with an arbitrarily chosen time delay. For an under-actuated system, however, the stabilization
design is relatively complex and includes the successive design for the gain matrix of position feedback and the
gain matrix of DPF, with a specifically chosen time delay, in order to place all the eigenvalues of the controlled
system on the imaginary axis of the complex plane first and then to drag them to the left half open complex
plane. Of course, the design of a PDP feedback controller for under-actuated systems is more general and also
applicable to fully actuated systems.

Two illustrative examples presented well demonstrate the design procedure of PDP feedback controllers and
their efficacy for a fully actuated system and an under-actuated system, respectively. Though the proposed
methods are titled to tackle the stabilization of linear undamped systems, they are also applicable to any
linear, proportionally damped systems of multiple degrees of freedom.
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Appendix A
Proposition 2. The solutions of Eq. (36) exist provided that

zTj Ba0; j ¼ 1; 2; . . . ; n. (A.1)

fyi; i ¼ 1; 2; . . . ; ng is a linear independent family of vectors. (A.2)
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Proof. When t ¼ 0, Eq. (29) degenerates to the following form:

z̄T s2Mþ Kþ BKp

	 

¼ 0;

s2Mþ Kþ BKp

	 

y ¼ 0:

(
(A.3)

As the position feedback control has made the closed-loop system marginally stable, s2 in Eq. (A.3) is a real
negative number. Consequently, the eigenvectors y and z in Eq. (A.3) can be real. The proof of the existence of
solutions of Eq. (36) under conditions (A.1) and (A.2) can be divided into two steps.

The first step is to show the proposition when m ¼ 1, i.e., when u is a scalar control input and zTB is a
nonzero real number. According to Eq. (A.1), Eq. (36) can be simplified and re-ordered as following:

Kdpyi40; i ¼ 1; 2; . . . ; l;

Kdpyjo0; j ¼ l þ 1; l þ 2; . . . ; n:

(
(A.4)

One can rewrite Eq. (A.4) into the following matrix form:

KdpN � Kdp h �g
	 


40, (A.5)

where h ¼ y1 � � � yl

h i
; g ¼ ylþ1 � � � yn

h i
. In view of condition (A.2), N is invertible. Supposing that

a ¼ ½a1; a2; . . . ; an� and ai40, i ¼ 1, 2,y, n, one can see that Kdp ¼ aN�1 yields Eq. (36). Therefore, the
existence of the solutions for Eq. (36) is confirmed.

The second step is to check the cases for m41. Now zTB and Kdpy can be recast into the form

½ zTB1 zTB2 � � � zTBm � and ½Kdp1y Kdp2y � � � Kdpmy �, where zTBi i ¼ 1, 2, y, m are real numbers and

at least one of them is nonzero because z
T
B 6¼0. Thus, Eq. (36) can be rewritten into the form of

zTj B1Kdp1yj þ zTj B2Kdp2yj þ � � � þ zT
j BmKdpmyj40; j ¼ 1; 2; . . . ; n. (A.6)

Now two families of sets are defined as

Pj ¼ ijzTj Bia0; i ¼ 1; 2; . . . ;m
n o

; j ¼ 1; 2; . . . ; n, (A.7)

Qi ¼ jjzTj Bia0; j ¼ 1; 2; . . . ; n
n o

; i ¼ 1; 2; . . . ;m. (A.8)

Obviously, Pj � f1; 2; . . . ;mg; Qi � f1; 2; . . . ; ng. Thus, Eq. (A.6) is equivalent to the inequalityX
i2Pj

zTj BiKdpiyj40; j ¼ 1; 2; . . . ; n. (A.9)

Eq. (A.9) is a substitute for Eq. (A.6) with those ‘0’ terms deducted. Apparently, if all of the following
equalities:

zjBiKdpiyj40; i is ergodic on Pj ; j ¼ 1; 2; . . . ; n (A.10)

hold, then Eq. (A.9) holds true. Sorting Eq. (A.10) into m groups according to m unknown feedback vectors
Kdpi i ¼ 1; 2; . . . ;m, one can see the first group is

zTj B1Kdp1yj40; j is ergodic on Q1. (A.11)

As stated before, every zTj B1; j 2 Q1 is a nonzero real numbers. Eq. (A.11) can be simplified and

re-ordered as below:

Kdp1yk40; k is ergodic on Q1a;

Kdp1ylo0; l is ergodic on Q1b;

(
(A.12)

where Q1a [Q1b ¼ Q1; Q1a \Q1b ¼+. A comparison of Eq. (A.12) with Eq. (A.4) shows that they have
the same number of indeterminate variables, but Eq. (A.12) has fewer (or at most the same number of)
inequality constraints than Eq. (A.4). Therefore, the existence of the solutions for Eq. (A.4) guarantees
the existence of the solutions for Eq. (A.12). In a similar way, one can prove the existence of the solutions
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for the other m�1 groups

zTj BiKdpiyj40 is ergodic on Qi; i ¼ 2; . . . ;m. (A.13)

This completes the proof.

Remark 5. If the two conditions in Proposition 2 do not hold, one can always make them be satisfied by
adjusting Kp since Eq. (22) is controllable.

Proof. To begin with, one defines the uncontrolled system

M €xðtÞ þ KxðtÞ ¼ 0. (A.14)

If the left eigenvector of closed-loop system z makes zTB ¼ 0 hold, one has

zT s2Mþ Kþ BKp

	 

¼ 0, (A.15)

zT s2Mþ K
	 


¼ 0. (A.16)

This implies that s, z is an eigenpair of both controlled system (21) and uncontrolled system (A.14). Hence,
if Eqs. (21) and (A.14) have no common eigenpairs, then zTB 6¼0 must hold true. &

As Eq. (22) is controllable, every eigenvalue of Eq. (21) can be assigned arbitrarily on the imaginary axis.
Therefore, it is easy to guarantee that Eqs. (21) and (A.14) have no common eigenvalue, and that the
eigenvalues of Eq. (21) are different by adjusting Kp. The first fact here is responsible for condition (A.1),
while the second fact is for condition (A.2). Actually, condition (A.2) is also needed to ensure
zTj Myja0; j ¼ 1; 2; . . . ; 2n, which has been used to derive Eq. (36) from Eq. (35). &
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