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Abstract

A new method for the analysis of modal strength of the rotor systems with periodically time-varying parameters due to
the presence of either rotating or stationary asymmetry is proposed. The method is based on the complete development of
the modal analysis by introducing the modulated coordinates to derive the equivalent infinite-order time-invariant Hill’s
matrix equation from the finite-order time-varying matrix equation. Depending upon the level of possible contribution of
each mode to forced response, the modal strength of a mode is rigorously derived from the norm order analysis of the
associated eigenvector; thereby, the modes are classified as strong or weak modes. It is shown that the directional
frequency response functions are useful in identifying the strength of modes in detail, or equivalently, the modes of
symmetry, anisotropy, asymmetry and coupled asymmetry. Two illustrative examples with a simple, yet general, analysis
rotor model and a practical flexible asymmetric rotor finite element (FE) model with an open transverse crack are treated
to demonstrate the theoretical findings and effectiveness of the proposed method.
© 2007 Elsevier Ltd. All rights reserved.

1. Introduction

Use of isotropic rotor model is often found to be sufficient in representing the dynamic behavior of many
practical rotors. For isotropic rotors with both stationary and rotating symmetry, the forward and backward
modes play a significant role in the prediction of forced response of rotors, whereas their complex conjugate
modes may be treated as insignificant modes, because they appear as a pure mathematical consequence of
formulating the equations of motion in the real domain [1]. On the other hand, when the stationary (rotating)
asymmetry is not negligibly small in rotors, it requires use of anisotropic (asymmetric) rotor model for the
rotordynamic analysis. As the rotor anisotropy (asymmetry) increases, the complex conjugate (modulated)
modes as well as the original forward and backward modes become increasingly important in the stability
analysis and forced response predictions. For general rotors with both anisotropy and asymmetry, the critical
speed chart becomes over-crowded with an infinite number of complex conjugate and modulated modes in
addition to the original modes, leading to the difficulty in ordering the importance of modes from the chart [2].
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The present study utilizes the complex modal analysis method, of which the complete solution
was developed newly in Refs. [3,4], for asymmetric rotor systems with anisotropic stators. The method
introduces modulated complex stationary coordinates to derive an equivalent, infinite-order time-invariant
equation of motion. The characteristics of eigenvalues and eigenvectors are theoretically investigated
thoroughly by using the equivalent time-invariant equation of motion. Based on the new modal analysis, the
concept for investigating the modal behavior as the modal strength of the system will be developed here in a
rigorously way.

In this paper, a new method of ordering the importance of modes is proposed, based on the norm of modal
vectors defined in the complex coordinate system. The complex modal vectors associated with each mode are
analytically derived from the results of the complex modal analysis of the periodically time-varying linear
rotor system [4]. Then the modal vector norm is defined, from which the norm order is analytically derived for
weakly anisotropic and asymmetric rotors. According to the modal vector norm order, the modal strength is
defined and its effect on magnitude of the directional frequency response functions (dFRFs) is examined. The
proposed method can be used to improve the whirl speed chart (Campbell diagram [5,6]) by indicating the
modal strength based on the norm analysis of the system eigenvectors of interest. The method is particularly
useful for design and operation of general rotor systems with either stationary or rotating asymmetry. It is
shown that, for the general rotor systems, modes can be classified into strong and weak modes. The strong
modes are the modes that are likely to contribute significantly to the response of rotor to all possible excitation
sources, whereas, the weak modes are less significant in response contribution than strong modes. It is also
shown that the dFRFs are very useful in identifying the modes of symmetry, anisotropy, asymmetry and
coupled asymmetry, which are dependent upon the norm magnitude of the associated eigenvectors.

Finally, two illustrative examples are treated with a simple general analysis rotor model and a practical finite
element (FE) model to demonstrate the theoretical findings and effectiveness of the proposed method.

2. Modal analysis of general rotors [3,4]

Rotors in general possess both stationary and rotating asymmetry, leading to a complicated periodically
time-varying equation of motion with the period of 7/Q, Q being the rotational speed of rotor [3,4]. The modal
analysis of such systems has been recently developed [3,4]; therefore, the detailed procedure will not be treated
here. Instead, the main feature of the modal analysis will be briefly described in this section.

The equation of motion for the periodically time-varying linear rotor system with the period of ©/Q,
referring to Fig. 1, can be written as

M (1) + Crp(7) + Krp(2) + {Myp(2) + Cop(t) + Kpp(0)} + €2 (M,p(1) + C,p(0) + K, p()} = g(t). (1)

.1

Qt

Fig. 1. Stationary and rotating coordinate systems for a rotor with stationary and rotating asymmetry.
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Here, the N x 1 complex response and force vectors, p(¢) and g(¢), defined by the real response vectors, y(¢) and
z(?), and the real input vectors, f,(¢) and f.(7), respectively, are

p(1) = y(1) +j2(0),  g(n) =1£,(1) +jf-(0), )

where j means the imaginary number; g(¢) includes the force and moment; ‘—’ denotes the complex conjugate;
M, C and K are the 2N x2N complex matrices representing the generalized mass, damping and
stiffness, respectively; and the subscripts f, b and r refer to the symmetric, anisotropic and asymmetric
properties, respectively. Note that the system matrices, including the effect of the gyroscopic moment, internal
damping and fluid-film-bearing characteristics, may be dependent upon the rotational speed. However, they
become constant for given rotational speed. For an isotropic rotor; Cp, =K, =M, = C, = K, = 0; for an
anisotropic rotor; M, = C, =K, = 0; and, for an asymmetric rotor; Cp, =K, = 0. Note here that the
periodically time-varying terms, which are preceded by €2 in Eq. (1), inherently appear, as both rotating
and stationary asymmetries exist in the system. When neither the rotating nor the stationary asymmetry
exists, the equation of motion becomes, or it can be transformed to, a time-invariant linear differential
equation.

Introducing a set of modulated complex coordinate and force vectors, p., and g,,, where the modulation
index, n, is an arbitrary integer, defined as [3,4]

p..(1) = ()™, g, (1) = g(He™™, 3)

we can easily transform Eq. (1) to an infinite order matrix equation given by

Mp() + Cp() + Kp(1) = g(0), (4)
where
M, My 0 0 0 0
M, M/, M, 0 0 0
. 0 M M, M, 0 0
~ 0 0 M, M/, M, 0 ’
0 0 0 M M M,
0 0 0 0 M, M

Cou G 0 0 0
Cr Gt Gy 00
0 GCu G Go 0
0 0 Cu Co Coq 0 |
0 0 0 Co G Cpy
0 0 0 0 G Cp

> > [} o

A
Il
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K K 0 0 0
Ki—1 K1 Kip 0 0
0 K,;l Kro Ko 0
0 0 Kpo Kro Kii 0 el
0 0 0 Ko Kf;—l Kb:—l
0 0 0 0 K. K.

> (=] > “e

LR
Il

ﬁ;l(t) g-;l(t)

p;—l(t) g;—](t)

_ p;O(t) _ g_;O(t)
S IR G P
]5;71(2‘) g-;fl(t)

p;l(t) g;l(l)

and
C,‘;n = Cl‘ - ]4nQM,, K,‘;n = Kl' - JZnQC, - 4]’1292Mi, i= r, b, f, n= 0, :|:1, :|:2, e
Note that the differential equation (1) with periodically time-varying parameters is transformed into Eq. (4)
with time-invariant parameters, at the expense of introducing the coordinate vector of infinite dimension.

Assuming the solution form of p(f) = u e* for the homogeneous part of Eq. (4), we obtain the latent value
problem given as [1] ~ e

=0 and v' DU, )=0T, r=+41,42,...,N, m=0,+1,%£2,..., i=BF, (5

~er(my ~ T
where the lambda matrix of degree two is given by
D(J) = M+ C+K
and the latent roots (eigenvalues) are obtained from the characteristic equation
ID(2) =0

and the corresponding right and left latent vectors take the form of

B

T
T T T T oT T

v :{ Vi Vo Vo Vo Voo vy }

~¢

T
AT T AT T AT T
u—{"' u; ou_, w, u;, U, u },
~c

Here, each pair of eigenvalues, equal in value but different in sign of subscript, forms a complex conjugate pair.
The subscript r(m) refers to the rth eigen (latent) solution in cluster m. Cluster m consists of only the set of
eigensolutions associated with the modulation index m, or equivalently, with the shifted eigenvalues by j2mQ.
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Eq. (5) can be rewritten as

Dsi Dy 0 0 0 0 a
Dy_1 Dpoy Drog 0 0 0 -1
0 D, Dy D 0 0 u,
D()u = r1 o Do 0 _ 0. (6a)
~ T~ 0 0 Db;o Df;O Dr;l 0 Uy -
0 0 0 D,,;() Df;_l ]jb;—l ﬁ;,l
0 0 0 0 Db;l Df;] U]
ooy ={- VL §y L W]
Dy Dy 0 0 0 0
Db;71 Df, 1 Dr;O 0 0 0
0 D Dy Dy 0 0
=07, (6b)
0 0 Dy Dpp Dy 0 N
0 0 0 Dr;O I-)f;_l Db;—l
0 0 0 0 Dy Dy
where the N x N block matrices of the Hill’s infinite-order matrix D(4) with 3N bandwidth are given as
Diy(2) = 2*M; + ACiy + Ki;  i=r1,b,f; n=0,+1,£2,.... (6¢)
And the bi-orthonormality condition becomes [1]
d —D() u =1. 7
di
In the above expressions (5)—(7), the sub- and superscrlpts are omitted for notational SlmphClty
The relations for every pair of latent vectors (u T)T associated with the eigenvalue A,(m) become
_; N N ; zi
ul—r(—m);n = ur(m);n’ (Vl—r(—m) mo Vr(m) n) j‘[r(m) = )L—r(—m) (83)
and the structure of the eigenvalues and the corresponding latent vectors can be arranged as follows:
eigenvalues:
A (m)} = {)ur(o) + j2me}
={...,(cluster —m),...,(cluster 0),...,(cluster m),...}
=F . =B . =F . =B .
={ (oo Ay = 12m&, Ay — 12m, ..., Ay ) — 12m8, 2 ) — 12mA2,
Moy = 12m&, i) — 12mQ, ... i) — 12m, i) — 2mQ, .. ), ...
=F =B =F =B
C s Aoy Anoy: - - - 2 4100 410 4100 A1(0) - - - Aoy Amvoys - - o+ -+ »
=F . =B . =F . =B .
(s Ay F12mR, Ay +12mR, ..., Ay o) +12m, 4, ) + 12mQ,
Moy +32m&, 0%, +12mQ, . .. i) +12m, ij ) +2mQ, . ), }. (8b)
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latent vectors:

. ; - T
=iT iT =T iT =T iT
u = { o WG Weem—1 Yo Wm0 U—pemyi—1 Wm0 } 5
~c
8c
e T T T T T T T (8¢)
vV = —r(—m);1 r(m);—1 —r(—m);0 r(m);0 —r(—m);—1 r(m);1 .
~c

Here, Ar(o) and /1,(,”) = )r(o) +J2mQ are the eigenvalues of the periodically time-varying system (1) and the
transformed time-invariant system (4), respectively. Since it holds Re{)ul(m)} = Re{Ar(O)} the stability of the
periodically time-varying system (1) is preserved irrespective of introduction of the modulated complex
coordinates. The time-periodic latent vectors associated with the periodically time-varying system (1), which is
normally obtained by using Floquet theory, can be expanded in terms of the complex harmonic function
el?? Tt is shown in Ref. [4] that the latent vector elements in Eq. (8c) correspond to the Fourier coefficient
vectors of the time-periodic latent vectors.
Assuming the solution form of p(¢) = u 7(¢) for Eq. (4) and using the bi-orthonormality condition (7), we
can obtain the infinite set of complex modal equations of motion as
1'1’r(m) = /l’r(m)nf.(m) + X”T(m) g(t), r==x1,£2,...,&N, i=B,F, m=0,£1,£2,... (9a)

and the forced response vector p(¢) of the general rotor system as [4,7]

p(t) = Z Z Z Z {/ e ’(’” (= {“,(m) OV;(m) ngn(T)+“,(,,1) ()V,(m) 28 n(f)] } (9b)

i=B,F r=—N m=—00n=—00

Fourier transforming equation (9b), we obtain

N i AzT
P(](,l)) _ Z {[Z Z Z r(m)O l(m n ;n(ja))+ Z ’ Z rm)O l(m)n _n(](i))}
n=—00 i=B,F r=—N m—fooJ r(m i=BF r=—N m=—00 J(D ;L;(m)
= > {Hg;,,,p(jw>cm<jw)+ng,np(jw)é;,now)}, (10)

where the Fourier transforms of the modulated excitation vectors are given by

Gu(jo) = Gli(w — 212)},  Gu(jw) = Gli(w + 2n2)). (11)

Here, G(jw) and G(jw) are the Fourier transforms of g(¢) and g(¢), respectively. Although there are still an
infinite number of dFRMs in Eq. (10), we introduce four dFRMs that are important in characterizing the
system asymmetry and anisotropy, as

N o | Wm0 im0 N - i( >0ViT( 0
. rim); rl'ﬂ; . rm —r(—m);
Hypio)= >0 > > O DI I D e il

m=—0o0 i=B,F r=—N _](U - /“r(m) m=—00 i=B,F r=—N r(m)

00 N u 00 N
Hy_p )= > > > ' lwl Hy polio)= > > > [M] - 2)
' m=—00 i=B,F r=—N )i(m) ' m=—00 i=B,F r=—N Jo }‘l(m
Here, Hg,p, (jo) is referred to as the normal dFRM that represents the system symmetry, Hg p(jo) is referred
to as the reverse dFRM that represents the effect of system anisotropy, and, Hg_ p,(w) and Hg_ p,(jo) are
referred to as the modulated dFRMs that represent the effect of system asymmetry and the coupled effect of
system anisotropy and asymmetry, respectively.

3. Strength of modes for general rotors based on reduced-order Hill’s matrix

The latent value problem (6) can be reduced, as a good approximation for practical use, to a finite-order
matrix—vector equation of motion. Without loss of generality, focusing on the modulated coordinates, for
every r and i in the mth cluster, the homogeneous matrix equation (6a) for general rotors with weak
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asymmetry 0 and anisotropy 4, can be reduced to the equation of motion, based on the 6 N x 6 N reduced

order Hill’s matrix, given as

Df;l Aljb;l 0 0 0 0 Urmy:1 0
ADb”;fl Df;_] 5D,~;() 0 0 0 "("”);—1 0
. 0 oD, Dy ADy 0 0 i 0
De() - i, = G o . (3
0 0 ADb;O Df;O 5Dr;l 0 ur(m);() 0
0 0 0 5Dr;0 Df;—l ADb, 1 ﬁ;(m),71 0
0 0 0 0 ADy; Dy u 0
L ‘ r(m);1
N T
Vit | T By ADp; 0 0 0 0 0"
ol
Vitmy-1 ADy_; Dp; oDy 0 0 0 0
i S S S
=T X Vim0 0 oDy Df;O ADyo 0 0 0
-D = . s 13b
Ve - De(4) T omo 0 0 ADyy Dyo 0Dy 0 0 (13b)
g 0 0 0 oDy Dy ADj_, 0
] 0 0 0 0 AD, Dy, 0
Vr(m);l -

where the lambda matrices of degree two associated with the weak dynamic stiffness matrices are given by
ADy,, = 2*AMy,, + AACy, 4+ AKpy, 0Dy = 220Myy + 20C,, + 0Ky, n=0,£1,42,. ...

Here, the bi-orthonormality condition (7) reduces to

~r[d o« . T o AT T d . . . T
il [an(,u)}ug:{v1 AR v?}[amu)}{u? ol dg w6l b =1 (e
The determinants of the dynamic stiffness matrices are configured as
IDyo(A)] = H (A= 2= Jga). Dro(A)l = H (= A2 )%= A%%5),
m= Oil m= Oil
IDy._1(1)] = H (o= WG =28, D)) = H (2= 22 )= 2250,
m= Oj:l m= Oj:l
Dy ()] = Hu MG =280, DA = H(x A= 250, (15)
r=1
m=0,%1 m=| Oil

where 1 A,(m), i=BF,r=12,...,N; m=0,=%1, are the cigenvalues of the associated isotropic system, i.c. the
rotor with 6 = 4 = 0. The characteristic equation becomes

|D6(i)| = H (4— r(m))(;L 7r( m)) = H (4— r(m))(/L r'(m))
m= O:tl m=| O:tl
i=B,F i=B,F
N
F
= T10 = ZapC: = Ao = T 1) = )G = T )= 2y

r=1

b= )0 - =G =By = 16
x (A — br(o))(/L r(o))( ,( 1)(/L r(q))(’L - /Lr(l))( (. br(1)) =0. (16)
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The eigenvalues and the corresponding latent vectors are related to each other, i.e. for i = F,B and
r=12,...,N

igenvalu v i ; v
eigenvalue left latent vector right latent vector
i [ =T =T =T 1T [ AT T T 1iT
gi S I T 3 T T T T
A1(0) Vi Vi Yo Yo Vi Vi up Uy Wy up uyoou
L 10) L 10)
. - r=T =T =T 1iT [ AT AT AT qiT
)i i =T =T =T T T T
2oy = Ay v, Vo, Vo V5 V., V. n, u_, u, u; 0_; u
#0) (0) L ;1 —1 ;0 0 ;—1 ;1 10 B 5 ; 5 5 o 7,.(0):
i i [ =T <T =T 7T (AT T T 7iT
a0 i : 5 =T S =T 3 =T T T T
Aoty = Ano) +3282 Vi Y1 Yo Yo Vo1 Vi u, u_; u, u, u_; u; ,
L 1r(1) L dr(=1)
; : r e = - 1iT - 1iT
ai _q 7l . T -T ~T _T T _T 4 AT T AT T AT T
AZy1y = Aoty = Ay T1282 _v;1 Vo, Vo Vo V., V¥, . u; u_; u, u; U, u, vy
i ; [<T =T =T 7T [ AT T T 7iT
qi i . 5 =T S =T 7 =T T T T
Ay = Aoy =329 Vi Y1 Yo Yo Vi1 Vi Up U Uy up u_ ;o uy )
L Ir(=1) L 1r(=1)
; : r = - 1iT - 1iT
i =l =l . ~T -T ~T _T T _T ! AT T AT T AT T
= — a;, u a, u; u u;
21y = Aty ™ Ayo) J2Q _v;1 V.o, Vo Vo V., V¥, | 1 =1 00 %o Y1 2y PN
17)

By introducing the norm defined in the 6NV dimensional vector space, we can derive the relations given by

o 0(5,4) for r(m)=r(0),
|IDy ;O(Wr(m))“lr(m);o |1~

o(1) otherwise,
Bl g 00,4) for r(m)= —r(0),
D701yl o(1) otherwise,

0(6,4) for r(m)=r(-1),
o(1) otherwise,
0(6,4) for r(m)=—r(+1)
o(1) otherwise,

D1 (;“f'(m))uf'(m);fl [~ {

| |D—f§*1(/l[r(m))ﬁ:f(m);_1 | |N{

) ' 0(5,4) for r(m)=r(1)
D751 (W ”N{ o(1) otherwise,
_ ) ) 00,4) for r(m)=—r(—1)
1D G W ”N{ o) otherwise. (1%

Here, O(1) means that the norm order is independent of the perturbation ¢ and 4, and O(J, 4) = O() & O(4A),
where @ denotes the direct sum. The first relation in Eqgs. (18) can be derived from the fourth block matrix
equation in Eq. (13a), as given in detail in Appendix A, and the rest of the relations can be similarly derived
without difficulty.

For r(m) = r(0) where ||Df;0(ihi(m))uf,(m);0||~0(5,A), we can derive, by removing the fourth block matrix
equation in Eq. (13a) and using ||uf,(0);0||~0(1), the norm order of right latent (modal) vectors as

.~ i <1< _ s
||ur(o);1|| = ||5A2Df;}Db;l[52Dr;ODf;0Dr;1 - Ef;fl] lDr;ODf;on;Oulr(o);o”
n e Sl ;
~ | = 5A2Df;iDb;lDf;LlDr;ODf;on;Oulr(o);o||NO(5A2)||“:~(0);0||NO(5A2)a

i 3113 - 371 i - 31 i
o1l =11 = 5A[52D";0Df;ODV;1 — Bz 117" DroD; o Diotiy0l1 A 164D} DyogD ;o Diotilg ||~ O(S4),

a7 - _ - _ - . __1 - .
||“:(0);0|| = ||A[52Dr;lEf;l,1Dr;0 - Df;0] 1Db;Oulr(o);ou ~ | — ADf;on;Oulr(o);o||'\“O(A)7
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l. _ __1 - . _ __l - .
||“r(0);1|| = ||5AD/‘;}D17;1E_/‘;_1Dr;0ulr(());0|| ~ 5A||Df:%D/,;1Df:_]Dr;oulr(o);0||’\’O((3A),
N _71 - . - 71 — .
||ulr(0);_1 l=1l- 5Ef;_1Dr;0u;~(0);o|| ~ = 5Df;_1Dr;0uIr(0);0||’\’O(5)s (19)
where
i 2i 2i 51 g0 N i i
E, ;71(}7(0)) = Df'J*l(/“r(O)) - A2Db;*1(/“r(0))Df;l(j‘r(O))Db;l(lr(O)) ~ Dy §*1(}“r(0))'
For the rest of the modes with r(m) = —r(0), r(—1), —r(1), r(1) and —r(—1), we can derive the similar

relations to Eqgs. (19), which are given in Appendix B. Similarly, the norm orders of the corresponding left
latent (complex conjugate adjoint) vectors can be derived, which is not repeated here.

Table 1 summarizes the norm order for the right and left latent vectors. In practice, it is convenient to
normalize the norms of the right and left latent vectors so that they become identical. The shaded area
indicates the norm order for the right and left latent vectors obtained based on the 4N x 4N reduced-order
Hill’s matrix. Note that the norm order analysis is consistent, irrespective of the order of approximation with
Hill’s infinite matrix. The thick-framed area represents the reference norm order associated with the strength
of modes. The modes with reference norm order of 1, O(1), (less than 1) may be referred to as the ‘strong
(weak) modes,” because the contribution of a modal response to the total response will be proportional to the
corresponding modal norm. The modes with reference norm order of 1, 4 and 0 are associated with symmetry,
anisotropy and asymmetry of the system, respectively, and the rest of the modes are associated with the
coupling of asymmetry and anisotropy. The weak modes tend to vanish as the degree of anisotropy and
asymmetry diminishes. In particular, the modes of the coupled anisotropy and asymmetry are vulnerable to
the degree of both asymmetry and anisotropy, so that they are not likely to be easily captured in practice.

Using the results in Table 1 and the matrix norm properties in Appendix C, we can express the norm of the
dFRFs, in terms of norm order of residue matrices, as

||Hg-0])~0 (_](U)“
N o ) T _— ) T ) T
< Z w00 Vool 0100l a0Vl U000V 0poll T 10V~ 10l
r=1 i=B,F o — ;L;~(0)| [joo — ).;,(71)| o — i£(1)| [joo — jbLr(o)| [joo — ii,.(71)|
j =T
1910V rayol |
o — ;ur(1)|

N 2 42 2 12 2 24 2
B { on |, oF@L) | O0F@A) o) . 0@AH | 0 } (20a)

/=1 i=B,F |Jw - ;hi(o)| |JCO - }vi(_1)| |Jw - /lf‘(])| |]CU - /Ii_r(())| |JCU - )Li_,.(_1)| |J(U - )vi_r(1)|

Table 1
Modal strength in terms of vector norm order: use of 6N x 6N reduced order Hill’s matrix

r(m), r>0 for A0 1180 11 o 1l et IV Gt T 1801 ¥l 100l ¥ ol 1y 1191 I 1 WS 1]
r(0) 0(5*4) 0(34) 0o(4) o 0(%) 0(54)

—r(0) 0(34) 0(9) o(1) o) 0(s4) 0(54%)

r(=1) o) o(1) 0(%) 0(34) 0(5°4) 0(5*4%)

—r(1) 05> A?) 0(6° ) 0(d4) 0(09) o(l) o(4)

(1) 0’ 4%) 0(5*4%) 0(64%) 0(34) o(4) o)

—r(=1) o) o(4) 0(04) 0(54%) 0(5%4%) 0(6*4%)

Bold italic indicates the results from 4N x 4N reduced-order Hill’s matrix and the underlined area indicates the representative modal
strengths.
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||H§:0p;0 (_]CU)H
N : ~iT ; ~iT ; ~iT ; ~iT ; ~iT
< Z I op0Vropoll N Ve—noll NVl 000V oyl UL, p0V_r—1yoll
r=1 i=B,F liw — ilr(0)| jo — }"Zr(—l)| [jo — ;“;(I)l ljow — )‘I—r(0)| jow — ;“l—r(—l)l
; ~iT
U 10V =rayol |
i — 25,
. o) 0(5°4) 0 4 ) 0s* 4) 0(5°4)
~ Z Z . ai . /'{i . /11' . ;,’ . /’{i . /qi s (20b)
=1 =gy o =4l lDo—=24Cyl o —4gl o -2 00 o—-22 )1 o =212l
||Hg;,1p;0(jw)||
N : ~iT ; ~iT ; ~iT ; ~iT ; ~iT
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Table 2
Eigenvalues of the simple gyroscopic rotor with both stationary and rotating asymmetry: N =1, Q = 0.5
Eigenvalues
Reduced matrix order Remarks Mode
2N 4 N 6N 8§ N 10N
- - - - —0.0255-5.3554 i _ug iy
- - - - —0.0127-j3.2858 40 5,
- - - —0.0291—j2.6861 —0.0269—j2.6712 ~F —j4Q if(_z)
- - - —0.0143—j4.7477 —0.0146—j4.7266 ~B —j4Q 1{3(72)
- - —0.0255—j3.3554 —0.0254—j3.3359 —0.0273—j3.3281 ~iF —j2Q 2{1(71)
- - —0.0127—j1.2858 —0.0131—j1.2812 —0.0131—j1.2812 ~jB —i2Q )31(_1)
- —0.0291—j0.6861 —0.0269—j0.6712 —0.0269—j0.6712 —0.0269—j0.6712 ~F —j2Q 7»{"(71)
- —0.0143—j2.7477 —0.0146—j2.7266 —0.0112—j2.7162 —0.0131—j2.7187 ~iB—po 1{3(7])
—0.0255—j1.3553 —0.0254—j1.3359 —0.0273—j1.3281 —0.0269—j1.3287 —0.0269—j1.3287 i ;‘fl(O)
—0.0255+j0.7226 —0.0112+j0.7161 —0.0131+0.7187 —0.0131+;0.7187 —0.0131+30.7187 ;:B 731(0)
—0.0255—j0.7226 —0.0112—j0.7161 —0.0131—j0.7187 —0.0131—j0.7187 —0.0131—j0.7187 B }')15(0)
—0.0255+j1.3553 —0.0254 +j1.3359 —0.0273 +j1.3281 —0.0269 +j1.3287 —0.0269 +j1.3287 IF AIF(O)
- —0.0143+j2.7477 —0.0146 +j2.7266 —0.0112+j2.7162 —0.0131+;2.7187 ~jB +i2Q 731(1)
- —0.0291 +;0.6861 —0.0269 +j0.6712 —0.0269 +j0.6712 —0.0269 +j0.6712 ~iF +i2Q 7[1(1)
- - —0.0127+j1.2858 —0.0131+;1.2812 —0.0131+;1.2812 N,lB_H'zg ;“f(l)
- - —0.0255+j3.3554 —0.0254+;3.3359 —0.0273+j3.3281 ~F +j2Q ;*{"(1)
- - - —0.0143+j4.7477 —0.0146 +j4.7266 ~jB +j4Q 731(2)
- - - —0.0291+i2.6861  —0.0269+{2.6712  _jT Liag  iFy,
- - - - —0.0127+j32858  ~iF4ja0 B,
_ _ _ - —0.0255+j5.3554  ~jF yja0 I,

Bold indicates the basic (strong) modes.
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Fig. 2. Whirl speed charts for (a) isotropic rotor (4 = ¢ = 0), (b) anisotropic rotor (4 = 0.1, é = 0), (c) asymmetric rotor (4 =0, 6 = 0.1)
and (d, e) simple general rotor (4 = 6 = 0.1) calculated from 4 x 4 and 6 x 6 reduced order Hill’s matrix, respectively: thick and thin lines

indicate strong and weak modes, respectively; shaded area indicates the unstable speed region.
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Fig. 3. (a) Whirl speed chart with modal strength and (b) modal vector norms (log scale) for the simple general rotor (4 =0 =0.1)
calculated from 6 x 6 reduced order Hill’s matrix.
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where the modes with the bold-faced norm order indicate the dominant modes in the associated dFRM:s.

From Egs. (20), we can conclude that

(1) Hg,p,,(j) is useful to identify the strong (and thus weak) modes,
(2) Hgp,(jo) is a good indicator of degree of anisotropy, irrespective of presence of system asymmetry,

(3) Hg,

—1P0

(jw) 1s a good indicator of degree of asymmetry, irrespective of presence of system anisotropy and

4) Hg;_lp;OGw) and Hgp,(jo) are very sensitive to the coupled effect of system anisotropy and asymmetry.

So far, for demonstration purpose, the 6N x 6N reduced order matrix equation of motion has been treated,
but it can be easily extended to higher order matrix equation of motion. As the reduced order of Hill’s infinite
matrix increases, the accuracy of eigensolutions certainly improves, as will be demonstrated in Section 2
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Fig. 4. dFRFs of the simple general gyroscopic rotor with the degree of asymmetry and anisotropy varied (—— ¢ = 0.01, 4 = 0.01,
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(refer to Table 2). And it has been found that the 6N x 6 N reduced order matrix equation of motion gives
sufficiently accurate eigensolutions of practical interest [4]. One of the benefits of the suggested norm order
analysis is that the norm order of ecigenvectors obtained from a lower order matrix equation remains
unchanged as the matrix order increases, as shown in Table 1. In conclusion, the modal strength given in
Table 1 is always valid, irrespective of the reduced matrix order used for norm order analysis of eigenvectors.

4. Numerical examples

In this section, two rotor models are treated in order to demonstrate the analytical findings in the previous

sections.

First, consider the simplest analytical form of general rotor model whose equation of motion is given by

B(2) + (2L — je)p(1) + p(2) + 5> P(1) + AP(1) = g(1),

Disk #1

HIN

Bearing #1

Bearing #2

Disk #2

V////4q/ziiiiiiiiiiiiiiziiiiiiiiiiiiuiziiiiiiiiiiiddd

120

120

60

Fy
h 4

h 4

node 1 node 5

node 9

node 11

21

Fig. 5. Configuration of the open cracked flexible shaft-anisotropic-bearing system (FEM model).

Table 3
Specifications of the FE model

Mesh data
# of elements = 10, # of disks = 2, # of bearings = 2

Shaft
Length = 30 cm, diameter = 1.0cm
Density = 7850kg/m® , Young’s modulus = 2.07 x 10'" N/m?

Disk
Node number Mass (kg) Pol. inertia (kgm?) Dia. inertia (kgm?)
5,11 (identical) 0.617 771 x 1074 3.90 x 107*

Bearings (degree of anisotropy; A =0.13)

Node number Stiffness (N/m) Damping (N s/m)

1,9 (identical) Ky, =3.0x 105 k.. =23 x 10° Cpyr €z =40 % 10°
ky: = k:y =0 Cyz =

Open crack

Node = 5, Crack depth ratio (¢/D) = 0.4
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where ( is the damping ratio, «€2 represents the gyroscopic moment, (2 is the rotational speed, and, ¢ and 4
represent the degree of asymmetry and anisotropy, respectively. The nominal parameters used in the numerical
simulations are . = 0.6, { =0.02 and 4 =6 =0.1.

Table 2 shows the eigenvalues of the simple gyroscopic rotor with both stationary and rotating asymmetry
at Q = 0.5 with the reduced order of Hill’s matrix varied from 2N (N = 1 for this case) to 10N. In Table 2, the
framed area indicates the basic (strong) modes and the rest of the modes are either complex conjugates or
modulated values of the basic modes. As the reduced order of Hill’s matrix increases, the calculated
eigenvalues tend to converge to actual values. From the results given in Table 2, we can conclude that use of
6N x 6N reduced-order Hill’s matrix is sufficient to estimate the modes of importance with fair accuracy,
including the modes of symmetry, anisotropy, asymmetry and the coupled asymmetry.

Figs. 2(a)—(c) compare the whirl speeds for the isotropic (4 = = 0) anisotropic (4 = 0.1, = 0), and
asymmetric (4 = 0,0 = 0.1) analysis rotor models. Note that the strong modes associated with the rotor
symmetry are clearly seen in Fig. 2(a), the weak (complex conjugate) modes associated with the rotor
anisotropy appear in Fig. 2(b) and the weak (modulated) modes associated with the rotor asymmetry appear
in Fig. 2(c), where there exists an unstable speed region. In Fig. 2, the strong and weak modes are indicated by

20000

15000 ~0(34)

J ~0(8) , A5
~0(1) / o

10000 —°

5000

Whirl speed (rpm)
o
|

-5000

—15000 —

—20000

0 2000 4000 6000 8000 10000
Rotational speed (rpm)

* [I: unstable region

Fig. 6. Whirl speed chart of the flexible asymmetrical rotor with anisotropic stator (FEM model) (mmmmmm strong mode

weak mode).
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thick and thin lines, respectively, marked with the norm order of the corresponding modal vectors. Note that,
for these three cases, the Hill’s matrix reduces to a matrix of finite order, leading to accurate estimation of
eigenvalues. Figs. 2(d) and (¢) compare the whirl speeds for the general analysis rotor model (4 =6 = 0.1)
calculated from the reduced Hill’s matrix of order 4 and 6. Note that the increase in order of reduced Hill’s
matrix introduces additional modes of the coupled asymmetry with higher modal norm order of smallness.
The weak modes associated with higher modal norm order than 40 are considered to be relatively less
important in potential contributions to the system response. Fig. 3(a) is the whirl speed chart of the simple
general rotor (4 = § = 0.1) with the level of modal strength indicated by the gray-scaled lines, according to the
norm of the bi-orthonormalized modal vectors calculated from the 6 x 6 reduced-order Hill’s matrix, as shown
in Fig. 3(b). Note that the modal norm order analysis is valid over the whole range of rotational speed, except
the low-speed region where the gyroscopic moment effect becomes negligibly small and near the unstable
speed region.

Fig. 4 shows the six different types of dFRFs, calculated according to Eqgs. (20), with the degree of
anisotropy and asymmetry varied. Comparing the results in Figs. 3 with the modal norm order analysis given
in Egs. (20), we can conclude that the modal contributions in dFRFs are consistent with the analytical findings
given in Egs. (20), conforming to the observations in the previous section. That is (1) Hgp,(jo) shown in
Fig. 4(a) clearly identifies the basic (strong) modes of symmetry, irrespective of the presence of anisotropy and
asymmetry; (2) Hgp,,(jo) shown in Fig. 4(b) clearly identifies the weak modes of anisotropy together with the
modes of symmetry, irrespective of the degree of asymmetry; (3) Hg;_lp;o(jco) shown in Fig. 4(c) identifies the
weak modes of asymmetry together with the modes of symmetry, irrespective of the degree of anisotropy;
(4) the magnitudes of Hy_ p,,(j®), Hg,p,(joo) and Hgglp;o(jw) shown in Fig. 4(d)—(f), respectively, which are very
sensitive to the coupled effect of system anisotropy and asymmetry, are of higher order of smallness; (5) the
degree of asymmetry and anisotropy can be well identified from Hg p (jo) and Hg_ , (jo), respectively.

The second numerical example is the FE model of a flexible asymmetric rotor supported by anisotropic
bearings with an open crack as shown in Fig. 5 [9]. The material and geometrical properties are listed in

(@) 20000 . . ‘ 0 (b
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Fig. 7. (a) Whirl speed chart with modal strength and (b) the modal vector norm (log scale) for the flexible asymmetrical rotor with
anisotropic stator (FEM model).
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Table 3. The model consists of ten Rayleigh beam elements, two rigid disks and two anisotropic bearings. We
assume that the shaft stiffness asymmetry is caused by an open transverse crack with the crack depth (a) to
shaft diameter (D) ratio a/D = 0.4 developed at node #5 [10]. Fig. 6 shows the whirl speeds calculated from the
reduced Hill’s matrix of order 6. Note that the whirl speed map is rather crowded with the basic, complex
conjugate and modulated modes, with multiple unstable speed regions, due to the increased degree of freedom
N. It may be difficult to identify the importance of modes in possible modal contributions to forced response
of the rotor system from the conventional whirl speed chart, Fig. 6. Fig. 7 checks the modal strengths by the
representative modal vector norm value, which is marked by the gray-scaled lines.

Fig. 8 displays the six different types of typical dFRFs for the asymmetric flexible rotor with the anisotropy
given in Table 3, as the crack depth ratio a/D takes the values of 0.1, 0.2, 0.3 and 0.4. The dFRFs were
calculated at the rotational speed of 4200 rev/min for the case with sensor node #5, exciter node #11 and crack
node #5. From Fig. 8, we can conclude, for weakly anisotropic and asymmetric rotors, that

(1) Hg,p,,(jw) shown in Fig. 8(a) is almost insensitive to the crack growth, revealing the strong, basic modes

of symmetry, but hiding the weak modes.
(2) Hgp,,(jw) shown in Fig. 8(b) is almost insensitive to the crack growth, revealing the weak modes of
anisotropy as well as the strong modes of symmetry, but hiding the rest of weak modes.
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(3) Hg_p,(w) shown in Fig. 8(c) is very sensitive to the crack growth, revealing the weak modes of
asymmetry as well as the strong modes of symmetry, but hiding the rest of weak modes.

(4) Hg_ p, (o), Hg,p,(jw) and Hg;lp;o(jw) shown in Figs. 8(d)—(f), respectively, is very sensitive to the coupling
between the anisotropy and asymmetry, revealing all modes. These plots are so complicated that perhaps
their detailed information may not be useful in practice, but they certainly evidence the presence of both
asymmetry and anisotropy.

5. Conclusions

A new method of ordering the importance of modes for rotordynamic analysis is proposed, based on the
norm of modal vectors defined in the complex coordinate system. And, it is shown that, using the concept of
modal norm order, modes can be properly classified according to the modal strength and that the dFRFs are
useful in identifying the modal strength more in detail, i.e. the modes of symmetry, anisotropy, asymmetry and
coupled asymmetry. The concept of modal strength can be used for improving the whirl speed chart (Campbell
diagram) for rotors with anisotropy and/or asymmetry in the sense that the modes with potential contribution
to forced response of rotor can be readily identified from the otherwise over-crowded chart.

Appendix A. Stationarity of latent roots

Consider a pair of the typical homogeneous matrix—vector equations in Eq. (13a) given as

AD 0 (380 + D0 Wy + 0Dt (g iy, = 0, (A.1)
5Dr;1(i£(m))“£(m);71 +Dy §0(/l£(m))ﬁf’(m);0 + A]jb;O(ii(m))ui(m);o =0 (A.2)
with
Diy() = M, + ACip + Ky i=r,bf; n=0,£1,42,.... (A.3)
Let the perturbed latent roots and corresponding latent vectors be represented by
;“z(m) - /“r(m) + (4, 5);“r(m) + 4, 5)2)3(1171) +0(4, 5)3’ r=%L....£N, (A4)
u u’ uli
I(m)'—l r(m) —1 l(ﬂ‘l) —1
Al ’\0[ '\ 1i
r(m i(m) 0 )(m) 0
= +(4.0)] + 0(4, ), (A.5)
r(m);O r(m);O r(m) 0
ni il il
ulr(m);— 1 ,(lm) -1 r(Im) -1
5[ e-’()i 61[
-;'(m):O — -(r)(im):O + (A,é) -;l'(im):O + O(A,(S)z (A6)
VoL \] \j
r(m):0 r(m):0 r(m):0

Substituting Egs. (A.4) and (A.5) into Eq. (A.1), we obtain, using the Taylor-series expansion with respect
to the unperturbed states

i 1i i 2
Df 0() r(m))ul(m)O - Df 0(};(m))“9(m);0 + (A’ 5)[) r(m)Df O(Ji(m))ug(m) ot Df O(Ar(m))ur(m) 0] + O(A’ 5) (A7)
leading to
~0i 0i i
ADb ()ll 0 + Df Our(m) 0 + ()D' lul(l‘i‘l) -1 — ADb 0(/11(m))[ r(m);0 + (A 5)ur(m) 0] + Df;O(/lr(lm))ug(m);O

'\Ol i
+(4,90)[4 r(m)Df O(A;(m))ur(m) 0+ Dro(4 r(m))“rl'(m);O]

r(m);
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+0D1 (gl 8.1 + (4, )iy, ]+ O(4,6)°
= AD (800 F D0 (At 5t 10+ SDyet (A B
+(4,9) [ll(’m)DfO(A,(m))ur(m) 0+ Dro( 0| + 04,8 = 0.
(A.8)

For r>0, since it holds Dy ()(),(m))u,(m)0 =0 and “;(m)o = ﬁ?(’m) , = 0 for the unperturbed isotropic rotor

system, we can derive, from Eqs. (A.8) and (A.6), and using the relation V0T Df;o(/l(r)(i,n)) =07

r(m) 0
=0 =17 10i 1i ;
Ji 1i {vr(lr};) ;0 + (A 5)vr )};) O}Df O(A)(Im))ur(lm);o (A 5)Vr(m) ODf 0()“r(m) ;{(lm);O NO(A 5) (A 9)
rim) = ~0iT 50 0i - > @ :
{vr(’m) ;0 + (A 5)Vr(m) O}Df 0( r(lm))ur(lm);o r(m) ODf 0(} r(m))ui(m) 0

And, similarly, for r<0, it holds Df‘;()(;u’,(lm))ﬁ?(lm);o =0 and “r(lm)-o =0 for the unperturbed isotropic rotor

. . . 0T .= .
system, we can derive, using the relation V,(l,,,);on;o(Z(,)('m)) =07,

~0iT ~liT
o + (4,00 D028 i
2 1i ~ r(m);0 r(m);0 z(m) r(m);0
Komy = T 0T =) ~0(4,9). (A.10)

{V (m);0 + (A 5)V;(m) O}Df 0(/11(1’}1 )ﬁr(m) ;0
From the above two relations, we can conclude that
Ariomy = oy + (4,0) 4y + O(4,6), r==%1,...£N (A.11)

implying that the latent roots are stationary with respect to the perturbations in system parameters. This
derivation is mathematically consistent with the previous result derived for the asymmetric rotor with
anisotropic stator (refer to Appendix A of Suh et al. [7]).

Substituting Eq. (A.9) into Eq. (A.7), we obtain, for r>0,

Df 0(}1(}’”))“}’(}’}’! 0 — (A 5)Df O(XI(m))u:(im);O (Alz)

and similarly, for r<0,
Df O(Ar(m))ur(m)() - (A 5)Df O(Jr(m))ul(m)() (A13)
Appendix B. Latent vector relations
Here, latent vector relations for general rotor with weak anisotropy and asymmetry for other than the
modes associated with r>0 and m = 0 are derived.
For r(m) = —r(0) and r>0, where [|Dy. O(JL_r(O))u_r(o)OH 0@, 4), we can derive, by removing the third

block matrix equation from Eq. (13a) and using ||u_r(0);0||~0(1), the norm order of right latent (modal)
vectors as

i 5! 3 - - -1 - i
0yt 11 = 1104°D ;D [ DD Dyt — B 117 Do D7 Dol g
<1 =—1
A =9 AZDf;lDb;lDf; Dr ODf ()Db OlLr(o) 0”’\“0(5 Az)a

L _ B _ e B o ] = B L
||“l—r(0);—1|| =Il- 54‘[52D:';0Dj';(1)Dr;1 — K] IDI‘JODr;(%Db;Oul—r(O);O|| ~ ||5ADf;—lDl‘;ODf';(l)Db;Oul—r(O)ﬁ'|N0(5A)a
) -1 = B L 3 o
||u[_,‘(0);()|| = ||A[52D;‘;1Ef;_1Dr;0 - Df;O] lDb;OuI_r(o);()H ~ || — AD_[;(])Db;Oul_r(o);o||'\’O(A)a
N B N oo N
||ul,,~(0);1|| = ||5ADf;1Db;lEf;l,lDr;()“l,,(o);o|| ~ ||5ADUDb;1Df;l,lDr;Oul,r(o);o||N0(5A)a

et 1 = 11 = OEZL Dol g1 2 [ = 0D L DygiiL g1~ O(9). (B.1)
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Likewise, we obtain, for r(m) = r(—1) and r>0, where ||Df;_1()»f.(fl))ui(fl);fl||~O(5,A), by removing the
second block matrix equation from Eq. (13a) and using ||uf,(_1);_1 [I~O(1),

j - S—145 ; _ J . .
||“lr(71);0|| = ||5AE/';(1)Db;ODf;oDr;1u;l(,1);,1|| ~ ||5ADf;(l)Db;0Df;oDr;1u;~(,1);,1||NO(5A),

N =—1 = _ -1,z i =—1 = _ =—1,= i
||ulr(_1);_1|| = || - 52AE)";—1Dr;OEf';(l)Db;ODf;oDr;l“lr(_]);_]|| ~ || - 52ADf;—1Dr;ODf;(l)Db;OD/’;oDr;lu;(_]);_1||’\‘0(52A)a

N N ~ 1= e 1=
||“r(71);0|| = - [54‘2Df;on;OEf;(1)Db;0Df;oDr;1 + 5Df;oDr;1]“r(,1);,1|| ~ || = 5Df;OD,.;1ur(71);71||~0((3),

. _ __1 - _ __1 - .
10t = 1167 4D Dy By DB gDy D g Dy
_ R sl
~ (16 42Dy Dt Dy Dro Dy DioD Dy .y [~ 057 4%),
~i S— 143 i
||u§~(_1);1|| =]l - ADf;1Db;1ur(_1);_1||'\’O(A) (B.2)
with
; , , oy - . TR - .
Ef;O(;‘r(—l)) = D_f;O(/I;(—l)) - Asz;O(’K‘(—1))D/';0(’1:4(—1))Db;0 - 52D";1(}"lr(—l))Ef;—l(/“;(—]))DHO(/“;(—I)) ~ Df;O(/I;‘(—l))

for r(m) = —r(1) and r>0, where ||13f;,1(ii_r(l))fli_,(l);_1 [I~0(6, 4), by removing the fifth block matrix equation
from Eq. (13a) and using [[8",,_||~O(1),

N =—143 _ N s—1.3 _ N
16", 1011 = [164E, g DpoD; oDty 1| ~ [|64D;4DpoDyg Dy’ ) 11~0(04),

. _ __l — _ Aj _ __1 - _ ~7
'l = 1] = 8 AE;L DK DDy Dyt )] 2 || = 624D DD, g Dig DD ), [~ OS5 4),
. e o o
||“Lr(1);0|| = - [5A2Df;(1)Db;0Ef;0Db;0Df;(l)Dr;1 + (5Df;(1)Dr;1]ll',,(1);,1|| ~| = 5Df;(1)Dr;1ul,,~(1);,1||NO(5)9
A s—1.= _ =—1.= _ A
||“I,r(1);1 | = ||52A2Df;1Db;lEf;l,1Dr;OEf;on;ODf;(l)Dr;l“I,r(l);,l [l

= 1= _ R i
~ ||52A2Df;1Db;1Df;l,1Dr;0Df;oDh;0Df;(l)Dr;llLr(l);,l | |NO(52A2)5

' 11 = 1| = AD Dy ) [~ O(4) (B.3)

for r(m) = r(1) and r>0, where ||Df:1()~f~(1))“f~(1);1 |I~0(6, A), by removing the sixth block matrix equation from
Eq. (13a) and using [|u;,[[~O(1),

[0y 01l = [6AF 5Dy Dy 1Dy uly) 11 2 [164D;Dyi Dy 1 Dy yuy ) [|~O(54),

. _ __1 - _ - - .
[y 1] = 162 4°F ;L DDy g Do F gDy Dy 1 D11
- s—1s - = = i
~ ||52A2Df;171Di‘;ODf;ODb:ODf;(l)Dr:lDf;-lDb;—lu;(l);l | |”0(524|2),

N o e
161y = 1| = 6 4° Dy Dy FrL DDy Do Frg Dyt Dy 1 Dyl
- - _ __1_ _ - - .
A= 52A3Df;lDb;lD/‘;l_1Dr;OD/‘;()Db;ODf;(l)Dr;lDf;—lDb;—lu;(l);l ||~0(52A3)7

~i _71 - _ - - - . _71 - .
||lli.(1);_1|| = || - Df;_1[52 ADr;OFf;(l)Dr;lDf;leb;fl + ADb;—]]u;~(1);1|| ~ || - ADf;_1Db;71ulr(1);1||'\’O(A)X’

Ny - SO S T R ;
||ll;,(1);0|| = || - Df;o[(SA2 + 53A2Dr;1Ff;l,1Dr;0Df;0]Db;0Ff;(l)Dr;lDf;—lDb;—lur(l);l ||
__1 - _ — — i
~ | = 5A2Df;0Db;0Df;(l)Dr;1])f;—lDh;—lur(l);l||N0(5A2) (B.4)



288 C.-W. Lee, D.-J. Han | Journal of Sound and Vibration 313 (2008) 268—289
with
Ff;*l(/li(l)) = Df;fl(li(n) - Asz;fl(/Ii(l))ljf;l()vi(l))ﬁb;l(lia)) - 521)»‘;0(%(1))ﬁf_;(l)()~f~(1))ﬁr;l (%(1)) ~ Df;fl(’li(l))»
Fro(4) = Droli) = 42 Do) o (i )DolZiy) — Dyt (i )Dy:L (i DDl )

[N SUYSLIR ) i —1gi i YDl VD i i
- 524‘2Db;0()~r(1))Df;o(/lr(1))Dr;l(/I,A(l))h3 l(;L,~(1))Dr;0(/1r(1))Df;o(/hr(1))Db;0(/1r(1)) ~ Df‘;O(}~r(1))

and for r(m) = —r(—1) and r>0, where ||Df;1()vi_r(_1))ﬁi_,(_1);]||~0(5,A), by removing the first block matrix
equation from Eq. (13a) and using ||ﬁ’7r(71);1||~0(1),

i =—1= A s—1= i
||U_r(_1);o|| = ||5AFf;0Dr;1Df;leb;flul_,,(_U;l|| ~ ||5ADf;oDr;1Df;—lDb;—lul_r(_1);1||'\’O(5A)’
N -—1 5 _ -—1.= N
6L,y I = 110° 4% DyoD7 s Do F g Dt Dy Dyl
__1 — _ __] - A
~ [10°4*D;._ DrgD; gDy D Dy Dy Dy, ) [~ O(5° 47,
. __l - _ __1 - N
L, = 11 = 0°4° Dy Dy By Do Dy gD Fg Dyt Dy 1 D,y
__] - _ __1 - a7
~ || = 84Dy Dy By Do Dy Do Dy gDy Dy 1Dy 18, ) [|~0(6°4),
4 B R . y
', _pyoll = 11 = Dfg [542 + 53A2Dr;1Ff;,1Dr;on;5] DyoF 0Dy Dy Dy, ]
— =—1= A
N || = 047Dy Do Dy Dret Dy 1 Dy 411~ 0(047),

; N = N _ o
||u7r(71);71|| =l - l)f;l,1[52ADr;0Ff;0Dr;1Df’;—lDb;—l + ADb;—]]u:,‘(,l)ﬂ“ ~| = ADf;lleb;—lul,,ﬂ(,l);l [[~O(4).
(B.5)

Appendix C. Matrix norm [8]

Let us consider a matrix relation given by
H=uw", (C.1)

where H is an m x n matrix, and u and v are m x 1 and n x 1 vectors, respectively. Post-multiplying an n x 1
arbitrary vector f with ||f|| = 1 in Eq. (C.1), we obtain

Hf = uv'f. (C.2)
Taking the vector norm of Eq. (C.2), we have
|[HEf]| = [Juv"f]] = [[u][[[v"f]| < |[H][|[f]] = |[H]] (C.3)
and
RRIER N IANHES LA (C.4)
It also holds, by definition of norm
[IH[| = [[H; + Ha|| < [[Hi ]| + [[Hall. (C.5)
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