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Abstract

To show the possibility of a new kind of a moment shaker, the motion of a system composed of a rigid plate, constant

springs and time-varying dampers has been considered when the plate is subjected to harmonic force. The vertical

displacement at the center of the plate and the rotational displacement of the plate were obtained by numerical integration

of the equations of motion. The major frequency components of these responses were found through fast Fourier

transform and the condition under which the plate oscillates with almost a single frequency and a large amplitude was

found. The existence of the frequency components of the vertical and rotational displacements of the plate has been proved

analytically. Approximate expressions for the amplitude of the vertical and rotational displacements have been derived for

a special case.

r 2007 Elsevier Ltd. All rights reserved.
1. Introduction

The responses of dynamic systems with time-varying (usually periodic) parameters have been studied by
many researchers. This kind of response occurs in structural systems subject to turbulent flow, cracked rotors,
elastic linkage systems such as slider-crank mechanisms, and drive trains where the inertias vary periodically
because of the radial motion of the pistons. Systems governed by the Mathieu equation are common examples
of dynamic systems with periodic parameters, and they are described in textbooks [1]. When an external force
is periodic, the computation of the steady-state response is required. A large amount of research has been
published on the development of methods to determine the stability of the responses and methods to compute
the steady-state responses. The commonly used procedure to find analytically the responses of the systems
with time-varying parameters consists of using the methods based on Fourier series expansion [2].
Additionally, a modal analysis method was developed that predicts the steady-state response of discrete linear
systems with periodic parameters [3]. In the method, the solution for the steady-state response is expressed as a
linear combination of the Floquet eigenvectors, which are orthogonal with respect to solutions of the
ee front matter r 2007 Elsevier Ltd. All rights reserved.
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associated adjoint problem. An approximate closed-form solution for a linear slowly varying system under
external excitation was derived based on the technique of freezing slowly varying parameters [4].

Dynamic systems with periodic parameters, which have been considered, may be grouped from the
viewpoint of the fundamental frequency of the external force. The case where the fundamental frequency of
the external force is equal to the one of the periodic parameters is treated in Ref. [3], the case where the
frequencies of the external force and of periodic parameters are distinct in Refs. [2,5]. Another viewpoint is
which parameters of dynamic systems vary periodically. Most analyses concern the case where damping
coefficients are constant, while the stiffness is periodically time varying. Some other analyses concern the case
of synchronous stiffness and damping variation, which can be applied to suppress self-excited vibrations [6]. In
this paper, a rigid plate with two constant springs and two dampers with periodic damping coefficients is
considered. The plate is subject to a harmonic force whose frequency is different from the one of damping
coefficient variation. The current system was devised during the development process of a shaker of new type
explained below.

To investigate experimentally the dynamic behavior of large structures with low natural frequencies such as
buildings, towers, and bridges, shakers, which can deliver low-frequency excitation forces to these structures,
are needed. Shakers using out-of-balance masses [7,8] and servo-hydraulic shakers [9] have been mainly
utilized for this purpose.

For supplying low-frequency excitation forces, a new type of shaker, which utilizes force frequency shifting,
was proposed [10–12]. The idea of the new shaker is as follows. If an excitation force F ¼ F0 sinot applies on a
structure, and the force application point moves back and forth along the structure with s ¼ s0+r sino2t as
shown in Fig. 1, generalized forces with frequencies o1�o2 and o1+o2 are generated and excite the structure.
Therefore, by moving an ordinary out-of-balance mass exciter along a structure and adjusting the two
frequencies, o1 and o2, one can get an excitation force with a desired low frequency. However, this method is
inconvenient because of the requirement to move an exciter back and forth normal to excitation force along a
structure.

A method has been proposed which provides force frequency shifting without moving an exciter and is
shown in Fig. 2 [13]. This excitation system is composed of a plate, springs and dampers. An excitation force
with frequency o1 applies from an out-of-balance mass exciter to the center of the plate, and only one pair of a
spring and a damper is active at any instant. That is, this pair of a spring and a damper has finite spring or
damping constants and the remaining pairs have zero spring or damping constants. If active springs and
Fig. 1. Force frequency shifting with a reciprocating shaker.

Fig. 2. A shaker composed of a plate, springs, and dampers.
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Fig. 3. A two-spring–damper system.
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dampers vary with frequency o2 along the plate, spring forces and damping forces will move with the
frequency along the plate. It was found in Ref. [13] that the structure which the excitation system is attached to
was acted upon a generalized force with the difference frequency o1�o2.

To analyze the dynamic behavior of this excitation system, a simple system with two springs and dampers
shown in Fig. 3 is considered in this paper. The considered system is symmetric in configuration. The spring
constants of the two springs are the same and constant with time, and the damping constants of the dampers
vary with time. The motion of the plate under these conditions is investigated through numerical calculations.
It is tried to explain analytically the existence of major frequency components of the plate’s motion, which are
found through numerical calculation.

2. Numerical analysis of the motion

To analyze the motion of the system shown in Fig. 3 easily, the plate is assumed to be rigid. The equation of
motion of the plate is derived as follows:

m €xþ ðc1 þ c2Þ _xþ ðc1 � c2Þr_yþ 2kx ¼ F 0 sin o1t, (1)

J €yþ ðc1 � c2Þr _xþ ðc1 þ c2Þr
2 _yþ 2kr2y ¼ 0, (2)

where m, J, x, y, F0, k, ci, and r represent the mass and the mass moment of inertia of the plate, the vertical
displacement at the center of the plate and the rotational displacement of the plate, the amplitude of the
excitation force, the spring constant, the damping constant of each damper, and the distance to each spring
and damper from the center of the plate, respectively. It is assumed that a pair of a spring and a damper is
attached to the same point on the plate. The damping constants of the considered system were made to vary as
square waves. The variation of damping constants in Fig. 4 shows that two dampers become active alternately.

If dampers are deleted from the above system, the equations of motion become decoupled and two natural
frequencies become the natural frequency of the translational mode, ond, and that of the rotational mode, onr.
These natural frequencies are obtained as follows:

ond ¼

ffiffiffiffiffiffi
2k

m

r
, (3)

onr ¼

ffiffiffiffiffiffiffiffiffi
2kr2

J

r
. (4)

The motion of the system was analyzed by numerical integration for a homogeneous case where the external
excitation was removed from Eq. (1) at first. The equations of motion of the system, Eqs. (1) and (2), were
solved for given system parameters using MATLAB. The system parameters were chosen to be m ¼ 30 kg,
J ¼ 100 kgm2, k ¼ 3.5� 104N/m, (c1)max ¼ (c2)max ¼ 1� 103N s/m, r ¼ 1/3m, and the damping constants
were made to vary according to Fig. 4 with frequency f2 ¼ o2/2p ¼ 9Hz. f2 represents the on–off frequency
of a damper, and if f2 ¼ 10Hz, it means that dampers become on and off 10 times per second. In this paper,
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Fig. 5. Frequency spectrum of the vertical displacement at the center of the plate for a homogeneous case.

Fig. 4. Variation of the damping constants for a two-spring–damper system.
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two symbols for frequency, f and o, are used together. f is in units of Hz and o in units of rad/s. This set of
parameters correspond to the natural frequencies of the translational and rotational modes, fnd ¼ ond/
2p ¼ 7.69Hz and fnr ¼ onr/2p ¼ 1.40Hz. The initial conditions for x; _x; y; and _y were all set to unity. The time
interval between calculated data points was 0.005/12 ¼ 0.4167� 10�3 s and the length was 80,000 data points.
Of course, the vertical displacement x and the rotational displacement y of the plate diminished with time due
to damping. The vertical and rotational displacements reduced to 1% of their initial values after 9.4 and 23.6 s,
respectively. The obtained time data of x and y were Fourier transformed to calculate their frequency
components. The frequency interval between transformed data became 0.03Hz. Figs. 5 and 6 show frequency
components of x and y. The frequency components of x show peaks at 7.62 and 10.41Hz with negligible other
components, and these frequencies correspond to f2�fnr and f2+fnr, respectively. The frequency components
of y show a single peak at 1.38Hz, corresponding to fnr.

Next the case with external excitation was considered. The responses of the system with the same parameters
as above were obtained for f1 ¼ o1/2p ¼ 12Hz and F0 ¼ 1� 103N. The initial conditions for x; _x; y; and _y
were zeros. 160,000 data points with the time interval of 0.005/f1 ¼ 0.4167� 10�3 s were obtained and the first
80,000 data points were deleted so that the transient response would be damped out. The 80,000 data points
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Fig. 6. Frequency spectrum of the rotational displacement of the plate for a homogeneous case.

Fig. 7. Frequency spectrum of the vertical displacement at the center of the plate for a case with external excitation.
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correspond to the period of 33.3 s, which is long enough for the transient response to be damped out based on
the result of the homogeneous case. Figs. 7 and 8 show frequency components of x and y. The frequency
components of x show peaks at 6, 7.62, 10.38, 12, 24, and 30Hz, and these frequencies correspond to 2f2�f1,
f2�fnr, f2+fnr, f1, 4f2�f1, and 2f2+f1, respectively. Among these frequency components, the component at f1 is
the strongest and the one at 2f2�f1 is the next. The frequency components of y show peaks at 1.38, 3, 15, 21,
33, and 39Hz, and these frequencies correspond to fnr, f1�f2, 3f2�f1, f1+f2, 5f2�f1, and 3f2+f1, respectively.
Among these frequency components, the components at fnr and f1�f2 are prominent. It should be noticed that
the frequency components of transient responses for the homogeneous case appear also in the responses with
transient parts removed.

Calculating the frequency components of x and y for different values of f2, the same phenomena as above
were observed. For a special case where f1�f2 coincides with the natural frequency of the rotational mode,
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Fig. 8. Frequency spectrum of the rotational displacement of the plate for a case with external excitation.

Fig. 9. Frequency spectrum of the rotational displacement when the difference frequency coincides with the natural frequency of the

rotational mode.
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fnr, two peaks for these frequencies merge and result in one prominent peak with negligible peaks at
other frequencies as Fig. 9 shows. This observation means that y has almost a single frequency component for
this case.

The maximum frequency components of y were calculated for f1 equal to 12Hz and various values of f2, and
are shown in Fig. 10. In the figure, the horizontal axis represents the ratio of (f1�f2)/fnr, and the vertical axis
the ratio of the maximum frequency component to the global maximum value. These maximum components
occurred at fnr or f1�f2 for each value of f2. The maximum frequency component of y increases rapidly around
the frequency where f1�f2 coincides with fnr, that is, (f1�f2)/fnr is equal to 1. Similarly, when f2 is greater than
f1, the same result was observed. The maximum frequency component of y increases rapidly when (f1�f2)/fnr is
equal to �1. This result implies that the plate of the system can be made to oscillate with almost a single



ARTICLE IN PRESS

Fig. 10. Variation of the maximum frequency component of the rotational displacement with frequency f2.
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frequency and a large amplitude by adjusting frequency f2 so that |f1�f2| coincides with fnr. If this system is
mounted on a structure, this oscillatory motion of the plate will deliver a moment with frequency |f1�f2| to the
structure. Therefore, this system works as a moment shaker. When f2 is equal to f1 ¼ 12Hz, the amplitude of y
decreases with time and finally converges to zero. Consequently, the maximum component of y for f2 ¼ 12Hz
becomes very small.
3. Analytical analysis

3.1. Proof of frequency components in x and y

The frequency components of vertical and rotational displacements of the plate were identified by numerical
calculation in the previous section. It has been tried to prove the results analytically in this section.

The equations of motion of the considered system are given in Eqs. (1) and (2). If c1 and c2 vary with time in
a manner shown in Fig. 4, and their maximum values are set to c, c1+c2 becomes a constant equal to c, and
c1�c2 becomes a square wave with amplitude c. Expressing the square wave as a Fourier series, the equations
of motion become

m €xþ c _xþ cr
4

p
sin o2tþ

4

3p
sin 3o2tþ � � �

� �
_yþ 2kx ¼ F 0 sin o1t, (5)

J €yþ cr
4

p
sin o2tþ

4

3p
sin 3o2tþ � � �

� �
_xþ cr2 _yþ 2kr2y ¼ 0. (6)

Since the plate of the system is subject to a force F0 sino1t, it is easily expected that the vertical displacement
at the center of the plate, x, has a frequency component at o1. Therefore, including only one frequency
component at o1 in x,

x ¼ a1 sin o1tþ b1 cos o1t (7)

and substituting the equation in Eq. (6) and using the trigonometric relations

sin a sin b ¼ 1
2
½cosða� bÞ � cosðaþ bÞ�, (8)
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sin a cos b ¼ 1
2
½sinðaþ bÞ þ sinða� bÞ�, (9)

the term containing _x in Eq. (6) becomes as follows:

4

p
sin o2tþ

4

3p
sin 3o2tþ � � �

� �
_x ¼

2

p
a1o1½sinðo1 þ o2Þt� sinðo1 � o2Þt�

�
2

p
b1o1½cosðo1 � o2Þt� cosðo1 þ o2Þt�

þ
2

3p
a1o1½sinð3o2 þ o1Þtþ sinð3o2 � o1Þt�

�
2

3p
b1o1½cosð3o2 � o1Þt� cosð3o2 þ o1Þt� þ � � � . ð10Þ

Since the term containing _x in Eq. (6) produces frequency components at o1�o2, o1+o2, 3o2�o1, 3o2+o1,
and so on, y must have these frequency components also to cancel out these components in Eq. (6).

From the above results, one can let

y ¼ d1 sinðo1 þ o2Þtþ e1 cosðo1 þ o2Þtþ d2 sinðo1 � o2Þtþ e2 cosðo1 � o2Þtþ � � � . (11)

Substituting the above equation in Eq. (5), one can find that the term containing _y possesses frequency
components at o1, o1+2o2, 2o2�o1, o1+4o2, 4o2�o1, and so on. In order to cancel out these frequency
components in Eq. (5), x must possess these frequency components also.

The frequency component of y at onr ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2kr2=J

p
is a solution of the equation J €yþ 2kr2y ¼ 0, which is a

part of Eq. (6). If one can assume that the remaining terms in Eq. (6) have onr components with negligible
magnitudes compared to J €y and 2kr2y terms, onr component can be a component of y. Even though the above
assumption was found to be reasonable through numerical calculation, this procedure of proof is not
satisfactory. However, the authors cannot find a better procedure. If it is proved that y possesses a frequency
component at onr, one can prove that x possesses frequency components at o2�onr and o2+onr by
substituting y with onr component into Eq. (5) and following the similar procedure as in the above paragraph.
Now, the proof of existence of major frequency components of x and y has been completed.
3.2. Expressions of x and y

It was found through numerical analysis that the rotational displacement y has a prominent component at
o1�o2 with negligible other components when this frequency coincides with the natural frequency of the
rotational mode, onr, that is, o1 � o2 ¼ onr ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2kr2=J

p
. For this reason, approximate expressions of x and y

for this case have been derived in this section. Only one frequency component at o1�o2 was included in y, and
two components at o1 and 2o2�o1 in x. Of course more frequency components might be included in the
assumed response to improve the accuracy of the solution. However, it would result in more complicated
expressions for x and y.

Including the above-mentioned components, x and y can be written as follows:

x ¼ a1 sin o1tþ b1 cos o1tþ a2 sinð2o2 � o1Þtþ b2 cosð2o2 � o1Þt, (12)

y ¼ d1 sinðo1 � o2Þtþ e1 cosðo1 � o2Þt. (13)

Substituting the above equations to Eqs. (5) and (6), collecting sine and cosine terms with the same
frequencies, and comparing the coefficients of the terms with sino1t, coso1t, sin(2o2�o1)t, cos(2o2�o1)t,
sin(o1�o2)t, and cos(o1�o2)t, one can obtain the following set of equations:

ð2k �mo2
1Þa1 � co1b1 þ

2

p
crðo1 � o2Þd1 ¼ F0, (14)

co1a1 þ ð2k �mo2
1Þb1 þ

2

p
crðo1 � o2Þe1 ¼ 0, (15)
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½2k �mð2o2 � o1Þ
2
�a2 � cð2o2 � o1Þb2 þ

2

p
crðo1 � o2Þd1 ¼ 0, (16)

cð2o2 � o1Þa2 þ ½2k �mð2o2 � o1Þ
2
�b2 �

2

p
crðo1 � o2Þe1 ¼ 0, (17)

�
2

p
cro1a1 þ

2

p
crð2o2 � o1Þa2 � cr2ðo1 � o2Þe1 ¼ 0, (18)

�
2

p
cro1b1 �

2

p
crð2o2 � o1Þb2 þ cr2ðo1 � o2Þd1 ¼ 0. (19)

Note that J, the mass moment of inertia, is not shown in the above equations because of the imposed
condition, o1 � o2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2kr2=J

p
.

The solutions of the above simultaneous equations for the coefficients, a1, b1, a2, b2, d1, and e1 were obtained
with the help of symbolic math of Matlab [14], but are not listed here because they are too complicated.
Instead, a Matlab program to obtain the coefficients is listed in Appendix A to help readers generate the
solutions. Examining the solutions, it was found that the coefficients are proportional to F0, which was
expected. It was also found that a1, b1, a2, and b2 are independent of r, and d1 and e1 are inversely proportional
to r. It means that the magnitudes of the frequency components of x are independent of r and the magnitude
of the frequency component of y is inversely proportional to r.

The above observation was confirmed with simulation results. For the previous simulation, the magnitudes
of the frequency component of x at o1 and 2o2�o1 were 0.01029 and 0.005334m, respectively, and that of y at
o1�o2 was 0.1855 rad. When the value of r was doubled with the other parameters fixed (J was increased by
four times to make the natural frequency of the rotational mode, onr, unchanged), the frequency components
of x were 0.01029 and 0.005352m, and that of y was 0.09267 rad. That is, the frequency components of x were
unchanged and that of y was halved. This result confirms the above observation.
4. Conclusions

The motion of a system composed of a plate, constant springs and varying dampers was considered when
the system is subject to harmonic force. Letting the frequencies of harmonic force and damper variation f1 and
f2, respectively, the displacement at the center of the plate has frequency components at 2f2�f1, f2�fnr, f2+fnr,
f1, 4f2�f1, 2f2+f1, and so on, where fnr represents the natural frequency of the rotational mode of the plate.
Among these frequency components, the strongest one is the component at frequency f1, and its magnitude is
almost independent of f2. The next strongest component is that at 2f2�f1. The angular displacement of the
plate has frequency components at fnr, f1�f2, 3f2�f1, f1+f2, 5f2�f1, 3f2+f1, and so on. Among these frequency
components, two components at f1�f2 and fnr are prominent. If these two frequencies coincide, the plate
oscillates with almost a single frequency and a large amplitude.

The frequency components present in a homogeneous case without external excitation occur also in the
steady-state response of a case with external excitation.

The existence of the frequency components of the vertical and rotational displacements was proved
analytically. For a special case where f1�f2 is equal to fnr, approximate expressions for the vertical and
rotational displacements were derived. They show that the magnitudes of the frequency components of the
vertical displacement are independent of r and the magnitude of the frequency component of the rotational
displacement is inversely proportional to r, where r represents the distance from the center of the plate to a
spring and a damper.
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Appendix A. Matlab program to obtain the coefficients of frequency components
syms m k c r F0 w1 w2 a1 a2 b1 b2 d1 e1 pi
A ¼ [2*k�m*w1^2 -c*w1 0 0 2/pi*c*r*(w1�w2) 0; y

c*w1 2*k�m*w1^2 0 0 0 2/pi*c*r*(w1-w2); y

0 0 2*k�m*(2*w2�w1)^2 �c*(2*w2�w1) 2/pi*c*r*(w1�w2) 0; y

0 0 c*(2*w2�w1) 2*k�m*(2*w2�w1)^2 0 �2/pi*c*r*(w1�w2); y

�2/pi*c*r*w1 0 2/pi*c*r*(2*w2�w1) 0 0 �c*r^2*(w1�w2); y

0�2/pi*c*r*w1 0 -2/pi*c*r*(2*w2-w1) c*r^2*(w1-w2) 0];
b ¼ [F0; 0; 0; 0; 0; 0];
z ¼ A\b
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