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Abstract

An analysis on the nonlinear dynamics of a simply supported functionally graded materials (FGMs) rectangular plate
subjected to the transversal and in-plane excitations is presented in a thermal environment for the first time. Material
properties are assumed to be temperature dependent. Based on Reddy’s third-order plate theory, the nonlinear governing
equations of motion for the FGM plates are derived using Hamilton’s principle. Galerkin’s method is utilized to discretize
the governing partial equations to a two-degree-of-freedom nonlinear system including the quadratic and cubic nonlinear
terms under combined parametric and external excitations. The resonant case considered here is 1:1 internal resonance and
principal parametric resonance. The asymptotic perturbation method is utilized to obtain four-dimensional nonlinear
averaged equation. The numerical method is used to find the nonlinear dynamic responses of the FGM rectangular plate.
It was found that periodic, quasi-periodic solutions and chaotic motions exist for the FGM rectangular plates under
certain conditions. It is believed that the forcing excitations f; and f; can change the form of motions for the FGM
rectangular plate.
© 2007 Elsevier Ltd. All rights reserved.

1. Introduction

Functionally graded materials (FGMs) are new engineering composite materials, which are being widely
applied to large space station, shuttle, aircraft, automotive and many others in recent years [1,2]. The FGMs
are microscopically inhomogeneous composites usually made from a mixture of metals and ceramics. By
gradually varying the volume fraction of constituent materials, their material properties exhibit a smooth and
continuous change from one surface to another. Thus, interface problems and mitigating thermal stress
concentrations can be eliminated. In the FGMs, the micro-structures are spatially varied through non-uniform
distribution of the reinforcement phases using the reinforcement with different properties, sizes and shapes as
well as by interchanging the roles of the reinforcement and matrix phases in a continuous manner [3]. With the
increasing use of FGM plates in engineering fields, research on the nonlinear dynamics, bifurcations, and
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chaos of the FGM plates plays a significant role in applications. However, to date, only few studies on the
bifurcations and chaos of the FGM plates have been conducted.

In the last 10 years, several researchers have focussed their attention on investigating the dynamics the
FGM plates. Praveen and Reddy [4] provided the nonlinear transient thermoelastic analysis of functionally
graded ceramic-metal plates subjected to pressure loading and thickness varying temperature fields. Cheng
and Batra [5] used Reddy’s third-order plate theory to study buckling and steady-state vibrations of a simply
supported functionally gradient isotropic polygonal plate resting on a Winkler Pasternak elastic foundation
and subjected to uniform in-plane hydrostatic loads. Ng et al. [6] analyzed the parametric resonance of
functionally graded rectangular plates under harmonic in-plane loading. Yang and Shen [7] studied the
dynamic responses of initially stressesd FGM rectangular thin plates subjected to partially distributed
impulsive lateral loads and without or resting on an elastic foundation. In 2002, they [8] investigated the free
and forced vibrations of FGM plates in a thermal environment. The material properties were assumed to be
temperature-dependent and graded in the thickness direction according to a simple power-law distribution in
terms of the volume fractions of the constituents. Based on Reddy’s higher-order shear deformation shell
theory, Yang and Shen [9] analyzed the free vibration and parametric resonance of shear deformable
functionally graded cylindrical panels subjected to combined static and periodic axial forces in a thermal
environment. Yang et al. [10] investigated the large amplitude vibration of pre-stressed FGM laminated plates
that are composed of a shear deformable functionally graded layer and two surface-mounted piezoelectric
actuator layers.

In addition, Qian et al. [11] analyzed the static deformations, free and forced vibrations of a thick
functionally graded elastic rectangular plate by using a higher-order shear and normal deformable plate theory
and the Petrov-Galerkin method. Senthil and Batra [12] gave a three-dimensional exact solution for free and
forced vibrations of simply supported FGMs rectangular plates. Huang and Shen [13] studied the nonlinear
vibrations and dynamic responses of FGM plates in thermal environment, in which the heat conduction and
temperature-dependent material properties were both considered. Chen [14] investigated the nonlinear
vibrations of FGM plates with arbitrary initial stresses. The effect of transverse shear strains and rotary inertia
was included in five partial differential governing equations.

Studies of the nonlinear vibrations and dynamic stability of the plate and shells have been extensively
conducted in the past two decades. Many of these studies are focused on isotropic or laminated composite
plates and shells. Hadian and Nayfeh [15] used the method of multiple scales to analyze asymmetric nonlinear
responses of clamped circular plates subjected to harmonic excitations and considered the case of a
combination-type internal resonance. Chang et al. [16] investigated the bifurcations and chaos of a rectangular
thin plate with 1:1 internal resonance. Anlas and Elbeyli [17] studied the nonlinear dynamics of a simply
supported rectangular plate subjected to transverse harmonic excitation. Zhang et al. [18] investigated the
global bifurcations and chaotic dynamics of a parametrically and externally excited simply supported
rectangular thin plate. Recently, Ye et al. [19] studied the local and global nonlinear dynamics of a
parametrically excited rectangular symmetric cross-ply laminated composite plate. In addition, Zhang et al.
[20] gave further studies on the nonlinear oscillations and chaos of a rectangular symmetric cross-by laminated
plate under parametric excitation.

In the last century, to investigate the nonlinear oscillations, many asymptotic perturbation techniques, such
as the averaging method, the Krylov, Bogoliubov and Mitropolsky (KBM) method, the method of multiple
scales and the harmonic balance method, have been presented and widely used to construct the approximate
solutions of weakly nonlinear systems. In general situations, analysis is carried out only up to the first-order
approximation since higher-order terms do not have large influence on the qualitative characteristics of the
asymptotic solutions. However, the quadratic nonlinearities cannot be included in the first-order approximate
solutions when they exist in the original nonlinear systems. Therefore, in order to acquire better qualitative
and quantitative characteristics of nonlinear systems having the quadratic and cubic nonlinearities, the
second-order averaging or perturbation procedure should be considered. In order to investigate conveniently
nonlinear dynamic responses of systems including the quadratic and cubic nonlinearities, an asymptotic
perturbation method was developed by Maccari [21-25] based on the slow temporal rescaling and balancing of
the harmonic terms with a simple iteration. In the certain sense, the asymptotic perturbation method can be
considered as an attempt to link the most useful characteristics of the harmonic balance and the method of
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multiple scales. Recently, Ye et al. [26] utilized the asymptotic perturbation method to study the nonlinear
oscillations and chaotic dynamics of an antisymmetric cross-ply laminated composite rectangular thin plate
under parametric excitation.

This paper focuses on research on the bifurcations and chaotic dynamics of a simply supported at the four
edges, FGM rectangular plate subjected to the in-plane and transversal excitations simultancously in the
uniform thermal environment. Material properties of the constituents are graded in the thickness direction
according to a power-law distribution. In the framework of Reddy’s third-order shear deformation plate
theory [27], the governing equations of motion for the FGMs rectangular plate are derived using Hamilton’s
principle. Because only transverse nonlinear oscillations of the FGM plate are considered, the equations of
motion can be reduced into a two-degree-of-freedom nonlinear system under combined parametric and
external excitations using Galerkin’s method. The case of 1:1 internal resonance and primary parametric
resonance is considered for the FGM rectangular plate. The asymptotic perturbation method developed by
Macecari [21-25] is employed to transfer the second-order nonautonomous nonlinear differential equation with
the quadratic and cubic nonlinear terms to the first-order nonlinear averaged equation. Using the numerical
method, the averaged equation is analyzed to find the nonlinear responses and chaotic motions of the FGM
rectangular plate.

2. Formulation

A simply supported at the four-edges FGMs rectangular plate subjected to the in-plane and transversal
excitations is considered, as shown in Fig. 1. The edge width and length of the FGM rectangular plate in the x
and y directions are, respectively, a and b and the thickness is /. A Cartesian coordinate Oxyz is located in the
middle surface of the FGMs rectangular plate. Assume that (u, v, w) and (uy, vy, Wo) represent the
displacements of an arbitrary point and a point in the middle surface of the FGMs rectangular plate in the x, y
and z directions, respectively. It is also assumed that ¢ and ¢,, respectively, represent the mid-plane rotations
of two transverse normals about the x-and y-axis. The in-plane excitation of the FGMs plate is distributed
along the y direction at x = 0 and « and is of the form —(po—p; cos Q,¢). The transversal excitation subject to
the FGMs plate is represented by F(x,y)cos Q;¢. Here, 2| and Q, are the frequencies of the transversal
excitation and the in-plane excitation, respectively.

2.1. Materials properties

Generally speaking, most of the FGMs are employed in high-temperature environment and many of the
constituent materials may possess temperature-dependent properties. It is assumed that the plate is made from
a mixture of ceramics and metals with continuous varying such that the bottom surface of the plate is metal-
rich, whereas the top surface is cerami-rich. The material properties P, such as Young’s modulus £ and the
coefficient o of thermal expansion, can be expressed as a function of the temperature [28,29]

P;=Py(P_i T~ 41+ P\T+ P,T* + P;T°), (D

where Py, P_;, P;, P> and P are temperature coefficients.

EERERN

F (x,y) cos Q;t

Fig. 1. The model of an FGM rectangular plate and the coordinate system.
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The effective material properties P of the FGMs can be expressed as
P=PJV +P,V,, )

where subscripts ¢ and b, respectively, represent the top and bottom surfaces of the FGMs plate, V. and V,, are
the ceramic and metal volume fractions and add to unity

Vet V=1 3)

The metal volume fraction V,, is defined as [37]

N
22+h> , @

Viu(z) =
@) ( o
where power-law exponent N is a real number that characterizes the metal variation profile through the plate
thickness.

From Eqgs. (2)-(4), Young’s modulus E, the coefficient « of the thermal expansion, the mass density p and
the thermal conductivity k can be expressed as

E=(E,—E)V,+E, (5a)
o= (op — 0t)) Vi + s, (5b)
p=(0p=PIVm+ps (5¢)
K= (kp — k) Vi + K. (5d)

We assume that the temperature variation occurs in the thickness direction only and the one-dimensional
temperature field is constant in the xy plane of the plate. In this case, the temperature distribution along the
thickness of the plate can be obtained by solving a steady-state heat transfer equation

dz
This equation is solved by imposing the boundary condition of 7= T, at z=h/2 and T = T), at z = —h/2.
For an isotropic material, the solution of Eq. (6) may be expressed as
T,+T, T,—-T
t b + t b - (7)
2 h

It is also supposed that the FGMs plate is linear elastic throughout the deformation, and that the plate is
initially stress-free at T, and is subjected to a uniform temperature variation AT = T—T,.

d [K(Z)(;—Z] =0. (6)

T(z) =

2.2. Equations of motion

According to Reddy’s third-order shear deformation (TSDT) in Refs. [27,30-32], the displacement field of
the FGMs plate is assumed to be

owp

u(xaya t) = uo(xaya t) + Zd)x(xaya l) - CIZ3 (¢x + a)a

ow
U(xaya t) = UO(X,ya t) + Zd)y(xaya [) - 6123 (d)y + ayo> >

w(x, y, £) = wo(x, , 7). (®)

Based on the nonlinear strain—displacement relation and the above displacement field, we obtain
. _au+1 ow\? . _60+1 ow\? 1 6u+av+6W6w
T ox 2\ox) T Moy 2\oy) T =5 \ox dy 0x oy)’

_l @_’_% _l a_u_i_% (9)
==7\5z oy )’ Tx=5\3z T ox )’
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and
Bxx &0 &l &
0 1 3
&y o= '9( D O G ‘e(y})
Vay y(o y(‘ e
where
Ouy 1 [Owy 2
&0 ox 2\ ox &)
8(0) _ Ovg 1 [Owy 2 8(1)
o= — 4= = ) vy
oy 2\ 0y
/(0) y(l)
v Oug Ovg  Owp Owg e
dy  Ox x 6y
6(;3 0wy
Q) ox | ox2
3(3) _ % + 621/110
"yy =—q oy 0y2
V(3) 2
0p, 0o, " wy
dy  Ox Ox 0y
aWQ
7 ¢, + o Y
V(O) = @Wo ) y(.z) —C
CRr

qs_y +

b+

= _Cl

0o,
O

oo
oy
wo
Ox

) _ [,
’ Vzx B V('(‘)c)

0o,
Oox

o,

o,
dy  Ox

4
. (32:361, 1 :gl’lz

NE=
72 (7

Taking into account the thermal effects, the stress—strain relationship is as follows:

Qll

0y
0

0
0

Ql2

0y
0

0
0

0 0
0 0
Ou 0
0 Oss
0 0

0
0
0
0

Q66

8)(.3(

ny

where the elastic stiffness coefficients of the FGM plate are given by

Qll = Q22 =

E

1 —v¥’

Q12 =

Q21 =

vE
1—v2’

and the coefficient of thermal expansion can be written as

Oy =

Oy = Oy =0, Oy, = 0.

QSS =

OCXX

Cyy
— 0
0

20ty

Q66 =

AT ;,

E
2(1+v)

(10)

(11)

(12)

(13)

(14)

According to the Hamilton’s principle, the nonlinear governing equations of motion for the FGM
rectangular plate are given as

Nxx,x + ny,y == 10720 + (11 - 6113)&%

Nyyy + Ny = Loto + (I —6113)4) —cilz—

o3 ——

oWy
ox’

ow Wo
oy’

(15a)

(15b)
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owy *wo owy owy *wo owg *wo
Nyyy E + Ny, 6—)/2 + Nyyx E + Nyyy o + 2N,y % + Niox o + Nxx o2
+ Cl(Pxx,xx + 2ny,xy + Pyy,yy) + (Qx,x - C2Rx,x) + (Qy,y - C2R f,y) +F— VWO
) ditg  diig op, 0p, oty g
=17 I3 — + — Iy — il 4 P — , 15
owo+c13<ax+ax)+61(4 cl 6)<ax+ay cle 6x2+6y2 (15¢)

Mxx,x + Mxy7y - ClPxx,x - ClnyJ - (Qy - CZRx) = (Il - C113)i’20 + (12 - 2C114 + 6%16)(};(

oW
—wdh—cﬂdgf, (15d)

Moy + My — 1 Pyyy — 1 Py — (O, — aRy) = (I1 — c113)io + (12 — 2¢114 + ),
o
—alls—al) 5y, (15¢)
y

where y is the damping coefficient, a comma denotes the partial differentiation with respect to a specified
coordinate, a super dot implies the partial differentiation with respect to time, the stress resultants are
represented as follows:

N &0 N M £©) M,
T T
Nyy b = ([IBIEDS &V ¢+ 4 Vv b, ¢ My o = ([BIDIFI}] &V 3+ My
Ny KE) NT, M, HE) M7,
P ) PT.
” ¢ . 0, SO R, 2O
Py b = {[EXFIHIR & ¢ + %),{Q}ﬂmmﬁw},{R}ﬂmm{w},(m
Py FE) P ) )
where 4;, By, Dy, E;;, F; and Hy, respectively, are the stiffness elements of the FGM plate, which are denoted
as
h/2
(A;j, By, Dyj, Ejj, Fyj, Hy) = ., 0,(1,z,2%,2,2%,2%dz  (i,j =1,2,6), (17)
—h/2
h/2
(Ay, Dy, Fy) = ) 0;(1,2,2h)dz (i.j=4,9) (18)
—h/2

and the thermal stress resultants in Eq. (16) can be represented as

N 0 Q0 07 (o

T h/2

Ny, =—/ 0y 0On 0 o yAT dz,
—h/2

Ny, 0 0 Ok |0

M, 0 Q0 7 (o

T h/2

Myy =—/ 0y On O o »zAT dz,
—h/2

M, 0 0 Ok |0
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Py Qu On 07(«

T h/2

P % = _/ 0y 0n O a y2’AT dz. (19)
T —h/2

ny 0 0 QO 0

It is found that the Nzx and NyTy in Eq. (19) are the functions with respect to « and AT. They represent the
thermal stress resultants, which demonstrate the thermal effect.

Substituting the stress resultants of Eq. (16) into Eq. (15), we can write Eq. (15) in terms of generalized
displacements (ug, vo, o, ¢y, ¢,) as

%up %uo 0% 62q§ ¢,

Angs +A66 +(A12+A66)

azqﬁy dwo 0wo dwoy O*wy dwy *wy
+ (Bio — c1E12 + Beo — ClEee)— oy a2 A5 B2 + (A2 + Ae6) 3y dxdy

3

0wy
-k —== 0

aW()

—c(Epp+ 2E66) o

= Ioiig + (I — c113)p, — c1 13— (20a)

Ox a 2
v 62 % 62¢; 0’9
—— 0 (A + A66) + (Bos + ¢1E0) 5 5+ (B + C]E22)a—2)

624). dwo 0wy dwoy *wy dwy *wy
B, —E Bes — 1 E —”\ -_— A A
+ (B2 — ¢1Ea1 + Bgs — ¢ 66) %2y ox +An—— 3y 07 + (421 + A66) = 3x oxdy

0wy . - oWy
320y = loto + (1 — a1l3)p, — c1l3—— 3y

3 3

Wo
—cEn—— 3 —ci(Ein+2E66) =5 (20b)

dug 0% wy dug 0% wyo dug 0% wy Q*uy Owy %y Owy %ug dwy
25y oy TANGy T T2, axay TR A0 GE 5 AN TE By TS o

Qup ug dvy *wo dve 0wy due 0wy 0%y Owp
E E +2E 26 L0 S0y, ST S0 O W, S0 O
tabugzs L+ c1(Ex + 66)a 6y2+ 635 6x6y+ 23y B2 + A 3y o2 + Axn 2 0y

d%vo Owg %vy Owp 3 3

0’v 0’0o
A — E E 2F
6 3x2 By +(An+4 )a 3 o T 25 z-I-Cl( 12+ 6()a 32

o’ wo

+ A + (Ass + 3Fss — 202D55)

2

0wy 0 0wy 0 0’
+ (Aas + 3F 44 — 2CzD44) + 2c1(E¢s — E12) = Mo £ Mo Mo, 2c1(Ey — 2E66)( WO)

IWo L oe,
o o2 e ey B2 oxdy

dwy O*wy Gwo 3 owy 262wo 1 owy 62w0 1 owy 62w0
2(4 2A66) — An| — ~A A A A
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0, O* wo
x 0y

0, 0*wy
dy OxOy

+ (B — C1E2l) + 2(Bes —

ach) awo o? ¢ awo a¢ 0wy

Ox?

63 b,
O0x 02

+ (Ba1 + Bes — c1E2) _ClEéﬁ) +(311 01E11) +(311 ClEll)

0’ d) 6wo
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¢, O*w ¢ ow (15 *w
+2(Bgs — ¢1Eg6) = ==+ (Bes — C1E66) 5 —+ (B — 01E12) . 20
ox Oxoy oy oy Ox
(/5 ow *p, ow o'
+(322—ClEzz) y y0+(Blz+B66_ClElz_C1E66)a ay 670+(61F22—01H22) .
o 2
0’9 %w " wo
+61(F12+2F66—C1H12—2C1H66)a Zay XTX 6x20 NyTy 7 + F cos Q¢
Owg . 5. (% % diiy Oty o a(.];y
—y—=1 —clg| —+—+ 1 — Iy —cil ad 20
V=, = oo — € 6(ax2+ay2 +als| 5o +a tals—alg)| 71 o )’ (20¢)
Qu Qu % dwo O*w
(B _ClEll)WZO—F(B%_C1E66)—0+(312+B66_C1E12 ClE66) +(311 akn) 5o K o —
dwg O*w dwg O*w 3w
+ (B2 + Bes — c1E12 — ¢1Ege) = — o . o ao (Bss — ¢1E66) 5~ - % ——+ (—aF) +c1H11) -
+ci(— F12—2F66+CIH12+201H66)6 6 2 — (Ass — 262D55+62F55) d)
> ',
+ (Dgs — 2¢1Fes + ClHes 2¢1F13 — 2¢1Fgg + Dgg + c1H + 61H66)a o
.. oW
— (Ass —2¢2Dss + C§F55)¢x = (I1 — e113)iig + (I — 2c1 14 + )b, — (I — 6‘116) 0, (20d)
v 0% o%u dwg O*w
(Bss — ¢1E66)5— + (B — c1Ex) = + (Bay + Bes — ¢1Eay — C1E66) + (Bos — c1E66) 5 - L
0x? oy Ox
Owg O*w dwg O*w 3w
+ (B —akn) - K & 20 + (Ba1 + Beo — c1E2 — c1Ege) —— o ! o 60 +(—aFn+ Clez) K
2
+ ci(—F21 — 2F¢6 + c1Hy -I-2C1Héé)a 26 (A44—26’2D44+62F44) 3 +(D66—
2 0’9, 2 2 62%
+ (D —2c1Fpn + Clez)a—yz—f- (D21 — 2¢1Fy1 — 2¢1Fe6 + Des + c1Hay + 01H66) -
. - aw
— (Aas — 26:D4s + SGF ), = (I1 — c113)ig + (I — 2¢114 + cil), — c1(Is — c11) yo , (20e)
where all kinds of inertias in Eq. (20) are calculated by
h/2
I = / Zp(z)dz (=0, 1,2, 3, 4, 6), Q1)
—h/2
The simply supported boundary conditions can be expressed as
atx=0 and x = q, w:qﬁ},:Mxx: o« =Ny, =0, (22a)
aty=0and y=b, w=¢,=M,, =P,,=N,, =0, (22b)
b b
Nyyly=o,5 =0, /0 Nixly0,dy = —/0 (po — p1 cos Qa21)dy. (22¢)

It is obvious that the boundary condition (22c¢) also includes the influence of the thermal
environment.
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In order to obtain the dimensionless equations, we introduce the transformations of the variables and
parameters

_ U __Uo - _Wo T T = — __(ab)7/2
H—;, UV=—, V _75 QSY—(ISV qsy_d)y’ X—;, _B’ F_7'C4Eh7
) (ab)z ( 1 1/2 b2 _ b2 _ 2( E )1/2
= e ’ P — ) P -3 s I=m -
T \pe) " 0T o P abp
) 1 Zabo\ V2 _ b)l/2 ) »)1/2 ) )1/
P ) N U L S UL P S D e
2\ E ER ER En’*
_ (ab)'? _ (ab)'? _ (ab)'/? - 1
E; = Ej, Fy=—1+—F;, Hj=—% Hy Ii=——/—->1. (23)
CoEr T T EmS T Y (ab) ™2

We mainly consider transverse nonlinear oscillations of the FGM rectangular plate in the first two modes. It
is our aim to choose a suitable mode function to satisfy the first two modes of transverse nonlinear oscillations
and the boundary conditions for the FGM rectangular plates. Thus, we write w as follows:

3 -
w(x, 7, 1) = wi(7) sin = s1n—y + Wy (7) sm—sm n (24)
a b a b’
where w; and w, are the amplitudes of two modes, respectively.
The transverse excitation can be represented as
3ny A
Fx,5,0) = F](t')sm—smT—i—Fz(f)sm—sm b (25)

where F| and F, represent the amplitudes of the transverse forcing excitation corresponding to the two
nonlinear modes.

For simplicity, we drop the overbar in the following analysis. Based on research given in Refs. [33,34],
neglecting all inertia terms on u, v, ¢, and ¢, in Eq. (20) and substituting Eq. (24) into Eqgs. (20a), (20b), (20d)
and (20e), we obtain the displacements u, v, ¢ and ¢, with respect to w. Substituting Egs. (24) and (25) into
Eq. (20c) and applying the Galerkin procedure yield the governing differential equation of transverse motion
of the FGM rectangular plate for the dimensionless as follows:

w1 + cu%wl + aywy + axw;y cos Q¢ + a3w% + a4w§ + aswlwg + a6w? + a;wiwy = f cos Q1t, (26a)

Wy + w%wz + bWy + bowy cos 5t + bswiwy + b4wf + bswg + bf,wzwf + b7wg = f, cos Qit, (26b)

where all coefficients can be found in Appendix A, the f; and f> are the magnitudes of the forcing excitations,
which are also given in Appendix A.

The aforementioned equation, which includes the quadratic terms, cubic terms, parametric and transverse
excitations, describes the nonlinear transverse vibrations of the FGM rectangular plate subjected to the in-
plane and transversal excitations in the first two modes. To consider the influence of the quadratic terms on
the nonlinear dynamic characteristics of the FGM rectangular plate, we need to obtain the second-order
approximate solution of Eq. (26). It is difficult for one to use the method of multiple scales to obtain the
second-order approximate solution of Eq. (26). Thus, in the following analysis, we will utilize the asymptotic
perturbation method presented by Maccari [21-25] to obtain the second-order approximate solution of
Eq. (26). Utilizing the asymptotic perturbation method, we can obtain increasingly accurate solution by
increasing the order of approximation in terms of the small parameter e.

3. Perturbation analysis

To guarantee the validity of perturbation analysis, we use the asymptotic perturbation method [21-26,35] to
obtain the averaged equation of system (26).

It is assumed that the width-to-length ratio of the FGM rectangular plate is a/b = 1. Therefore, we only
consider the case of 1:1 internal resonance and primary parametric resonance for the FGM rectangular plate.
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In this resonant case, there are the following relations:

Q Q
o =71+8201, w2=71+8202, QD =0=0, (27)

where w; and w, are two linear frequencies, o, and o, are the two detuning parameters.
The scale transformations may be introduced as

ay — a1, @ — &ar, fi— szfl, by — &by, by — &by, fr— ezfz. (28)

Substituting Egs. (27) and (28) into Eq. (26) yields

4
= szfl cos Qf, (29a)

2
w1 + ( + 340'% + Qa6 | wy + Eapiy + Eaw, cos Qtf + a3w% + a4w§ + a5w1w% + a(,w? + arwiws

QZ
Woy 4+ (T + 840'5 + Qazsz> Wy + &by + e2byws cos Qf + bywiwa + b4w% + b5W§ + bﬁwzwf + b7wg

= &’f, cos Qt, (29b)
We now introduce the temporal rescaling
T = ¢lt, (30)

where ¢ is a rational positive number, which will be fixed afterwards.

The value of ¢ fixes the magnitude order of the temporal asymptotic limit in such a way that the nonlinear
effects become consistent and non-negligible. If 7 — oo, we set ¢ — 0, so that 7 assumes a finite value.

The approximate solutions wi(7) and w»(¢) of Eq. (29) are sought in a power series of small parameter &

“+o00

wi@) = > &, (z,e)e ", (31a)

n=—00

+oo
W)= Y e by(r,)e (31b)

n=—00

where d, = |n| for n#0, and §y = J is a positive number, which will be fixed later on.
Because wq(#) and w,(¢) are real, we can obtain

Yt e) = Y2, (c.0). (32a)

Dy(t,8) = ¥, (1,¢), (32b)

where the asterisk denotes the complex conjugate.
Therefore, the assumed solution (31) can be rewritten more explicitly as follows:

W](l) — E(SWO(,C’ (0) + SWI(Ta 8) e—i(Q/Z)r + 82W2(Ta 8) e—iQt + 83%3(19 F) e—i(3Q/2)t
+ ey (1, 8) e + cc + O(E), (33a)

wa(t) = € Py(z, &) + By (1, ) e D' 4 2Py(1,6) eV + £ D3(x, ) e IO
+ &t ®y(1,8) e 72 4 cc + O(), (33b)
where the symbol cc stands for the parts of complex conjugate of the functions on the right-hand side
of Eq. (33).
It is seen from Eq. (33) that the solutions of Eq. (29) can be considered as a combination of the various
harmonics with coefficients depending on 7 and &. Assume that the functions ¥,(t,¢) and @,(t,¢) can be
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expanded in power series of small parameter ¢

mm@=§§w%u (34a)
i=0
+00

Dy(r,0) = Y £ D(2). (34b)
=0

It is also supposed that the limits of functions y,(t,¢) and @,(t,¢) as ¢ - 0 exist and are finite. For
simplicity of analysis, we use abbreviations y* = Y, and 45510) = ¢, forn#1 and w(lo’ =, <I>(10) =¢forn=1.

n

Note that the introduction of the temporal rescaling (30) implies that

d . . d )
G0 = (in@ /2, 4 1), (350)

d . do, .
5(% R (—in(Q /2)®, + & ¥> e @/, (35b)

In order to determine the coefficients ¥, (z,¢) and @,(t,¢), we substitute solution (31) into Eq. (29) and
obtain the equations for each harmonic with order n» and for a fixed order of approximation on the
perturbation parameter é.

For n = 0, we obtain

Q2
2ot 2a38° W I* + 20487 |1 * + az8” (Y B + Y1) = 0, (36a)

92
&P+ b3 () BT+ YT + 2048’ P + 2bse?|0|? = 0. (36b)

The correct balance of the terms indicates 6 = 2. Therefore, we derive the following relation:

_ Baslyy P + 8ay|D1|* + dar(DF; + YiP)

l//0 = QZ s (373)
4b3 (P} Y®y) + 8bylyy, |* + 8bs| Py |
By = — 3(PTY + Y 1)‘9"2 4lY11” + 8bs| D | . (37b)
For n = 2, taking into account Eq. (35) yields

10, = asyi + @] — iy +an D, (38a)

3Q°®y = by + bays; + bs®} — If . (38b)

and the corresponding relations
4 ) , 1
by = 30 asfy +as®y —5f +an, Py ), (39a)

4 1
Py = T <b3¢1‘151 + by + bs @7 — Efz) (39b)
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From the proper balance of the nonlinear and linear terms, for n = 1, we must consider g = 2. Based on
Eq. (29), we have

dy Q. 1 40 20
— Qi 1—1— QUl_alzl v+ 72— 39203f1 YT+ 392a3+306+392a7b4 215
16 16 8 8 L\, 16 16
+< — azay — 392a4b3+2a5—§a7b5—ﬂ%)l(bll :|W1+<—Q—a4b4+g abs
8 , 20 , (8 8
+—aa D) + ——aybh asar | |17 dy + azas — —ashbs +a
7 37)|‘/J1| 1 ( abs == 47)| 117 307 304 — b3 +as

4 8 20 4 4
+ —arbs | ®? *+<—ab ——ab——ab) 2% + dany, @ — —— ayf ,DF
Pk 5) Wi 3R b — 3 1= b Y P 7Y, P 307 4f > P

QZ
2 . ,
chfl 392 a7leﬁ1 (40a)
do, l %
— 1 di—{— <QGZ bll) D) + ( 2 3f1 392 sz)qjl

2 ) 8 16 , 32 2
_ (ﬁb3f2+3gzb4fl>w* ( Qza3b'; 3sz3 ——2b4b5+2b6+ﬁa7b4>|l//1| D,

40
Ve b3by — Ys a3b4) 'ARZ

20 5 By
+< o a4bz 30 2b5+3b7)|@1| @14—(

8 16
+( 392417173 Q2a4b4 392/531?5>|(151|1//1

4
" (_Tbg 3 T 392 bibs+ 2 b4a7) bt

28 8 4 5
+ (392 b3b5 +— 3Q2 a4b4 + b6 Q2 a7b3> lﬂT¢1 =0. (40b)

Based on Egs. (26) and (28), the differential equation for the evolution of the complex amplitudes /| and @,
can be derived as

d . . . .
% =y —oi+ (o +oof | + O‘llfz)‘//Tl + (oaf ', + o f )P + 0‘4|lﬁ1|2¢11 + s, |2lp11
+ a6l Ppyi + o1y Py + as Tyt + oo i + ooy (41a)
d(pl . 2 % 2 . 2 .
P @1 — 02Pri+ (B + Bof | + Baf )PV + (Baf o + BsS DVTT + Belh 17 P1i + f7] D1 |" Py

+ Bl P+ Bol @11y + BroW i BT+ By i (41b)

In order to transform Eq. (41) into the Cartesian form, let

lﬂl = x| +ixy, @] = x3+1ixy. (42)

Substituting Eq. (42) into Eq. (41), the averaged equation in the Cartesian form is obtained as follows:

dX1

g = M + (a1 4 o1 + oaf |+ o1if2)X2 4+ (3f 5 + o1 f )X + aaxixy + oxs + (a0 — og + 05)X3X2

+ (ats + 05 — 210)X3X2 + 2069X1 X2X3 + (— 019 + 0l6)XTXa + (o6 + 019)X3x4 + 2(0tg + 0£10)X1X3X4

+ omxi + oc7x§X4, (43a)
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dx, 2 2
T (=01 + oy +oof | +anfo)xr + pyx2 + (ea3f) + o f)xs — omx? — oy xyx1 — (og + o5 + 210)X3X]
> > >
— (s — 003 — 0110) XX — 209X X2x4 — (0t + 0t6)XTX3 — (ot — 09)x5X3 — 2(0otg — 0110)X2X3X4

- onxim — omx%, (43b)

dx
dis = (Baf 2 + Bs/ D)x2 + tax3 + (02 4 By + Baof 1 + Baf2)xa + Bgxixa + (Bs — Bro)x1Xs + (Bs + Bro)x3x4
+ Bsxs — (By) — ﬁ9)X§x2 + ﬁ7x§x4 + (Bo + Pr)x3x2 + Prx; 4 2B10X1X2X3 + 2B X1 X34, (43¢)

d
g = (Buf 2 + B/ Dx1 + (02 + By + Bof | + Paf X3 + 1oxs — Bsxi — (Bs + Bro)Xix3 + (Bs — Bro)x3x3
— Bsx3x1 — (Bo + Br)x3x1 — Bax3 + (By — Br)xix1 — Brxixs — 2811 X2X3Xs — 2B10X1X2X4, (43d)

where all coefficients can be found in Appendix B.

4. Numerical simulations of periodic and chaotic motions

In the following investigation, the fourth-order Runge—Kutta algorithm [36] is utilized to numerically
analyze the periodic and chaotic motions of the FGM rectangular plate subjected to thermal and mechanical
loads for the case of 1:1 internal resonance and primary parametric resonance. We consider the averaged
equation (43) to carry out numerical simulation. We choose the forcing excitations f] and f, as the controlling
parameters when the periodic and chaotic responses of the FGM rectangular plate are investigated. Zirconia
and titanium alloy are selected for the two constituent materials of the FGM plate in this example, referred to
as ZrO,/Ti—6A1-4V. The properties of this material can be found in Ref. [37]. The two-dimensional phase
portrait, waveform, three-dimensional phase portrait and Poincare map are plotted to demonstrate the
nonlinear dynamic behaviors of the FGM rectangular plate. It can be clearly found from the numerical results
that the periodic and chaotic motions occur for the FGM rectangular plate.

Fig. 2 illustrates the existence of the chaotic motion for the FGM rectangular plate when the forcing
excitation f5 is 6.99. The parameters and the initial conditions are, respectively, chosen as o; = 0.52, g, = 0.86,
w; =032, uy =032, 0y =52, ap =122, a3 = —8.1,04 = 0.66, a5 = —0.5, ag = 4.21, a7 = —0.36, ag = 3.3,
og =122, a9 =3.26, o =-=578, B, =44, B, =152, p;=-873, B,=3.03, fs=-51, fs=2.2,

,=—098, fg=—11.3, g =521, B, = —4.15, f;; =0.66, [} =8.62, x190 = 0.44, xp9 = 1.55, x39 = 2.35,
x40 = 5.18. Figs. 2(a) and (c) represent the phase portraits on the planes (x;,x,) and (x3,x4), respectively.
Figs. 2(b) and (d) respectively denote the waveforms on the planes (¢,x;) and (¢,x3). Figs. 2(e) and (f) represent
the three-dimensional phase portrait in space (xi, X, x3) and the Poincare map on plane (x;, x,), respectively.
It can be shown from Fig. 2 that the amplitude of the second-order mode is larger than one of the first-order
mode. Until the forcing excitation is increased to f, = 7.008, the response of the FGM rectangular plate also is
the chaotic motion, as shown in Fig. 3. The Poincare maps given in Figs. 2(f)-3(f) clearly demonstrate that
chaotic motions exist for the FGM rectangular plate.

Fig. 4 indicates that the quasi-period motion of the FGM rectangular plate occurs when the forcing
excitation changes to f> = 7.012. Fig. 5 shows that the chaotic motions of the FGM rectangular plate again
occur when the forcing excitation changes to f; = 7.038. Fig. 6 illustrates that the quasi-period response of the
FGM rectangular plate occurs when f, = 7.053. When f, = 7.098, the chaotic response of the FGM
rectangular plate exists for the FGM rectangular plate, as shown in Fig. 7.

Continuously increasing the forcing excitation to f>» = 7.288, it is found that period-9 solution occurs for the
FGM rectangular plate, as shown in Fig. 8. In Fig. 9, it is seen that the multiple period motion of the FGM
rectangular plate exists when f>, = 7.389. With the increasing of the forcing excitation continuously, the
periodic motion of the FGM rectangular plate also exists when f> = 7.403, as shown in Fig. 10. Because of
limited space, we do not provide other figures.
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Fig. 2. The chaotic motion of the FGMs rectangular plate exists when f> = 6.99, (a) the phase portrait on plane (x;, x,); (b) the waveforms
on the planes (¢, x;); (c) the phase portrait on plane (x3, x4); (d) the waveforms on the planes (¢, x3); (¢) three-dimensional phase portrait in
space (xi, X», x3); and (f) the Poincare map on plane (x;, x»).
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Fig. 3. The chaotic motion of the FGMs rectangular plate exists when f; = 7.008.

From Figs. 2-10, it can be shown that the process of change for the motions of the FGM rectangular plate is
as follows: the chaotic motion —the quasi-period motion — the chaotic motion —the quasi-period motion —
the chaotic motion — the period n motion.
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Fig. 4. The quasi-period motion of the FGMs rectangular plate exists when f> = 7.012.



878 Y.X. Hao et al. | Journal of Sound and Vibration 312 (2008) 862-892

@) (b)
6
5.0 1
2.5
& 0.0 -
-2.5
-5.0
1 4 1 * T X T % T i T L. T * T ¥ T T T L 1
-4 2 0 2 4 6 1000 1002 1004 1006 1008 1010
Xq t
(c) (d)
7.5
1 5.0
5.0
25 -
2.5 i ' '
| |
3 0.0- > 00 “ \ | ‘
|
1 I
25 -2.5 | ‘
-5.0 - -5.0 I
7.5 7.5
T T M T M T T v Ll T Ll T T T v 1 1 N 1
8 6 -4 -2 0 2 4 6 1000 1002 1004 1006 1008 1010

2 B X1

Fig. 5. The chaotic motion of the FGMs rectangular plate exists when f, = 7.038.
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Fig. 6. The quasi-period motion of the FGMs rectangular plate exists when f; = 7.053.
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Fig. 7. The chaotic motion of the FGMs rectangular plate exists when f5 = 7.098.
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Fig. 8. The period-9 motion of the FGMs rectangular plate exists when f, = 7.288.
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Fig. 9. The multiple period motion of the FGMs rectangular plate exists when f> = 7.389.
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Fig. 10. The period motion of the FGMs rectangular plate exists when f> = 7.403.

5. Conclusions

The nonlinear oscillations and chaotic dynamics of the FGM rectangular plate under the combined
transverse and in-plane excitations are investigated for the first time. The material properties are assumed to
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be temperature dependent. Based on Reddy’s third-order plate theory, the governing equations of motion for
the FGM rectangular plate are derived using the Hamilton’s principle. Only transverse nonlinear oscillations
of the FGM plate are considered. Galerkin’s approach is utilized to discretize the governing equation of
motion to a two-degree-of-freedom nonlinear system including the quadratic and cubic nonlinear terms. The
resonant case considered here is 1:1 internal resonance and principal parametric resonance-1/2 subharmonic
resonance. The asymptotic perturbation method based on the Fourier expansion and the temporal rescaling is
utilized to obtain a four-dimensional nonlinear averaged equation. Using the fourth-order Runge—Kutta
algorithm, the averaged equation is analyzed numerically. Under certain conditions, the periodic, quasi-
periodic and chaotic motions of the FGM rectangular plate are found.

The influence of the forcing excitations f; and f, on the nonlinear dynamic behaviors of the FGM
rectangular plate is investigated. It is thought that the forcing excitations f; and f, can change the form of
motions for the FGM rectangular plate. In the situation investigated in this paper, the forcing excitation can
be considered to be a controlling force, which can control the responses of the FGM rectangular plate from
the chaotic motion to the period n or quasi-period motions.

Because the main interest in this paper is focused on the analytical and numerical researches on the
nonlinear oscillations and chaotic dynamics of the FGM rectangular plate under combined transverse and in-
plane excitations, we did not find similar work conducted to date. Thus, it is a difficult job for us to give some
comparisons with the jobs of other researchers. In this paper, we mainly give the qualitative analysis on
nonlinear dynamics of the FGMs rectangular plate rather than the quantitative analysis. Therefore, we did not
clearly give the temperature rise AT or surface temperature 77 and 75. It is thought that the external loads are
the fast varying excitations and the temperature rise AT or surface temperatures 7, and 7, are the slow
varying excitations. It is a new problem on how to study the influence of both the fast and slow varying
excitations on nonlinear responses of the FGM plate.
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Appendix A

The coefficients a; (i=1,...,6) and b; (j =1, ..., 7) presented in Eq. (26) are as follows:

) Moo7 + PoMoos Moo4 MoogP1 M09 Mo10 Mot
0 =", @=—, GH=——, B3=———, G=———, d5=——,
Moot Moo Mool Moot Moot Moot
mo12 mMo14 mo13 ngo7 + Ponoos 1005 noos P
ag = ——, a = ——-, f] 7F19 w%:—i’ blz_ia b2=7,
Mmoo Moo1 Mo1 noo2 noo2 noo2
nooe 1009 no10 no11 no12 no13
by=———, by=———, bs=———, bg=——, bij=——=, fo=—F-F (A.T)
7002 7002 1002 1002 7002 1002
where
1 1 1
moo1 = — 3mei(I4 — cile)(apgg + bloo)/4 — —Ioab, Moos = Z“/ab, Mg = —Ebn ,
1[ bn? 4an b )
moo7 = 4 ——(Ass + 3Fss — 2¢aDss) — —(A44 + 3F 44 — 2¢3Das)— —c THynt — w 2 *Hoyn

9 1 b
- %(C%Hzl + 2T Heg) — Z“bﬂw(/lss + ¢3Fss — 2¢3Dss) + ;713/109C1(F11 —cHy)
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3 3
+ @ﬂ%mﬁ(ﬂz +2F¢ — c1Hy —2¢1Hes) — Zﬂa109(1‘144 + 3F 44 — 2¢7Dyg)

a
~|—p7‘£3/1()9€1(F22 — C]H22) >

32bn

321
3750 1 EN (=175 + 525007) + 27

525b
40967%¢,
3 b

32an
Mgy = c1(Ex + 2E66)(—175/03) + ——> 7552 5 C1E2n(—=17513)

167
e C1(Ea1 + 2E66)(—175p103) — (2E¢s — Er2) + —bM09(321 - kEy)

8= 56bn
b#og(le + Beo — c1E21 — ¢1Eg) — bllo9(366 c1Ees) + 17 3 Hoo(Bir — 1)
16a

16 8a
+— b TAoo(Ba — c1Exn) + —7»09(366 —c1Ees) + —7M09(312 —ci1Ep) — Wﬂ}m(Bzz —c1En)

32n
1575

- _}~09(Bé6 —c1Eg) — —/109(321 + Bes — c1Ex — c1Ees),
9a 9a

32bm 864n
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Appendix B

The coefficients given in Eq. (43) are as follows:

1 1 4 4 40
H = _Eal’ oy =—Eaz, 0‘2=—E03> 0‘32—@&4, 0542—@“3
o5 = 16a3a4+ 16 3 dabs + = 2 ia7b5 8 a = —&a ag — 40
R 30° OREoY Yo S YO R
:16 b 8 16 b a:—ﬂaa +iab iab
013 Q3a4 4+3Q3a3a7 3Q3a7 3, 9 3Q3 304 3Q3 404 Q3 703,
4 1 , 2
og = 0 ® 4+3Q a7b5+Q a4bz+Q Ko =5d7 0= —3pdn =
B = %bb By = —%bh B3 = 3;3 bs, PB4y= é; by, PBs= 3?23

(A4)

(A.5)



Y.X. Hao et al. | Journal of Sound and Vibration 312 (2008) 862-892 891

8 16 , 16 2 32 20 40 , 3
ﬁﬁ = Ea3b3 ﬁb:‘ Eb4b5 ﬁbé + 393 a7b49 ﬁ7 - Q3 Cl4b3 3Q3 bS + Qb7’
20 40 8 16 40
Pu= =3gnbibs =5guashs By = =3g3bibs = oyabi = o5 bsbs.
4, 4 8 8 28 8
ﬁlo = — Eb:; — ﬁa3b3 — ﬂb;tbj — §a7b4, ﬁl] - - 393 b3b5 - 393 a4b4~ (Bl)

References

[1] M. Yamanoushi, M. Koizumi, T. Hiraii, I. Shiota, Proceedings of the First International Symposium on Functionally Gradient
Materials, Sendai, Japan, 1990.

[2] M. Koizumi, The concept of FGM, Ceramic Transactions, Functionally Gradient Materials 34 (1993) 3-10.

[3] T. Hirai, Functional gradient materials, Processing of Ceramics, Part 2, Germany, 1996, pp. 293-341.

[4] G.N. Parveen, J.N. Reddy, Nonlinear transient thermoelastic analysis of functionally graded ceramic-metal plates, International
Journal of Solids and Structures 35 (1998) 4457-4476.

[S] Z.Q. Cheng, R.C. Batra, Exact correspondence between eigenvalues of membranes and functionally graded simply supported
polygonal plates, Journal of Sound and Vibration 229 (2000) 879-895.

[6] T.Y. Ng, K.Y. Lam, K.M. Liew, Effect of FGM materials on the parametric resonance of plate structures, Computer Methods in
Applied Mechanics and Engineering 19 (2000) 953-962.

[7] J. Yang, H.S. Shen, Dynamic response of initially stressed functionally graded rectangular thin plates, Composite Structures 54 (2001)
497-508.

[8] J. Yang, H.S. Shen, Vibration characteristics and transient response of shear deformable functionally graded plates in thermal
environment, Journal of Sound and Vibration 255 (2002) 579-602.

[9] J. Yang, H.S. Shen, Free vibration and parametric resonance of shear deformable functionally graded cylindrical panels, Journal of
Sound and Vibration 261 (2003) 871-893.

[10] J. Yang, Skitipomchai, K.M. Liew, Large amplitude vibration of thermo-electro-mechanically stresssd FGM laminated plates,
Computer Methods in Applied Mechanics and Engineering 192 (2003) 3861-3885.

[11] L.F. Qian, R.C. Batra, L.M. Chen, Static and dynamic deformations of thick functionally graded elastic plates by using
higher-order shear and normal deformable plate theory and meshless local Petrov—Galerkin method, Composites Part B 35 (2004)
685-697.

[12] S.V. Senthil, R.C. Batra, Three-dimensional exact solution for the vibration of functionally graded rectangular plates, Journal of
Sound and Vibration 272 (2004) 703-730.

[13] X.L. Huang, H.S. Shen, Nonlinear vibration and dynamic response of functionally graded plates in thermal environments,
International Journal of Solids and Structures 41 (2004) 2403-2407.

[14] C.S. Chen, Nonlinear vibration of a shear deformable functionally graded plate, Composite Structures 68 (2005) 295-302.

[15] J. Hadian, A.H. Nayfeh, Modal interaction in circular plates, Journal of Sound and Vibration 142 (1990) 279-292.

[16] S.I. Chang, A.K. Bajaj, C.M. Krousgrill, Non-linear vibrations and chaos in harmonically excited rectangular plates with one-to-one
internal resonance, Nonlinear Dynamics 4 (1993) 433-460.

[17] G. Anlas, O. Elbeyli, Nonlinear vibrations of a simply supported rectangular metallic plate subjected to transverse harmonic
excitation in presence of a one-to-one internal resonance, Nonlinear Dynamics 30 (1998) 1-28.

[18] W. Zhang, Z.M. Liu, P. Yu, Global dynamics of a parametrically and externally excited thin plate, Nonlinear Dynamics 24 (2001)
245-268.

[19] M. Ye, J. Lu, W. Zhang, Q. Ding, Local and global nonlinear dynamics of a parametrically excited rectangular symmetric cross-ply
laminated composite plate, Chaos, Solitons and Fractals 26 (2005) 195-213.

[20] W. Zhang, C.Z. Song, M. Ye, Further studies on nonlinear oscillations and chaos of a rectangular symmetric cross-by laminated plate
under parametric excitation, International Journal of Bifurcation and Chaos 16 (2006) 325-347.

[21] A. Maccari, Approximate solution of a class of nonlinear oscillators in resonance with a periodic excitation, Nonlinear Dynamics 15
(1998) 329-343.

[22] A. Maccari, Dissipative bidimensional systems and resonant excitation, International Journal of Non-Linear Mechanics 33 (1998)
713-726.

[23] A. Maccari, The asymptotic perturbation method for nonlinear continuous systems, Nonlinear Dynamics 19 (1999) 1-18.

[24] A. Maccari, Modulated motion and infinite-period homoclinic bifurcation for parametrically excited Lienard systems, International
Journal of Non-Linear Mechanics 35 (2000) 239-262.

[25] A. Maccari, Multiple resonant or non-resonant parametric excitations for nonlinear oscillators, Journal of Sound and Vibration 37
(2001) 855-866.

[26] M. Ye, Y.H. Sun, W. Zhang, X.P. Zhan, Q. Ding, Nonlinear oscillations and chaotic dynamics of an antisymmetric cross-ply
laminated composite rectangular thin plate under parametric excitation, Journal of Sound and Vibration 287 (2005) 723-758.

[27] J.N. Reddy, Mechanics of Laminated Composite Plates and Shells: Theory and Analysis, CRC Press, New York, 2004.



892 Y.X. Hao et al. | Journal of Sound and Vibration 312 (2008) 862-892

[28] S.C. Pradhana, C.T. Loya, K.Y. Lama, J.N. Reddy, Vibration characteristics of functionally graded cylindrical shells under various
boundary conditions, Applied Acoustics 61 (2000) 111-129.

[29] Y.S. Touloukian, Thermophysical Properties of High Temperature Solid Materials, MacMillian, New York, 1967.

[30] J.N. Reddy, A simple higher-order theory for laminated plates, ASME Journal of Applied Mechanics 51 (1984) 745-752.

[31] J.N. Reddy, A refined nonlinear theory of plates with transverse shear deformation, International Journal of Solids and Structures 20
(1984) 881-896.

[32] W. Aliaga, J.N. Reddy, Nonlinear thermoelastic response of functionally graded plates using the third-order plate theory,
International Journal of Computational Methods in Engineering Science and Mechanics 5 (2004) 753-780.

[33] A. Bhimaraddi, Large amplitude vibrations of imperfect antisymmetric angle-ply laminated plates, Journal of Sound and Vibration
162 (1999) 457-470.

[34] A. Nosir, J.N. Reddy, A study of non-linear dynamic equations of higher-order deformation plate theories, International Journal of
Non-Linear Mechanics 26 (1991) 233-249.

[35] W. Zhang, X.P. Zhan, Periodic and chaotic motions of a rotor-active magnetic bearing with quadratic and cubic terms and time-
varying stiffness, Nonlinear Dynamics 41 (2005) 331-359.

[36] T.S. Parker, L.O. Chua, Practical Numerical Algorithms for Chaotic Systems, Springer, New York, 1989.

[37] H.S. Shen, Nonlinear bending response of functionally graded plates subjected to transverse loads and in thermal environments,
International Journal of Mechanical Sciences 44 (2002) 561-584.



	Nonlinear oscillations, bifurcations and chaos of �functionally graded materials plate
	Introduction
	Formulation
	Materials properties
	Equations of motion

	Perturbation analysis
	Numerical simulations of periodic and chaotic motions
	Conclusions
	Acknowledgments
	References


