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Abstract

Advanced composite stratified structures are of particular interest in numerous industrial areas such as the aerospace

and aircraft industries. The main feature of these anisotropic materials is their ability to be tailored for specific applications

by optimizing design parameters such as stacking sequence, ply orientation and performance targets. Designing through

optimization principles requires the knowledge of an objective function which integrates all the unknowns of the materials

therefore an accurate component-level modeling of stratified structures is necessary. Classical formulation available in the

literature typically assumes a number of unknowns that increases with the number of layers and this sets serious limitations

when trying to solve practical problems. As an alternative an advanced generalized modeling of multilayered composites

with arbitrary boundary conditions is proposed in the present paper. This formulation is of a hybrid type which combines

the advantages of both single-layer of the First Shear Deformation Theory and multi-layered approach. The number of

unknowns is completely independent of the number of layers and a rigorous transfer matrix approach is developed from

the interface conditions, which allows the parameters of the last layer to be iteratively related to those of the first layer. The

Rayleigh–Ritz method is used in conjunction with a non-orthogonal polynomial basis to establish the free vibration. The

model is then validated under free–free boundary conditions against data available in the literature in the case of isotropic,

anisotropic angle-ply composites. Excellent agreement is obtained with a relative error less than 1%, which assesses the

validity of the present model. In addition a sensitivity analysis is performed on the boundary stiffness required to model

boundary conditions to illustrate the complexity associated with the arbitrary boundary conditions when using artificial

springs.

r 2007 Elsevier Ltd. All rights reserved.
1. Introduction

In this paper the modeling of advanced multi-layered composites is addressed. These types of models are
being used increasingly in aerospace and aircraft applications. A great number of papers have been published
with emphasis for review articles for a state of the art, especially regarding free vibration modeling. It is out of
the scope of this paper to attempt to give an exhaustive review on this topic. The reader is referred for example
ee front matter r 2007 Elsevier Ltd. All rights reserved.
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to Ref. [1] concerned with a fairly comprehensive overview of the subject. From a structural point of view, the
methods used to model composite multi-layers can be split into three main categories: (1) an approach of
single-layer type, (2) a ‘‘pure’’ multi-layer modeling, (3) a multi-layer formulation of hybrid type.

1.1. Approach of single-layer type

The approach of single-layer type consists in replacing the multi-layer by one homogeneous layer with
equivalent mechanical properties which are calculated for example by the classical mixture law [2]. In this
category two types of models are of interest: (i) ‘‘Classical Laminate Theories’’ [3] based on thin plate theories
of Love–Kirchoff, which assume that the orthogonality of lines with respect to the neutral axis is kept during
the deformation. The thickness of the composite is assumed to be small compared to the wavelength. (ii) Those
based on Mindlin’s thick plate theories and referenced as ‘‘Shear Deformation Theories’’, which are more
rigourous with increasing frequency. These approaches are characterized by the account of a shear effect,
which means that the orthogonality properties previously mentioned are no longer valid. The shear
deformation theories have led to many categories with different levels of sophistication. Two main levels are
commonly employed. First, the high-order shear deformation theories include powers of higher orders in the
displacement field such as the first-order model (i.e. first-order shear deformation theory [4]). Second, the
generalized shear deformation theory [5]; this model includes as special cases the models previously
mentioned. It has been established in the literature that classical laminate theories tend to overpredict the
natural frequencies.

1.2. Multi-layer approach

A multi-layer is characterized by the type of interface between two layers. Two types of interface are
generally encountered: (i) interfaces of rigid type, (ii) and those of non-rigid one. The multi-layers of the first
type characterize the structures for which a relationship between the parameters of the different layers exists.
For example it is assumed that the transverse displacement is kept identical for all the layers. This is the case of
sandwich structures, which include as an example honeycomb layers. This assumption does not stand for
multi-layers of the second type for which sandwich structure with a flexible core is an example. These layers
support classical waves (bending, membrane and shear) and also a dilatational mode due to a deformation in
the thickness direction, which is a consequence of a low shear modulus. Multi-layers of the first type have been
studied in the literature from a structural point of view. The proposed models have two advantages: (i) they
explicitely include the phenomena present in each layer; (ii) they adequately describe interface conditions. This
is the case of the interlaminar shear stress continuity theory [6], which is based on the continuity of the
displacements and of the shear stress at the interface and which satisfies free shear traction conditions on
the laminate surfaces. The disadvantage of this modeling is that the number of unknowns increases with the
number of layers. This limitation has led researchers to study only multi-layers with very few layers [7].

Multi-layers of the second type have been studied either in the general case [6], or in the case of three-layered
structures [8–10] generally with a certain number of assumptions: the faces support bending waves
(eventuallyþ in-plane motions) and the core is assumed to support one more wave: shear effect.

With regard to boundary conditions, only simply supported and clamped conditions are the most boundary
conditions reported in the literature. In Ref. [11] a finite three-layer model was presented with mixed boundary
conditions in the sense that two opposite sides were simply supported while two others were of an elastic type.

1.3. Multi-layers of hybrid type

The last category deals with multi-layers of hybrid type [7,13,14], which combines the advantages of the two
preceding approaches: the displacement field is defined in each layer and appropriate interface conditions are
used between two adjacent layers. The technique described in Ref. [14] combines the advantages of the
interlaminar shear stress continuity theory and the high-order shear deformation theory previously described.
This hybrid approach allows the multi-layers to be reduced to a four-layer system using some appropriate
interface conditions. In Ref. [7] a model, which accounts for local rotations including both flexural and shear
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effects was proposed. The principle exposed in that paper showed that it is possible to express the different
energies in terms of the parameters of the first layer. The approach used in Refs. [12,13] follows the same
philosophy and is very interesting since it allows the multi-layer to be replaced by a single layer while keeping
the description of the whole system. Appropriate transfer matrices were defined from interface conditions,
which allow the parameters of the last layer to be related to those of the first one. All the vibro-acoustic
indicators are calculated from the unknowns of the first layer. However (i) the boundary conditions are
restricted to simply supported, (ii) the laminae are modeled as specially orthotropic layers. This approach
allows only multi-layers of the first type (rigid interface) to be simulated. But this is not a severe limitation
since it remains possible to cover a great number of structures encountered in practice, in particular in aircraft
and aerospace areas. There is a second element in favor of this approach: multi-layers of the second type (non-
rigid interface) can exhibit dilatational modes and for typical structures these effects appear in the high-
frequency range; this is not a limitation since the effect of the boundary condition is suspected to be important
in the low-frequency range [15]. The advantage of this approach is that it offers a great flexibility regarding the
number of layers. The number of unknowns does not increase with the number of layers.

1.4. The present work

The present work takes advantage of the hybrid-type formulation for dealing with the multi-layers.
Typically layerwise models are based on avoiding violating physical continuities at the interface between
layers. The present paper is concerned with a general modeling of multi-layered structures with different
aspects of generalization [17], which enhance the approach proposed in Ref. [12] in order to extend the
application to more complicated advanced composite materials. (i) Each layer supports the classical waves
present in a solid medium: bending, membrane, shear and rotatory inertia effects; (ii) the generalization of the
orthotropic properties to the case of anisotropic layers is included by means of a general orthotropy in the Oxy

plane as adopted in Ref. [16]; (iii) a general modeling of arbitrary boundary condition of elastic type is done by
means of artificial springs acting on each effect of the first layer (since it is the equivalent system). Such
boundary condition modeling allows the simulation of real conditions, which lie between classical extreme
cases namely simply supported and clamped conditions. Although the boundary condition modeling is
outlined in the present paper in its general description, the paper will focus on free–free boundary condition in
order to fully validate the structure operator as a first step.

The displacement field adopted to describe point (i) has been proposed in Refs. [7,12,13]. Point (ii) is the
generalization to the case of anisotropic composites as most of plies encountered in the industry exhibit this
property. And (iii) is the generalization of the formulation developed for a generally orthotropic single-layer
composite as shown by Woodcock and Nicolas [16]. It will now be possible to investigate soft boundary
condition, which practice has shown to be attractive, for example when using viscoelastic materials for
sealings. It must be noticed that when dealing with an anisotropic single layer with an orthotropy angle with
respect to the natural axes of the plate different of zero to simulate fiber orientations in an unidirectional
composite, the present formulation should be preferred to the model presented in Ref. [16] as the proposed
displacement field in the present paper is more accurate since it accounts for the in-plane waves as well
(stretching and shearing).

The methods used to deal with the free vibration of composite plates can be split roughly in two main
categories: (1) analytical methods such as classical modal analysis (CMA) [12] or the method of superposition
[29]; (2) approximate methods such as finite element analysis or expansion-type of techniques, i.e.
Rayleigh–Ritz and Galerkin methods. Finite element analysis is appropriate to deal with systems with
complex shape and geometry. The Rayleigh–Ritz method is well suited to model arbitrary boundary
conditions. The success of Rayleigh–Ritz methods relies on the proper choice of admissible functions for the
basis [28]. Typical functions include orthogonal polynomials [30], simple polynomials [31] or beam functions.
Many research papers have been published on the Rayleigh–Ritz methods. It is out of the scope of the present
paper to attempt to list the relevant articles on the subject. The reader can consult for example Refs. [32,33] for
an interesting discussion of the method. It must be kept in mind that typically when used to model multi-layers
Rayleigh–Ritz methods deal with global displacement field, which makes it dependent on both the number of
terms in the series and the number of layers.
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In the present paper the governing differential equations of motion are derived using the Rayleigh–Ritz
method. Each of the unknowns (bending, membrane, shear) is expanded on a non-orthogonal polynomial
basis. This basis is retained in order to deal with arbitrary boundary conditions. The action of the different
springs is critical; the boundary condition derived from minimizing the function of Hamilton in the case of
simple support provides guidance to help positioning the different springs.

2. Theoretical analysis

2.1. Statement of the problem

Fig. 1 shows the baffled multi-layer made of N layers of dimensions a and b in the x and y direction,
respectively. Each layer has a thickness denoted as hn. The layers are numbered from 1 to N starting from the
upper layer with the origin of the system located at the center of the mid-system. Each layer is modeled as a
general orthotropic structure in order to account for anisotropic properties in a context of a bi-dimensional
modeling. The general orthotropy is therefore described by means of two axes OX and OY, which make an
angle yo with respect to the natural axes of the layers. The coordinates in the Cartesian system will be denoted
ðx; y; zÞ. The general philosophy is to derive the governing differential equations for free vibration using the
variational method. This consists in first expressing an energy function in terms of kinetic and deformation
energies and then minimizing this function using the classical Rayleigh–Ritz method, which in this case
requires each of the unknowns to be expanded on a functional basis. Minimizing the function of Hamilton
leads to the governing differential classical equation of the form:

OpfAnmg ¼ f0g, (1)

where Op is an operator of the multi-layer which is a function of mass and stiffness properties, fAnmg is the
vector of the coefficients of the different parameters in the basis. In the following, these different quantities will
be established.

2.2. Theoretical model of the multi-layer

The displacement field adopted in the present modeling follows the model proposed in previous work [7,12].
In their modeling, the multi-layer was replaced by an equivalent layer. The principle consists in iteratively
relating the parameters of the last layer to those of the first layer by using appropriate interface conditions to
define transfer matrices; the unknowns are therefore those of the first layer. The description of each layer is
based on the shear deformation theory assumptions: (i) the displacement gradients are small, i.e. linear
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Fig. 1. Sketch illustrating the baffled multi-layered structure.
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hypothetis; (ii) the in-plane motions are accounted for; (iii) the lines orthogonality with respect to the neutral
axis is not conserved during the deformation: this corresponds to an account of a shear effect according to
Mindlin’s theory.

The modeling of the multi-layer in the present paper is based on the following assumptions: (i) the
displacement field ðU ;V ;W Þ is defined for each layer; (ii) the transverse displacement is kept identical for each
layer which means that all the layers are rigidly bonded; (iii) the interface conditions are concerned with two
conditions: the equality of the displacements and of the shear stresses; (iv) a general orthotropy is included in
each layer.

The displacement field of each layer is written as follows [12]:

Unðx; y; zÞ ¼ fn
xðx; yÞ þ ðRn � zÞ

qW

qx
ðx; yÞ þ jn

xðx; yÞ

� �
,

V nðx; y; zÞ ¼ fn
yðx; yÞ þ ðRn � zÞ

qW

qy
ðx; yÞ þ jn

yðx; yÞ

� �
,

W nðx; yÞ ¼W , (2)

where W , fn
x, f

n
y, j

n
x, j

n
y are the transverse displacement, the membrane along x and y direction, and the shear

along x and y direction, respectively; Rn is an arbitrary coordinate due to the fact that a neutral axis cannot be
defined. This displacement field contains as special case Love–Kirchoff’s model for which only the term
qW ðx; yÞ=qs is retained, s being x or y. The general field shows that each component contains the in-plane
motion in addition to a rotation. This rotation is due to two contributions: the classical bending effect and
shear effects.

The strain field �ij is given by

�ij ¼
1

2

qUi

qxj

þ
qUj

qxi

� �
. (3)

It is assumed that U1, U2, U3 stand for U, V , and W , respectively, and x1, x2 and x3 stand for x, y, and z,
respectively. In the context of a general modeling for the orthotropic properties, the stresses sij and the
deformations are related by the following matrix relations:

sn
xx

sn
yy

sn
xy

sn
yz

sn
xz

0
BBBBBB@

1
CCCCCCA
¼

Qn
11 Qn

12 Qn
16 0 0

Qn
12 Qn

22 Qn
26 0 0

Qn
16 Qn

26 Qn
66 0 0

0 0 0 Qn
44 Qn

45

0 0 0 Qn
45 Qn

55

0
BBBBBB@

1
CCCCCCA

�n
xx

�n
yy

2�n
xy

2�n
yz

2�n
xz

0
BBBBBB@

1
CCCCCCA
, (4)

The first sub-matrix expresses the relations in the Oxy plane. This sub-matrix is full in order to account for the
general orthotropy by means of the terms Q16 and Q26. The present model contains as special case the
orthotropic model proposed in Ref. [13] in which the orthotropic axes were aligned with the geometrical axes
of the structure. Their model are retrieved by setting Q16 ¼ Q26 ¼ 0 and Q44 ¼ Q55 ¼ Q66. Their modeling
resulted in a diagonal submatrix in the Oyz and Oxz as a consequence of restricting the layers to be isotropic.
The Qij also account for the angle of orthotropy and are related to the global parameters by a rotation matrix
(see for example Eq. (8) in Ref. [16]). The Qij are calculated from the macroscopic engineering parameters:

Q11 ¼
Ex

1� nxnx

; Q12 ¼
n1Ey

1� nxny

¼
nyEx

1� nxny

; Q22 ¼
Ey

1� nxny

; Q66 ¼ Gxy; (5)

Q44 ¼ Gyz; Q55 ¼ Gxz, (6)

where Ex, Ey, nx, ny and Gxy are the five parameters which fully characterize the plate in the Oxy plane. They
are the Young’s modulus in x and y directions, the Poisson ratio in x and y directions and the shear modulus.
Gxz and Gyz are the shear modulus in the two perpendicular other planes.
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2.3. Interface conditions and transfer matrix

Interface conditions are necessary to help replace the multi-layers by a single equivalent layer. These
conditions, which are of common use in multi-layer modeling, are the continuity of the displacements (U and
V ) and of the shear stresses (sxz and syz). These two conditions were already used in Ref. [7] and are reported
hereafter for convenience with other notations.

The conditions on the displacements are written as

�
hn

2

qW

qx
þ jn

x

� �
þ fn

x ¼
hnþ1

2

qW

qx
þ jnþ1

x

� �
þ fnþ1

x , (7)

�
hn

2

qW

qy
þ jn

y

� �
þ fn

y ¼
hnþ1

2

qW

qy
þ jnþ1

y

� �
þ fnþ1

y , (8)

The two following equations express the conditions on the shear stresses:

Qn
442�

n
yz þQn

452�
n
xz ¼ Qnþ1

44 2�nþ1
yz þQnþ1

45 2�nþ1xz , (9)

Qn
452�

n
yz þQn

552�
n
xz ¼ Qnþ1

45 2�nþ1
yz þQnþ1

55 2�nþ1xz . (10)

The preceding equations allow derivation of a transfer matrix. Following Ref. [12] the unknowns of layer n

are related to those of the preceding layer ðn� 1Þ according to the following:

fV ng ¼ ½Kn
i �fV

n�1g, (11)

with

fVng ¼
qW

qx
;jn

x;f
n
x;
qW

qy
;jn

y;f
n
y

� �T

. (12)

By applying an iterative process to gradually move from the last layer to the first, a similar equation is
established between the last layer n and the first one:

fV ng ¼ ½Kn�fV1g (13)

with

½Kn� ¼

1 0 0 0 0 0

0 an�1
x 0 0 an�1

xy 0

bn�1
x gn�1

x 1 0 dn�1
xy 0

0 0 0 1 0 0

0 an�1
yx 0 0 an�1

y 0

0 dn�1
yx 0 bn�1

y gn�1
y 1

0
BBBBBBBBBB@

1
CCCCCCCCCCA
. (14)

Eq. (13) takes advantage of this latest equation to allow the displacement field n to be related to layer 1. This
displacement field that is therefore a function of the first layer is then used to write the function of Hamilton,
which becomes explicitely a function of the first layer only. All this process is a direct result of the transfer
matrix equation.

2.4. The multi-layer operator

This operator is established using the variational formulation, which consists in writing a function of energy
between two arbitrary times. The function adopted here is that of Hamilton denoted byH and is constructed in a
modular way by superposing the contribution of the multi-layer to that of the boundary condition. H is given by

H ¼

Z t1

t0

ðT � V � V eÞdt, (15)
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where T and V are, respectively, the kinetic and deformation energies of the multi-layer and V e is the elastic
potential energy of the boundary condition.
2.4.1. Contribution of the multi-layer

For the calculation of T, the density of kinetic energy ec is first established as

ec ¼
1

2

X
n

Z hn=2

�hn=2
mnfj _U

n
j2 þ j _V

n
j2 þ j _W

n
j2gdðRn � zÞ. (16)

The dot symbol is used to designate the derivative with respect to time, mn is the density of each layer; ec is
related to T by

T ¼

Z
S

ec dS, (17)

S is the area of the structure in the Oxy plane. Eq. (2) allow ec to be expressed as follows:

ec ¼
1

2
d1

q2W

qxqt

� �2

þ d2
qj1

x

qt

� �2

þ d3
qf1

x

qt

� �
þ 2d4

q2W
qxqt

qj1
x

qt
þ 2d5

q2W
qxqt

qf1
x

qt
þ 2d6

qj1
x

qt

qf1
x

qt
þ d7

q2W

qyqt

� �2
8<
:
þd8

qj1
y

qt

 !2

þ d9
qf1

y

qt

 !2

þ 2d10
q2W
qyqt

qj1
y

qt
þ 2d11

q2W

qyqt

qf1
y

qt
þ 2d12

qj1
y

qt

qf1
y

qt
þ d13

qW

qt

� �2

9=
;. ð18Þ

The coefficients di are given in appendix. The density of deformation energy ed required for the calculation
of V is given by

ed ¼
1

2

X
n

Z hn=2

�hn=2
sij�ijdðRn � zÞ, (19)

ed is related to V by

V ¼

Z
S

ed dS, (20)

ed is split into two parts: (i) the first term ed1 corresponds to the special case where the orthotropic
axes are aligned to coincide with the natural axes of the multi-layer. In this case the ply is assumed to
be specially orthotropic. This term is identical in form to the expression proposed in Ref. [13] with
respect to simply supported boundary conditions; (ii) the second term denoted ed2 results from the
generalization of the orthotropic properties and is a consequence of accounting for the terms Q16 and Q26 in
Eq. (4). ed is written as

ed ¼ ed1 þ ed2 (21)

with

ed1 ¼
1

2

X
n

Z hn=2

�hn=2
fQn

11ð�
n
xxÞ

2
þQn

22ð�
n
yyÞ

2
þ 2Qn

12�
n
xx�

n
yy þ 4Qn

66ð�
n
xyÞ

2

þ 4Qn
44ð�

n
yzÞ

2
þ 4Qn

55ð�
n
xzÞ

2
þ 8Qn

45�
n
xz�

n
yzgdðRn � zÞ, ð22Þ

ed2 ¼
1

2

X
n

Z hn=2

�hn=2
f4Qn

16�
n
xy�

n
xx þ 4Qn

26�
n
xy�

n
yygdðRn � zÞ. (23)
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After carrying over previously defined expressions, ed1 is written as expressed in appendix, while ed2 is
given by

ed2 ¼
1

2
l39

q2W
qx2

� �
q2W

qxqy

� �
þ l40

q2W
qx2

� �
qj1

x

qy

� �
þ l41

q2W
qx2

� �
qf1

x

qy

� ��

þ l42
q2W

qxqy

� �
qj1

x

qx

� �
þ l43

qj1
x

qx

� �
qj1

x

qy

� �
þ l44

qj1
x

qx

� �
qf1

x

qy

� �

þ l45
q2W

qxqy

� �
qf1

x

qx

� �
þ l46

qf1
x

qx

� �
qj1

x

qy

� �
þ l47

qf1
x

qx

� �
qf1

x

qy

� �

þ l48
q2W
qx2

� �
qj1

y

qx

 !
þ l49

q2W
qx2

� �
qf1

y

qx

 !
þ l50

qj1
x

qx

� �
qj1

y

qx

 !

þ l51
qj1

x

qx

� �
qf1

y

qx

 !
þ l52

qf1
x

qx

� �
qj1

y

qx

 !
þ l53

qf1
x

qx

� �
qf1

y

qx

 !

þ l54
q2W
qy2

� �
q2W

qxqy

� �
þ l55

q2W
qy2

� �
qj1

x

qy

� �
þ l56

q2W
qy2

� �
qf1

x

qy

� �

þ l57
q2W

qxqy

� �
qj1

y

qy

 !
þ l58

qj1
y

qy

 !
qj1

x

qy

� �
þ l59

qj1
y

qy

 !
qf1

x

qy

� �

þ l60
q2W

qxqy

� �
qf1

y

qy

 !
þ l61

qf1
y

qy

 !
qj1

x

qy

� �
þ l62

qf1
y

qy

 !
qf1

x

qy

� �

þ l63
q2W
qy2

� �
qj1

y

qx

 !
þ l64

q2W
qy2

� �
qf1

y

qx

 !
þ l65

qj1
y

qy

 !
qj1

y

qx

 !

þ l66
qj1

y

qy

 !
qf1

y

qx

 !
þ l67

qf1
y

qy

 !
qj1

y

qx

 !
þ l68

qf1
y

qy

 !
qf1

y

qx

 !

þ l69j1
xj

1
y

�
. ð24Þ

All the parameters li have been calculated and reported in appendix. Eqs. (18), (35) and (24) are reported in
Eq. (15) to establish the function of Hamilton.
2.4.2. Contribution of the boundary conditions

The boundary condition modeled in this paper are of elastic type and are expressed by means of different
springs. The most important step is the positioning of the different springs, which was determined from
minimizing the function of Hamilton in the framework of simply supported boundary conditions. The
expressions obtained contain two factors: (i) a first term which represents the natural boundary conditions in
terms of stresses; (ii) a second term which expresses the geometrical boundary conditions. By using springs the
action is made on the geometrical boundary conditions to force either the translation or the rotation. The
interpretation of these special expressions suggests the application of the springs on each of the effects of
the first layer, namely on the transverse displacement W ðKf Þ, on the bending rotation qW=qs (Cf ), on the
membrane fs (Kmx, Kmy) and the shear js (Ksx, Ksy). The equivalent first layer has first to be established and
the boundary conditions appear to be expressed by means of a system of six degrees of freedom. The function
of Hamilton for the boundary condition is therefore a function of the potential energy which is calculated
from the density ep. Rigidities per unit length are defined so that ep is expressed as follows:

ep ¼
1

2
Kf W 2 þ Cf

qW

qn

� �2

þ KmxðfxÞ
2
þ KmyðfyÞ

2
þ KcxðjxÞ

2
þ KcyðjyÞ

2

( )
. (25)



ARTICLE IN PRESS
R.L. Woodcock / Journal of Sound and Vibration 312 (2008) 769–788 777
The Hamilton function of the boundary condition is defined as

Hbc ¼

Z t1

t0

Z
G
ð�epÞdGdt, (26)

The integral on the contour G is split into four in order to account for the individual contributions of the
four edges of the plate. This allows the simulation of different boundary conditions on each edge. The account
of Hbc leads to the definition of a stiffness matrix for the boundary condition identical to that defined in Eq.
(33). This matrix is also symmetrical with respect to the main diagonal.
2.4.3. Determination of the multi-layer operator

The multi-layer operator is calculated by using the Rayleigh–Ritz method which requires a function basis
for the expansion of the different unknowns. A polynomial basis [18] is adopted in order to deal with arbitrary
boundary conditions in the contour. This basis is written as

Cnmðx; yÞ ¼
2

a
x

� �n
2

b
y

� �m

, (27)

This basis is a mathematical one which has no orthogonality properties. The matrices which are established
are full, consequently increasing CPU time. The great advantage is that the parameters required for the
calculation of the vibro-acoustic indicators is straightforward using this set of functions. This is the important
point which has motivated this choice as will be outlined in a future publication. The different unknowns can
therefore be written as

W ¼
X

n

X
m

anmCnðxÞCmðyÞ;

jx ¼
X

n

X
m

cnmCnðxÞCmðyÞ;

fy ¼
X

n

X
m

dnmCnðxÞCmðyÞ;

fx ¼
X

n

X
m

bnmCnðxÞCmðyÞ;

jy ¼
X

n

X
m

enmCnðxÞCmðyÞ; ð28Þ

where anm, bnm, cnm, dnm and enm are the coefficients of W , fx, jx, fy and jy, respectively, in the basis. After
transposing these equations into the Hamilton expression, it is shown that this function is therefore a function
of the different coefficients and of their derivatives with respect to time:

H ¼

Z t1

t0

F ðfanmg; fbnmg; fcnmg; fdnmg; fenmgf _anmg; f _bnmg; f_cnmg; f _dnmg; f_enmgÞdt. (29)

The classical Euler equation is used to minimize H. For the free vibration, this leads to a classical equation of
the form

�o2½Mnmpq�fAnmg þ ½Knmpq�fAnmg ¼ f0g, (30)

where o is the pulsation. Knmpq includes both the multi-layer and the boundary condition such as

Knmpq ¼ Km:l:
nmpq þ Kb:c:

nmpq (31)

and

fAnmg ¼ f½anm�; ½cnm�; ½enm�; ½bnm�; ½dnm�g
T. (32)
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The global matrices of mass ½Mnmpq� and stiffness ½Knmpq� are matrices of 5� 5 blocs. Each bloc is a N �N

matrix. The global matrices are written as follows:

M ¼

½B1� ½B2� ½B3� ½B4� ½B5�

½B6� ½B7� ½B8� ½B9� ½B10�

½B11� ½B12� ½B13� ½B14� ½B15�

½B16� ½B17� ½B18� ½B19� ½B20�

½B21� ½B22� ½B23� ½B24� ½B25�

2
6666664

3
7777775
. (33)

The blocs on the main diagonal represent the pure effects of bending, shear in the x direction, shear in the y

direction, membrane in the x direction, membrane in the y direction, respectively. The blocs off the diagonal
represent the coupling between the different blocs on the diagonal, which can therefore be investigated
separately by setting the appropriate couplings equal to zero.

3. Numerical validation of the model

A numerical code was developed for solving the free vibration. The unknowns were determined by solving a
system of linear equations with IMSL mathematical library. All the results presented hereafter have been
performed with a number of terms of 10 for the expansion of the unknowns in the series in x and y directions
unless otherwise specified. The matrix M and stiffness K have four indices: Mnmpq and Knmpq. Each of the
indices runs to 10 terms. The validation of the model was established numerically using the material properties
listed in Table 1 against data from the literature. The non-dimensional frequencies were used as indicator as
calculated from the following equation:

o ¼ o
b2

h

r
Ey

� �1=2

, (34)

where h is the total thickness of the multi-layer. The convergence of the present formulation has been carefully
studied for different cases. Two configurations are reported hereafter, one for a square single-layer composite
and a second for a rectangular single-layer composite. The results are presented in Tables 2 and 3, respectively.
The convergence is very fast and the frequencies converge to the exact value from values above. The
simulations have shown that it is possible to have an adaptative number of terms with regards to the range of
frequencies, the low frequencies requiring much less terms for the series to converge. The computation was
done with an increasing number of terms in the series from 9 to 15 for the first 20 modes.

The validation was undertaken in three steps: (i) in the single-layer configuration in which the natural
frequencies calculated with the present formulation were compared to those obtained using a single-layer
model previously published in Ref. [16]. (ii) In a multi-layered configuration in order to validate the
multi-layer principle. In this case, a 35 mm structure was split into two, four and ten layers of equal thickness.
(iii) Against data available in the literature. Simulations performed using the present model have been done
assuming three factors for the transverse shear correction factor, namely 2/3, 5/6 and 1. The aim is to
show that the agreement with published data of Ref. [27] depends on the choice of the shear correction factor.
Table 4 shows the results for the case of a single-layer composite square plate. The first and third columns are
data taken from Ref. [27]. In that paper a formulation using Rayleigh–Ritz method is used along with a set of
Table 1

Material properties of composite plates

Material E1 ðPaÞ E2 ðPaÞ G12 ðPaÞ G13 ðPaÞ G23 ðPaÞ

Material I 6:619� 108 0:33095� 108 0:165475� 108 0:165475� 108 0:110316667� 108

Z n12 r
ðkg=m3Þ

n21

0.01 0.25 1000 0.0125
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Table 2

Convergence on the natural frequencies for a single-layer square composite

Mode N ¼ 9 N ¼ 10 N ¼ 11 N ¼ 12 N ¼ 13

1 0.981 0.981 0.981 0.981 0.981

2 1.392 1.392 1.392 1.392 1.392

3 2.337 2.337 2.336 2.336 2.336

4 3.602 3.602 3.602 3.602 3.602

5 4.420 4.417 4.417 4.417 4.417

6 5.234 5.234 5.234 5.234 5.234

7 5.446 5.446 5.446 5.446 5.446

8 5.949 5.949 5.949 5.949 5.949

9 6.147 6.147 6.146 6.146 6.146

10 6.226 6.225 6.225 6.225 6.225

11 6.550 6.544 6.541 6.541 6.541

12 7.024 7.024 7.024 7.024 7.024

13 7.208 7.208 7.208 7.208 7.208

14 7.539 7.533 7.533 7.532 7.532

15 9.440 9.436 9.436 9.435 9.435

16 9.689 9.681 9.673 9.673 9.672

17 10.380 9.958 9.932 9.914 9.914

18 10.421 10.420 10.420 10.420 10.420

19 10.463 10.463 10.444 10.429 10.428

20 10.548 10.463 10.462 10.462 10.462

Table 3

Convergence on the natural frequencies for a single-layer rectangular composite

Mode N ¼ 9 N ¼ 10 N ¼ 11 N ¼ 12 N ¼ 13

1 1.005 1.004 1.004 1.004 1.004

2 2.087 2.087 2.087 2.087 2.087

3 2.827 2.826 2.825 2.825 2.825

4 3.879 3.879 3.879 3.879 3.879

5 4.249 4.249 4.248 4.248 4.248

6 5.410 5.410 5.410 5.410 5.410

7 5.544 5.544 5.542 5.542 5.541

8 5.989 5.985 5.985 5.985 5.985

9 7.979 7.978 7.978 7.978 7.978

10 8.108 8.102 8.100 8.100 8.099

11 8.722 8.722 8.722 8.722 8.722

12 8.980 8.978 8.978 8.977 8.977

13 9.216 9.213 9.213 9.213 9.213

14 9.630 9.630 9.630 9.630 9.630

15 9.818 9.810 9.805 9.805 9.805

16 9.857 9.853 9.851 9.851 9.850

17 10.303 10.294 10.288 10.287 10.287

18 10.536 10.536 10.536 10.536 10.536

19 11.774 11.760 11.760 11.757 11.757

20 11.903 11.892 11.882 11.882 11.882
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orthogonal polynomial functions for the basis [30]. In that study the simulations were done for transversely
isotropic materials. Two models were used and are referenced as models I and II. The former is based on the
three-dimensional elasticity theory while the latter does not account for Young modulus in the z direction Ez

and the Poisson ratios nxz and nyz. The results of the present formulation are presented in column 4. By
comparing both set of data it is shown that the agreement greatly depends on the value of the shear correction
factor. This point is not well established in the literature, the value generally adopted depends on the material
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Table 4

First non-dimensional natural frequencies for a single-layer composite square plate—number of terms in the expansion of the series:

10—shear correction factor (sfc) varying

Mode Model I (Hz) Model II (Hz) Present model (Hz) Present model (Hz) Present model (Hz)

Ref. [27] Ref. [27] ðscf ¼ 2=3Þ ðscf ¼ 5=6Þ ðscf ¼ 1Þ

1 0.98 0.98 0.97 0.98 0.99

2 1.39 1.39 1.39 1.39 1.40

3 2.34 2.34 2.31 2.34 2.36

4 3.61 3.60 3.55 3.60 3.63

5 4.43 4.42 4.34 4.42 4.48

6 5.25 5.25 5.24 5.23 5.38

7 5.46 5.46 5.91 5.45 5.60

8 6.17 6.16 6.23 6.15 6.22

9 6.58 6.54 6.39 6.54 6.66

10 7.24 7.20 7.25 7.20 7.34

Table 5

First non-dimensional natural frequencies for an angle-ply composite square multi-layered plate: ½30;�30;�30; 30�—number of terms in

the expansion of the series: 10—(*) Frequency missing—shear correction factor (sfc) varying

Mode Model I (Hz) Model II (Hz) Present model (Hz) Present model (Hz) Present model (Hz)

Ref. [27] Ref. [27] ðscf ¼ 2=3Þ ðscf ¼ 5=6Þ ðscf ¼ 1Þ

1 1.47 1.47 1.47 1.47 1.47

2 1.78 1.79 1.77 1.79 1.81

3 3.56 3.57 3.51 3.60 3.67

4 3.81 3.82 3.75 3.83 3.88

5 4.03 4.04 3.93 4.05 4.15

6 5.52 5.53 5.33 5.56 5.73

7 5.86 5.85 5.67 5.88 6.05

8 6.59 6.63 6.45 6.65 6.91

9 7.90 7.92 7.81 7.97 8.29

10 8.12 8.10 (*) 8.15 8.41

Table 6

First natural frequencies for an angle-ply composite square multi-layered plate: ½45;�45;�45; 45�—number of terms in the expansion of

the series: 10—(*) frequency missing—shear correction factor (sfc) varying

Mode Model I (Hz) Model II (Hz) Present model (Hz) Present model (Hz) Present model (Hz)

Ref. [27] Ref. [27] ðscf ¼ 2=3Þ ðscf ¼ 5=6Þ ðscf ¼ 1Þ

1 1.55 1.55 1.54 1.55 1.55

2 1.89 1.89 1.87 1.90 1.92

3 3.71 3.70 3.60 3.72 3.80

4 3.80 3.81 3.73 3.85 3.93

5 4.00 4.01 3.90 4.02 4.10

6 6.14 6.16 5.95 6.20 6.39

7 6.17 6.18 5.98 6.23 6.41

8 6.58 6.60 6.60 6.69 6.89

9 7.93 6.94 7.02 6.97 7.02

10 8.77 8.78 (*) 8.84 9.25
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and could vary with the type of lay-up. Two cases of angle-ply composites are presented in Tables 5 and 6 for
four layers with the sequence of ½30;�30;�30; 30� and ½45;�45;�45; 45�, respectively. The agreement is very
good between both simulation. The same exercise of validation was performed on a rectangular composite
plate for single-layer, angle-ply ½30;�30;�30; 30�. The same level of agreement is established. At this point it
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must be noticed that a shear correction factor is accounted for the non-parabolic distribution of the shear
stresses. The value adopted in the present formulation has been arbitrarily fixed to a constant value but
nothing guarantees that this should be constant through the layers and that the factor should be the same for
different multi-layers with different properties (Tables 7 and 8).

4. Sensitivity on the stiffness at the boundaries

In this section a sensitivity analysis done on varying the stiffness of the boundary conditions on simply
supported boundary condition is presented. Basically to realize a simply supported boundary condition the
displacement must be blocked by taking a high value of the stiffness. Investigation has been performed by
varying the stiffness from high to low between K ¼ 1016 N=m and K ¼ 105 N=m. These stiffnesses are
expressed as dimensional values. Seven configurations have therefore been simulated. The dimensional natural
frequencies are presented in Table 9. All these simulations are performed using ten (10) terms in the series. The
results obtained for K ¼ 1014 N=m are the typical values obtained by the ideal case to properly model the
simply-supported boundary condition stiffness required at the boundaries. This statement is drawn from
further analysis done on forced vibration (not presented in the present paper) and comparison with analytical
approach for simply supported boundary condition. Table 9 highlights that the choice of the stiffness at the
boundaries is very critical for successfully computing the natural frequencies. On one hand, if the stiffness is
Table 7

First natural frequencies for a single-layer composite rectangular plate—number of terms in the expansion of the series: 10—(*) frequency

missing—shear correction factor (sfc) varying

Mode Model I (Hz) Model II (Hz) Present model (Hz) Present model (Hz) Present model (Hz)

Ref. [27] Ref. [27] ðscf ¼ 2=3Þ ðscf ¼ 5=6Þ ðscf ¼ 1Þ

1 1.45 1.45 1.44 1.45 1.46

2 3.01 3.00 2.99 3.01 3.03

3 3.98 3.97 3.92 3.98 4.03

4 5.25 5.25 5.04 5.24 5.38

5 5.70 5.70 5.47 5.69 5.85

6 7.33 7.31 7.02 7.30 7.50

7 7.40 7.36 7.20 7.37 7.51

8 8.10 8.06 7.99 8.07 8.22

9 10.50 10.49 (*) 10.48 10.55

10 10.54 10.53 (*) 10.55 10.78

Table 8

First natural frequencies for an angle-ply composite rectangular stratified plate: ½30;�30;�30; 30�—number of terms in the expansion of

the series: 10—(*) frequency missing—shear correction factor (sfc) varying

Mode Model I (Hz) Model II (Hz) Present model (Hz) Present model (Hz) Present model (Hz)

Ref. [27] Ref. [27] ðscf ¼ 2=3Þ ðscf ¼ 5=6Þ ðscf ¼ 1Þ

1 2.31 2.32 2.31 2.34 2.36

2 2.87 2.87 2.84 2.88 2.91

3 4.91 4.92 4.76 4.94 5.07

4 5.04 5.07 4.98 5.14 5.26

5 5.65 5.66 5.46 5.68 5.84

6 8.16 8.23 8.00 8.38 8.67

7 8.41 8.42 8.02 8.48 8.81

8 9.13 9.12 8.76 9.17 9.48

9 9.26 9.25 8.84 9.29 9.66

10 11.12 11.14 10.48 11.20 11.79
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Table 9

Sensitivity on the stiffness at the boundaries—dimensional natural frequencies for simply supported BC—the values labeled with an asterix

are not the natural frequencies but rather the results due to ill-conditioned matrices—number of terms in the expansion of the series: 10

1 25.49 (*) 96.83 96.79 78.73 36.91 (*) 3.80 (*)

2 44.83 (*) 137.2 137.13 96.56 (*) 37.31 (*) 3.80 (*)

3 66.31 (*) 183.77 (*) 183.51 (*) 101.11 (*) 41.01 5.35

4 121.74 (*) 183.77 (*) 183.51 (*) 115.06 65.07 (*) 6.59 (*)

5 136.18 (*) 218.6 218.5 174.72 66.12 7.56 (*)

6 162.27 (*) 266.51 266.36 184.41 69.99 7.56 (*)

7 183.77 (*) 287.87 287.67 184.79 (*) 91.31 37.36

8 183.77 (*) 315.49 (*) 315.3 (*) 195.76 98.59 52.16

9 206.33 (*) 327.9 327.78 244.77 127.8 86.96

10 210.13 (*) 338.79 338.54 260.8 (*) 157.55 133.50
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too high to constraint the displacement (K ¼ 1016 N=m) the matrices are ill-conditioned resulting in
incapability in calculating the eigenvalues. On the other hand, if the stiffness is too low (for example
K ¼ 105 N=m) the motion is not blocked. However, a low stiffness value could be a way of simulating soft
boundary conditions. A theoretical investigation is presently under way regarding this point. In Table 9, the
values labeled with an asterisk are not the accurate natural frequencies but rather the results due to ill-
conditioned matrices.

5. Conclusions

The work reported in this paper was aimed at developing a new modeling tool to compute the natural
frequencies of advanced multi-layered composites. Although the general formulation developed by the author
includes arbitrary elastic boundary conditions through artificial springs, the present paper addresses the case
of free–free boundary conditions. The operator of the multi-layer has been established using Rayleigh–Ritz
method along with a non-orthogonal polynomial basis available in the literature. The multi-layer is of hybrid
type, which combines the advantages of the first-order shear deformation theory and a pure multi-layered
modeling. The displacement field is defined for each layer and includes the bending and in-plane motions, i.e.
stretching and shearing. This results in five unknowns in the framework of a two-dimensional modeling. For
each layer anisotropic properties are accounted for through general orthotropy. The originality of the present
approach is (1) the modeling of anisotropic properties for each layer; (2) the application of the transfer matrix
formulation of Ref. [12] to layers made of more advanced general orthotropic materials; (3) the modeling of
arbitray boundary conditions through artificial springs to control the translational and rotational motions of
each wave. The transfer matrix is defined from appropriate interface conditions between two adjacent layers,
which allows (i) the parameters of the last layer to be iteratively related to those of the first layer and (ii) to
keep the number of unknowns constant to five independently of the number of the layers involved. The model
was then validated step by step. First the model was validated numerically in a single-layer isotropic
configuration against results predicted using a model previously developed by the author [34,35]. Then the
multi-layer principle was investigated by splitting a single-layer into two, four and ten layers. Finally,
comparison was done between simulations with the proposed model against existing data in the literature for
one layer and four-layered angle-ply composites. Simulations done with the proposed model have been done
with three values of shear correction factor required in the first-shear deformation theory. Comparison with
available data in the literature suggests that more investigation should be done to establish the typical values
of shear correction factors in the case of stratified materials. In all cases shown in the present study a very good
agreement was observed assessing the validity of the proposed modeling. Further work is under investigation
to extend the validation to different types of boundary conditions and to the case of forced vibration for the
general case of vibro-acoustics. As stated in the introduction, the ultimate goal is the development of an
efficient component-level predictive tool to be interfaced with an optimizer for design purposes at an early
stage of development cycle.
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Appendix C. Definition of coefficients li—contribution of special orthotropy
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x gðn�1Þx þ

h3
n

12
aðn�1Þx

� �
,

l5 ¼
X

n

2Qn
11ðhnb

ðn�1Þ
x Þ,

l6 ¼
X

n

2Qn
11ðhngðn�1Þx Þ,

l7 ¼
X

n

Qn
22 hnðb

ðn�1Þ
y Þ

2
þ

h3
n

12

� �
,

l8 ¼
X

n

Qn
22 hnðgðn�1Þy Þ

2
þ

h3
n

12
ðaðn�1Þy Þ

2

� �
,

l9 ¼
X

n

Qn
22hn,

l10 ¼
X

n

2Qn
22 hnb

ðn�1Þ
y gðn�1Þy þ

h3
n

12
aðn�1Þy

� �
,
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l11 ¼
X

n

2Qn
22ðhnb

ðn�1Þ
y Þ,

l12 ¼
X

n

2Qn
22ðhngðn�1Þy Þ,

l13 ¼
X

n

2Qn
12 hnb

ðn�1Þ
x bðn�1Þy þ

h3
n

12

� �
,

l14 ¼
X

n

2Qn
12 hnb

ðn�1Þ
x gðn�1Þy þ

h3
n

12
aðn�1Þy

� �
,

l15 ¼
X

n

2Qn
12ðhnb

ðn�1Þ
x Þ,

l16 ¼
X

n

2Qn
12 hnb

ðn�1Þ
y gðn�1Þx þ

h3
n

12
aðn�1Þx

� �
,

l17 ¼
X

n

2Qn
12 hngðn�1Þx gðn�1Þy þ

h3
n

12
aðn�1Þx aðn�1Þy

� �
,

l18 ¼
X

n

2Qn
12

h3
n

12
gðn�1Þx

� �
,

l19 ¼
X

n

2Qn
12ðhnb

ðn�1Þ
y Þ,

l20 ¼
X

n

2Qn
12ðhngðn�1Þy Þ,

l21 ¼
X

n

2Qn
12hn,

l22 ¼
X

n

Qn
66 hnðb

ðn�1Þ
x þ bðn�1Þy Þ

2
þ 4

h3
n

12

� �2

,

l23 ¼
X

n

Qn
66 hnðgðn�1Þx Þ

2
þ

h3
n

12
ðaðn�1Þx Þ

2

� �
,

l24 ¼
X

n

Qn
66 hnðgðn�1Þy Þ

2
þ

h3
n

12
ðaðn�1Þy Þ

2

� �
,

l25 ¼
X

n

Qn
66hn,

l26 ¼ l25,

l27 ¼
X

n

2Qn
66 hnb

ðn�1Þ
x gðn�1Þx þ hnb

ðn�1Þ
y gðn�1Þx þ 2

h3
n

12
aðn�1Þx

� �
,

l28 ¼
X

n

2Qn
66 hnb

ðn�1Þ
y gðn�1Þy þ hnb

ðn�1Þ
x gðn�1Þy þ 2

h3
n

12
aðn�1Þy

� �
,

l29 ¼
X

n

2Qn
66ðhnb

ðn�1Þ
x þ hnb

ðn�1Þ
y Þ,

l30 ¼
X

n

2Qn
66ðhnb

ðn�1Þ
y þ hnb

ðn�1Þ
x Þ,

l31 ¼
X

n

2Qn
66 hngðn�1Þx gðn�1Þy þ

h3
n

12
aðn�1Þx aðn�1Þy

� �
,

l32 ¼
X

n

2Qn
66ðhngðn�1Þx Þ,



ARTICLE IN PRESS
R.L. Woodcock / Journal of Sound and Vibration 312 (2008) 769–788786
l33 ¼ l32,

l34 ¼
X

n

2Qn
66ðhngðn�1Þy Þ,

l35 ¼ l34,

l36 ¼
X

n

2Qn
66hn,

l37 ¼
X

n

Qn
55ðhnðaðn�1Þx Þ

2
Þ,

l38 ¼
X

n

Qn
44ðhnðaðn�1Þy Þ

2
Þ.
Appendix D. Definition of coefficients li—contribution of generalized orthotropy

l39 ¼
X

n

2Qn
16 hnðb

ðn�1Þ
x Þ

2
þ hnb

ðn�1Þ
x bn�1

y þ 2
h3

n

12

� �
,

l40 ¼
X

n

2Qn
16 hnðb

ðn�1Þ
x Þðgðn�1Þx Þ þ

h3
n

12
aðn�1Þx

� �
,

l41 ¼
X

n

2Qn
16ðhnðb

ðn�1Þ
x ÞÞ,

l42 ¼
X

n

2Qn
16 hnb

ðn�1Þ
x gðn�1Þx þ 2

h3
n

12
aðn�1Þx þ hnb

ðn�1Þ
y gn�1

x

� �
,

l43 ¼
X

n

2Qn
16 hnðgðn�1Þx Þ

2
þ

h3
n

12
ðaðn�1Þx Þ

2

� �
,

l44 ¼
X

n

2Qn
16ðhngðn�1Þx Þ,

l45 ¼
X

n

2Qn
16ðhnb

ðn�1Þ
x þ hnb

ðn�1Þ
y Þ,

l46 ¼
X

n

2Qn
16ðhngðn�1Þx Þ,

l47 ¼
X

n

2Qn
16hn,

l48 ¼
X

n

2Qn
16 hnb

ðn�1Þ
x gn�1

y þ
h3

n

12
aðn�1Þy

� �
,

l49 ¼
X

n

2Qn
16hnb

ðn�1Þ
x ,

l50 ¼
X

n

2Qn
16 hngðn�1Þx gðn�1Þy þ

h3
n

12
aðn�1Þx aðn�1Þy

� �
,

l51 ¼ l46,

l52 ¼
X

n

2Q16hngn�1
y ,

l53 ¼ l47,

l54 ¼
X

n

2Qn
26 hnb

ðn�1Þ
x bðn�1Þy þ hnðb

ðn�1Þ
y Þ

2
þ 2

h3
n

12

� �
,
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l55 ¼
X

n

2Qn
26 hnb

ðn�1Þ
y gðn�1Þx þ

h3
n

12
aðn�1Þx

� �
,

l56 ¼
X

n

2Qn
26hnb

n�1
y ,

l57 ¼
X

n

2Qn
26 hnb

ðn�1Þ
x gðn�1Þy þ hnb

ðn�1Þ
y gðn�1Þy þ

h3
n

12
2aðn�1Þy

� �
,

l58 ¼
X

n

2Qn
26 hngðn�1Þx gðn�1Þy þ

h3
n

12
aðn�1Þx aðn�1Þy

� �
,

l59 ¼
X

n

2Qn
26hngðn�1Þy ,

l60 ¼
X

n

2Qn
26ðhnb

ðn�1Þ
x þ hnb

ðn�1Þ
y Þ,

l61 ¼
X

n

2Qn
26hngðn�1Þx ,

l62 ¼
X

n

2Qn
26hn,

l63 ¼
X

n

2Qn
26 hnbyg

ðn�1Þ
y þ

h3
n

12
aðn�1Þy

� �
,

l64 ¼ l56,

l65 ¼
X

n

2Qn
26 hnðgðn�1Þy Þ

2
þ

h3
n

12
ðaðn�1Þy Þ

2

� �
,

l66 ¼ l59,

l67 ¼ l59,

l68 ¼ l62,

l69 ¼
X

n

2Qn
45hnaðn�1Þx aðn�1Þy .

References

[1] A.K. Noor, Mechanics of anisotropic plates and shells—a new look at an old subject, Computers and Structures 44 (3) (1992) 499–514.

[2] R.M. Jones, Mechanics of Composite Materials, Taylor & Francis Inc., Philadelphia, 1999.

[3] J.N. Reddy, Mechanics of Laminated Composite Plates—Theory and Analysis, CRC Press, New York, 1997.

[4] R.D. Mindlin, Influence of rotatory inertia and shear on flexural motions of isotropic elastic plates, ASME Journal of Applied

Mechanics 18 (A31) (1951).

[5] J.N. Reddy, A generalization of two-dimensional theory of laminated composite plate, Communications in Applied Numerical

Methods 3 (1987) 173–180.

[6] X. Lu, D. Liu, Interlayer shear slip theory for cross-ply laminates with nonrigid interfaces, AIAA Journal 30 (4) (1992) 1063–1073.

[7] C. Sun, J.M. Whitney, Theories for the dynamic response of laminated plates, AIAA Journal 11 (2) (1973) 178–183.

[8] R.D. Ford, P. Lord, A.W. Walker, Sound transmission through sandwich constructions, Journal of Sound and Vibration 5 (1) (1967)

9–21.

[9] C.P. Smolenski, E.M. Krokosky, Dilatational-mode sound transmission in sandwich panels, Journal of the Acoustical Society of

America 54 (6) (1973) 1449–1457.

[10] J.A. Moore, R.H. Lyon, Sound transmission loss characteristics of sandwich panel constructions, Journal of the Acoustical Society of

America 89 (2) (1991) 777–791.

[11] S. Narayanan, R.L. Shanbag, Sound transmission through a damped sandwich panel, Journal of Sound and Vibration 80 (3) (1982)

315–327.

[12] J.L. Guyader, C. Lesueur, Acoustics transmission through orthotropic multilayered plates, part I: plate vibration modes, Journal of

Sound and Vibration 58 (1) (1978) 51–68.

[13] J.L. Guyader, C. Lesueur, Acoustic transmission through orthotropic multilayered plates, part II: transmission loss, Journal of Sound

and Vibration 58 (1) (1978) 69–86.

[14] C.Y. Lee, D. Liu, Layer reduction technique for composite laminate analysis, Computers and Structures 44 (6) (1992) 1305–1315.



ARTICLE IN PRESS
R.L. Woodcock / Journal of Sound and Vibration 312 (2008) 769–788788
[15] S. Narayanan, R.L. Shanbag, Sound transmission through elastically supported sandwich panels into a rectangular enclosure, Journal

of Sound and Vibration 77 (2) (1981) 251–270.

[16] R. Woodcock, J. Nicolas, A generalized model for predicting the sound transmission properties of orthotropic plates with general

boundary conditions, Journal of the Acoustical Society of America 97 (2) (1995) 1099–1112.

[17] R. Woodcock, Modeling of Sound Transmission of Single-layer and Multi-layered Anisotropic Composite Structures with Arbitrary

Boundary Conditions, PhD Thesis in French, Sherbrooke University, Québec, Canada, 1993.
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