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Abstract

The static and dynamic stability of an elastically restrained Beck column with an attached end mass subjected
simultaneously to gravity and follower axial forces is presented. The analytical solution takes into account the
simultaneous effects of: (1) translational and rotational elastic restraints at the base support; (2) the uniform mass per unit
length of the column (including any additional uniformly distributed mass) and rotary inertia of the column; (3) the rotary
and translational inertias of the attached end mass; (4) the distance from the centroid of the attached end mass to the
column free end; and (5) the shear deformation. The analytical eigenvalue solution can be used to study these effects on the
static and dynamic stability of the Beck column. The analytical method and eigenvalue equation capture the static buckling
(or divergence) as well as the dynamic (flutter) instability of cantilever columns elastically restrained at the base and
subjected to any combinations of gravity and follower compressive axial forces applied at the free end. A parametric study
is carried out on the effects of the translational and rotational inertias of the end mass, the distance from the centroid of the
attached end mass to the column free end, and the rotational restraint on the static and dynamic stability of a perfectly
clamped Beck column. Four comprehensive examples are presented to show the simplicity and effectiveness of the
analytical method, and the obtained results compared with those obtained analytically and experimentally by others
researchers.
© 2007 Elsevier Ltd. All rights reserved.

1. Introduction

The static and dynamic stability of beams and columns subjected to gravity and follower forces are of great
importance in engineering, particularly in aerospace rocket structures. The stability of elastic systems
subjected to nonconservative forces is studied by Bolotin [1]. Pedersen [2] analyzed a cantilever follower force
problem with a concentrated end mass, a linear elastic spring, and a partial follower force at the free end, but
did not take into account the distance from the column’s free end to the end mass and the rotary inertia of the
end mass. Kounadis [3] studied the effects of translational and rotary inertias on the dynamic stability
behavior of a cantilever Timoshenko column with concentrated masses attached along its span and elastically
restrained at the support and subjected to a follower force at the free end. Ryu and Sugiyama [4] studied the

*Corresponding author.
E-mail address: jdaristi2@yahoo.com (J. Dario Aristizabal-Ochoa).

0022-460X/$ - see front matter © 2007 Elsevier Ltd. All rights reserved.
doi:10.1016/j.jsv.2007.11.014


www.elsevier.com/locate/jsvi
dx.doi.org/10.1016/j.jsv.2007.11.014
mailto:jdaristi2@yahoo.com

790 J.A. Herndandez-Urrea, J. Dario Aristizabal-Ochoa | Journal of Sound and Vibration 312 (2008) 789-800

Nomenclature m uniform mass per unit length of the
column (including any additional uni-
a distance from centroid of the attached formly distributed mass)
end mass to the column free end M bending moment along the column
A area of the column cross section Py non-conservative  tangential follower
Ay effective shear area force applied at the free end
b frequency parameter of the column P, gravity axial load applied at the centroid
c damping coefficient of the attached end mass = myg
E Young’s modulus of the material P =P, + P, total axial force
F axial load parameter r radius of gyration of the column cross
G shear modulus of the material section
1 principal moment of inertia about its R slenderness parameter
plane of bending of the column ' ratio of bending to shear stiffness
j rotary inertia of the mass attached at the S stiffness of the lateral bracing provided at
top end of the column the column base
K stiffness of the rotational restraint at the V shear force
column base y column’s lateral deflection
L column span Y shape function
m mass attached at the top end of the n non-conservativeness parameter
column

effects of the size of the attached end mass and its rotary inertia on the dynamic stability behavior of a
perfectly clamped cantilever Timoshenko column subjected to a follower force using the finite element method
(FEM). Sugiyama et al. [5] investigated experimentally the dynamic behavior of a cantilever column
with end and intermediate attached rigid masses and the experimental results were compared with those
calculated using the FEM neglecting the effects of shear deformations. Sugiyama et al. [6] studied
experimentally and analytically the dynamic behavior of a viscoelastic clamped column, taking into
account its internal damping. Ryu et al. [7] also studied the dynamic behavior of a cantilever Timoshenko
column with an end mass subjected to combined actions of a conservative force (the self weight of the column)
and a non-conservative sub-tangential force (follower force), including the effects of the rotary and
translational inertias, the size of the end mass, and the shear deformations along the column. Later, Sugiyama
et al. [8] verified the above study experimentally. The exact determination of free vibration frequencies
and critical load levels of a beam with elastic supports and concentrated masses subjected to both,
conservative and nonconservative forces, is investigated by Glabisz [9]. Langthjem and Sugiyama [10]
presented a complete survey on the dynamic stability of columns subjected to follower loads. Wang [11]
studied the static and dynamic stability of an Euler—Bernoulli column elastically restrained at both ends
subjected to a follower force.

The main objective of this paper is to present an analytical solution to the static (divergence) and dynamic
(flutter) stability of Beck’s column subjected to any combination of a follower force and gravity vertical load
including the simultaneous effects of: (1) the restrained base support with rotational and translational
restoring elastic springs; (2) rotary and translational inertias of the column mass; (3) the size of the end mass
and its rotary and translational inertias; and (4) the shear deformation.

The proposed solution does not consider the effect of damping and assumes that the end mass is
much larger than the mass of the column. These two assumptions allow the problem to be solved ana-
lytically. When damping is omitted, the obtained buckling load is higher than the buckling load
calculated when damping is taken into account and vanished [8]. However, the solution presented in this
paper can be used to predict results of flutter tests where a rocket motor with a short burnout time
is used [4,5,8,12] and also to predict the upper bound of the critical load for Beck’s column with lumped
damping [13].
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Fig. 1. Beck column with semi-rigid connections at the base: (a) structural model of; and (b) differential element.

2. Structural model

Consider a column, as shown in Fig. 1(a), elastically restrained at the base end and free at the other end. It is
assumed that: (1) the stiffness of the rotational and translational springs at the base are K and S, respectively;
(2) the column is made of a homogenous linear elastic material with modulus of elasticity £ and shear modulus
G; (3) the column’s centroidal axis is a straight line; (4) the column is subjected to a combination of a gravity
axial force P, = mg and a tangential follower force P both applied at a distance a from the free end; (5) the
column’s transverse cross section is doubly symmetric (i.e., its centroid and shear center coincide with each
other) with a total cross-sectional area A, shear area A, principal moment of inertia / about its plane of
bending, and uniform mass per unit length 7 with a radius of gyration r (that includes any additional
uniformly distributed mass along the member besides its own); (6) a mass of magnitude m with rotary inertia j
is attached at the column free end (with its mass center located at a distance a from the column free end); and
(7) all transverse deflections, rotations, and strains along the column are relatively small when compared to its
dimensions.

3. Formulation of the problem

The transverse and bending equilibrium equations of the column’s differential element as shown in
Fig. 1(b), assuming that the column’s weight is not as important as the end mass weight, are:

oV @y oy

ety M
oM oy _,0%
a—V"‘(Pf"‘Pg)&—mr @ (2)
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Knowing that

V = GA,y — PO, Elg—e M, gy

and deriving Eq. (2) with respect to x, for (ay/ax)2 <1

oy Oy, Wy
R i TN A 4
6x2+m612+66x 0, “4)

=04y, P=Pr+P, (€)

00
(P+ GAy) — — GA,
Ox

0’0 %y ., 0%
El7 = = (GA, +P)——(GAS+P)@+mr o 5
Solving the system formed by Egs. (4) and (5):

EI oty oty oy ?y %y oy %y

— = (GAy=— —— — = (GAy=—= —m—= — c= ) — (GA; + P)—

Pt GAS< o " axtor Cax261) ( 52 "o Ca;) (GA:+ Ppa

mr? 64)1 64)/ 63y

GA;y —m——c==|. 6
JrPJFASG< oo~ "o Caﬁ) ©

Note that Eq. (6) cannot be solved analytically because the three damping terms do not allow any decoupling
(or separation of variables) as shown next. Currently, it is not feasible to obtain an analytical solution to
Eq. (6) with all parameters presented herein in addition to viscous damping. However, by ignoring the effects
of damping (i.e., ¢ = 0), Eq. (6) is reduced to

EI oy oy 62)/ 6 y mr? oty _oYy
(6,2 B ) 4Gy, Y A+ P LT (Ga, OV 0.
P+GAS( oxt max2612>+ gx2  Mgp T (G4 )x P+A3‘G< Fry: 614)

(7)

Assuming harmonic variations of the bending deflection and using separation of variables [i.e., y(x,7) =
Y(x)e'" with Y(x) representing the shape function associated with the lateral deflection along the member]
and substituting it into the governing differential Eq. (7) becomes

d* d*y
dy4 +(b2s2+F2+F4s2+b2R2)d—_y2+(b4R2s2—b2—b2F252)y-:o, ®)
X
where
pro oLt PLE o v 5 EI I SN o)
~TE " TE T Y Tearr T YTT

are the frequency parameter, axial load parameter, slenderness parameter, ratio of bending to shear stiffness,
dimensionless distance from the restrained end, and dimensionless shape function, respectively.
The solution to Eq. (8) is

Y(x) = C; sin X + C;, cos fx + C; sinh aX + Cy4 cosh ax, (10)

where

b22 FZ F42 b2R2
=\ -0+ VP s p=\o+ VP _s oS FIAISHIR

¢ = b*R>%*> — b* — b*F*s°. ’ (11)
Once the solution for the shape function Y(x) is obtained, 6(x, ) can be found integrating Eq. (4):
O(x) = ACy cos fx — AC; sin X + 0C;3 cosh ax + 0Cy sinh X, (12)
where
B —b’s? 2+ 30

— = 77 —=-M = GAyy — PO. 1
(14 F22)p’ (1+ F>s?)a’ ox > V=GAy =P (13)
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Expressions for Y, 6, M, and V are expressed in terms of constants C;, C,, C3, and Cy, respectively, which

can be determined using the following boundary conditions:

V(0,2) = Sy(0, 1),

M(0, 1) = —K0(0, 1),

— P/O(L, 1),

o° oy
V(L, t) = —mﬁ (_}/ =+ 61&) .

0? oy %0
M(L,t) = —aP,0(L, t)—l—ama 5 (y+ ax)‘xz +]w

x=L

Substituting the corresponding terms into Eq. (14)—(17), the following matrix system is obtained:
Ay A A A G 0
Ay An Axn Au || C2 0
Az An Az A | | G ol
Ay Ax Az Asa| [ Cq 0

where
b’s? bs? B
A= —, Ap=-1, Ax=———, Au=-1, Ay=2 A»n=",
11 Sﬁ 12 13 Su 14 21 22 Jd
oo
Ay =0, Au= g
b2

A3 = ( ? + pb*ap — AF? ) cos ff + ub® sin p,

b .
Ay = (E ub*ap + iF2n> sin 8 + ub? cos B,

b .
Az = (oc + ubzaoc — OF? > cosh o + ub2 sinh o,

b
Ay = (a + pb*ao — 5F2r/> sinh o + ub* cosh a,
Agy = (@F2) + @ ub*p + jb*2) cos f + (A + aub®)sin B,
Ay = — (aF2) + @pb*B + jb*2)sin B+ (4B + aub®) cos B,
Ay = (aF? + @ ub*a + jb*5) cosh o — (xd — aub*) sinh «,
Agy = (aF>0 + @ ub*o + jb*9) sinh o — (x5 — aub*) cosh o,

and
- SL _ KL m . j  _ a ., PL* 5, P F}
GA,’ e M Tar T e YT TeTE YT TR TR

The algebraic characteristic equation of the 4 x 4 matrix in Eq. (18) is as follows:
A, cos f cosh o+ B, sin f sinh o + (2 + pA)[C, cos f sinh o + D, sin f cosh «]

+ E,F*{F. cos ff cosh o+ G, sin f§ sinh o
+ (0 + pA)H, cos fsinh o+ I, sin f cosh o] + J.} =0,

(14)

(15)

(16)

(17)

(18)

(19)

(20)

21)
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where
A= — a6 — P22 + (aa + BAY* + plao BA(6* — 1) + b [27a o) + a(ad — pA)])

= {b (00 + ﬁ?)2 + ub?[@ (@ + )6 + BA] — @plef(0° — 21 — 647 — )]}

2 2
+ % 1200/ + plaupor(o® — B*) + ba(ad — pi) — j(@*6* + B2AA,

B.= —oMc® — )+ ﬂ(aa + BAY + u{—jopb*(5* — 27) + @262 B0 + bP(BS + ad)] }

42 f
+ % L 5+ By + u{ —3 (2 + /32)(—“ + %) + af[—oMe? — B*) + af(6* — 12)]}'

of
DS [a [ =0
+K-{b [—j(u(a -

ﬁ(oﬁa +p ;)} /3( a6 — B46%) — aua (a5’ + [32/12)},

+ p?

2
C.= —aﬁ2y+b2{'25u 5+ﬁi+][5_ yaﬂ5ﬁ§+ﬁi}}+bs [b2<——]5>+ﬁ}+a,uoc[u]

+ % [—026 + auo® 26 + b* (o + jopi)]
+%§{a25# iy {—%zuﬁﬂ»;:; ié’j +j(—%+dﬂﬁzﬂh>} }
D, = jafs + b [fi I dz;LMZ; I ﬁi - d“j“ﬁ}‘fg_;;ﬂ + bzss2 [o;}é — apafo — ﬁ%u(Z +Jfﬂv>]
n % (522 + auo B2+ b*u(ap — jopo)]
+% [ i +b2(—102S a ?Zaiﬁ/ﬁ% 255§+ﬁﬂ>}
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4. Parametric studies

A series of parametric studies was carried out to determine the effects of the attached mass m,
its rotary inertia j, and the distance a on the static and dynamic stability of Beck’s column with
various values of rotational restrain (i.e., with K =1, 3, 9 and o0) and fixed to lateral displacement at the base
(ie., S= ).

The frequencies at which the column vibrates when the applied axial load is P =0 are the natural
frequencies. The variations of these natural frequencies with the parameter u = m/mL are shown in Fig. 2 for
an Euler—Bernoulli column (i.e. G4, = oo) with @ = 0.2, j = 0.1 and four different values of K. Note that the
second-mode natural frequency is not affected by the value of m//mL when both f and j/mL? remain constant.
However, the first-mode natural frequency is affected significantly. Furthermore, as expected, the higher the
rotational restrain, the higher the frequency.

The static buckling load is the load at which Eq. (21) is satisfied when w = 0. Fig. 3 shows the effect that
parameter f has on these static buckling loads for u = 10 and j = 0.1. As expected, these results indicate that
the static buckling load is reduced as the parameter f§ increases. It is interesting to note that the curve shown in
Fig. 3(a) decrease faster than the curve in Fig. 3(b). This means that the influence of parameter f is greater on
the second buckling load than on the first buckling load.

The stability map for @ = 0.2, u = 10 and j = 0.1 is shown in Fig. 4 for four different values of K. Note that
(1) the value at which the instability type changes from divergence to flutter decreases as the stiffness of the
rotational restrain increases; and (2) there is a common point for the values of the rotational spring analyzed,
indicating that there is a value for the non-conservativeness parameter at which the instability force is the same

1.2 7.0 T I
0.9 — 6.5 - —
< 0.6 -1 < 6.0+ _

0.3

0 ] | 50 | |
100 10° 102 108 100 10° 102 108
mimL mlmL

Fig. 2. Variation of the frequency parameter b with p for @=0.2, j =0.1: (a) first natural frequency, (b) second natural frequency.

SO k=155 K=3 - K=9ad ——— K =co.
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regardless of the value of the rotational restraint K. Another feature presented in Fig. 4 is that the
first divergence load increases as the non-conservativeness parameter increases, while the second
divergence and the flutter loads decrease. This indicates that the follower force has a stabilizing
effect on the first static buckling load and a destabilizing effect on the second static buckling load and the
flutter load.
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5. Comprehensive examples
5.1. Example 1. Elastically restrained cantilever column without end mass

Determine the characteristic equation of the dynamic stability of an elastically retrained cantilever column
without end mass subjected to the follower force Py at its free end. Neglect the effects of shear deformations
and those of the rotary inertia of the column. Compare the obtained characteristic equations for the cases
with: (i) K = oo; and (ii) S = oo with those reported by Kounadis [3].

Solution: For a cantilever column without end mass and subjected to the follower force Py, the parameters
given in Eq. (20) become p=j=a =0, n = 1. Neglecting the column rotary inertia or r = 0 and the shear
deformation or GA4; = oc:

(i) For K = oo or K = co. Taking into account these values, the expressions given in Eq. (22) become

2 2
AL’ = _(“4 + ﬁ4)> B(f = _aﬁ(az - ﬁz)a Cc = ﬁ4fx%, Dc = “4[}%3 Ec = —20(2ﬁ2,

2 2
Fo=—(2—p), G.=-2af, H.= —ocﬁz%, I, = ﬁocz%, Jo=o? — . (23)
Then, the characteristic equation given in Eq. (21) becomes
o2 (o + B*)[o cos B sinh o + f sin f cosh «]
SL? o
- ﬁ[oc4 + B* + 202 cos ff cosh o + aA(f* — o®)sin f sinh o] = 0. (24)

Note that the expression given in Eq. (24) is identical to that reported by Kounadis [3].
(i1) For S = o0 or § = oo. Taking into account these values, expressions given in Eq. (22) become

3 3
A= —@+p Bo=m—afd— ). Com=%, Do=-L B - _22p,
K K
[04
o=~ =), Go=-2f, Ho=—% I=-0 j-2_p (25)

Then, the characteristic equation given in Eq. (21) becomes
af(o® 4+ 2B cos f sinh o — o sin f cosho] + K[o* + p* + 242 % cos B cosh o
+ af(B* — o®)sin f sinh o] = 0. (26)
Note that expression given in Eq. (26) is also identical to that reported by Kounadis [3].

5.2. Example 2. Clamped column with attached top mass

Determine the characteristic equation for the dynamic stability of a perfectly clamped cantilever column
(with § = K = o0) with a concentrated end mass (i.e., with a = j = 0) subjected to the follower force Py at its
free end. Neglect the effects of the rotary inertia of the column and shear deformation. Compare the obtained
results with those reported by with those reported by Ryu and Sugiyama [4].

Solution: The parameters in Eq. (20) are as follows: @ =j = 0; n = 1. Neglecting the effects of the rotary
inertia and shear deformations of the clamped column, the parameters given in Eq. (22) are reduced to

Ac=—(@*+pY, B.=—ap’—p), Cc=—af’y, De=o’fu, E.=-2a",
Fo=—0*=p), Ge=-20f, H.=0, I.=0, J.=do—p% (27)
Substituting these parameters into Eq. (21):
— (o + Y cos B cosh o — af(a® — B?)sin f sinh o + afu(a® + p*)[—p cos f sinh o + o sin f cosh o]
— 2022 F?{—(o* — p*)cos f cosh o — 20 sin B sinh o + o — %} = 0. (28)
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Using Eq. (28) it is possible to calculate the critical follower force P for different values of u = m/mL. Those
loads are presented in Table 1 and compared with those reported by Ryu and Sugiyama [4]. As it can be seen,
the results obtained using Eq. (28) compare well with those reported by Ryu and Sugiyama [4] that used a
finite element formulation modeled with 20 column segments.

5.3. Example 3. Perfectly clamped column with end mass

In this example, a perfectly clamped cantilever column subjected to a follower force tested experimentally by
Sugiyama et al. [6] is analyzed. The column is a rectangular column with the following properties: 6 x 30 mm?>
cross section; m = 0.481kg/m; EI= 3.43 x 10°kgf/mm?* m = 14.18kg; j=0.1196kgm, a = 0.2m; and its
length varied from L = 1.0 to 1.1 m. Neglect the effects of any external damping in the dynamic stability analysis.

Solution: The critical axial forces were calculated using Eqgs. (21) and (22). Fig. 5 shows that the critical
values obtained using these expressions compare well with those experimentally and theoretically reported by
Sugiyama et al. [0].

Table 1
Example 2: critical follower force for different values of m/mL

m/mL P=P;(N)
Reported by Ryu and Sugiyama [4] Calculated using Eq. (28) Difference (%)
0.0 673.7 673.7 0.00
0.1 590.4 591.2 0.14
0.3 547.0 547.3 0.06
0.5 537.3 539.7 0.45
1.0 544.0 544.7 0.14
2.0 560.4 561.7 0.22
5.0 587.0 590.1 0.53
100 653.2 653.7 0.07
44
42
403
= 38
<
~ 36|
34 - )4
32
30 1 1 1
1,000 1,025 1,050 1,075 1,100

L (mm)

Fig. 5. Example 3: Critical force-versus-column length. - O——QO—— Eq. (21); — — — — Sugiyama; and ¥ experimental.
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Table 2
Example 4: critical follower force for different values of u = m/mL and s

i 5

1072 1073 10°* 1073 10-¢

Dimensionless critical follower force

Ref. Eq. Dif. Ref. Eq. Dif. Ref. Eq Dif. Ref. Eq. Dif. Ref. Eq Dif.

(4 (C20 R N @n (%) (4 (10 A GO R @n (%) 4 @n (%)
0.0 1530 1588 3.63 1945 1946 0.07  20.00 1999 0.5  20.05 2005 0.02 20.05 20.05 0.0
0.1 13.92 1428 252 1707 1715 044 1747 1755 044 17.57 1759 0.12 1757 17.60 0.14
03 1313 1347 252 1589 1591 0.5 1619 1625 037 1628 1629 0.03 1628 1629 0.06
0.5 13.03 1338 261 1569 1571 0.1 1599 1603 022 1599 16.06 042 1599 16.06 0.4
1.0 1332 13.60 207 1579 1587 050 1609 1618 054 1619 1621 0.12 1619 1621 0.14
2.0 1372 1408 254 1628 1637 056 1668 16.68 0.01  16.68 1671 020 1668 1672 022
5.0 1441 1482 273 1717 17.02 088 1747 1753 031 1747 1756 051 1747 1756 0.52

100 15.99 1638 236 18.95 18.86  0.50 1934 1941 0.37 19.44 1945 0.05 19.44 19.55 0.54

5.4. Example 4. Effect of shear deformation

Determine the effects of shear deformations for various values of the parameter u in a clamped column,
neglecting the rotary inertia of the end mass and its distance a from the end of the column. Compare the result
with those presented by Ryu et al. [4].

Solution: The critical axial forces were calculated using Eqgs. (21) and (22). Table 2 shows that the critical
values obtained have good agreement with those reported by Ryu et al. [4].

6. Summary and conclusions

The static and dynamic stability analysis of an elastically restrained Beck column with an attached
end mass subjected to combined gravity and follower axial forces is presented in a classical manner.
The analytical solution takes into account the simultaneous effects of: (1) translational and rotational
elastic restraints at the base support; (2) the uniform mass per unit length of the column (including any
additional uniformly distributed mass) and rotary inertia of the column; (3) the rotary and translational
inertia of the attached end mass; (4) the distance from the centroid of the attached end mass to the column
free end; and (5) shear deformations along the column span. The eigenvalue equation (21) can be used to
study these effects on Beck’s column. The analytical solution captures the static buckling (or divergence) as
well as the dynamic (flutter) instability of cantilever columns elastically restrained at the base and subjected to
any combinations of gravity and follower compressive axial forces applied at the free end. The analytical
method presented and the corresponding equations can be programmed facilitating calculations and efficient
computer coding and avoiding cumbersome procedures. A parametric study is carried out on the effects
of the rotary and translational inertia of the end mass, the distance from centroid of the attached end
mass to the column free end, and the rotary inertia of the column. The analytical method and corresponding
equations yield results that agree very well with experimental and analytical studies carried out by other
researchers.

Analytical results indicate that for an elastically restrained Beck’s column with its base with sideways
totally inhibited (i.e., with S = o0): (1) the second-mode natural frequency is not affected significantly
by the value of m/mL when both B and j/mL’ remain constant. However, the first-mode natural
frequency is affected significantly; (2) the static buckling load is reduced as the parameter f increases;
(3) a follower force P, has a stabilizing effect on the static stability. However, it has a destabilizing effect
on the dynamic stability of the column; and (4) the stability maps have a common point for different
values of K.
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