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Abstract

In this paper, we investigate a thin annular plate, whose inner edge has a smaller radius before mounting onto a rigid

shaft then the radius of the shaft itself. After mounting onto the shaft forcefully, the overlap appears on the plate where it

touches the shaft. The plate spins together with the shaft at a constant angular speed. Two possible cases of supporting the

outer edge of the plate have been examined—when the edge is clamped and when it is free. The paper presents the

determined frequencies of small transversal vibration with respect to the size of the overlap and angular speed. When

determining the frequencies, the Galerkin method has been used. Based on these data, plate stability was examined and the

critical value of the angular speed was determined using the dynamic criterion. For the special case of a non-rotating plate,

the critical value of the overlap at which the plate loses stability was determined.

Stability of a rotating plate with an overlap was also examined using nonlinear Karman’s equations analysis applying

the Ljapunov–Schmidt method. The analytical solution of the linearised equations system was obtained using the standard

procedure. After that, the bifurcation equation was obtained and signs of the bifurcation coefficients were determined.

Consequently, we came to the conclusions regarding the bifurcation type.

The conclusions of the bifurcation type have been corroborated by numerical integration of the differential equations

system and certain stability loss cases have been presented on drawings.

r 2007 Elsevier Ltd. All rights reserved.
1. Introduction

Rotating annular plates and discs are very frequently present as parts of transmission elements, pumps,
compressors, circular saw blades, etc. This is why the need to investigate the vibration of these elements
at various support and loading conditions has arisen. Determining the dynamic response of rotating discs,
i.e. their shapes and natural frequencies, is the stepping stone in the design of rotating equipment. They are
most commonly found in applications that contain bladed disc assemblies for turbines and flywheels.

The first analysis of rotating discs was performed by Lamb and Southwell [1]. It included determining the
natural frequencies of a complete circular disc clamped at its centre and free at its edge. They applied power
ee front matter r 2007 Elsevier Ltd. All rights reserved.
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series techniques to determine the exact natural frequencies of a rotating membrane. Subsequently, they were
then combined with previously published results for a non-rotating disc and the lowest natural frequency
bounds for a rotating disc with both flexural and membrane effects present were determined. They also
presented upper bounds for natural frequencies using Rayleigh’s method. Southwell [2] later extended the
results obtained earlier and included the case of a centrally clamped annulus under the assumption of partial
clamping, He considered a disc constrained in the transverse but not in the radial direction at the hub. The
results he obtained had approximate natural frequency calculations, which were later validated by Barasch
and Chen [3]. The validation was performed using the modified Adams numerical method. Barasch and Chen
[3] showed the nature of that influence in case of a rotating disc with the free edge, while Ramaian [4] showed
the same in case of annular plates with various boundary conditions. The same technique was used by
Eversman and Dodson [5] to obtain an exact series representation of the solution for a fully clamped rotating
disc. Mote [6] examined the influence of initial and thermal membrane stresses on the vibration of circular saw
blades. Schajer and Mote [7] investigated the influence of a special procedure that generates initial stresses in
circular saw blades by using roll tensioning process. During the process the saw blade is compressed by two
opposing rollers that make a plastically deformed annular zone on the saw blade. It is shown that this process
leads to an increase in critical speed.

Maretic [8] proved that a rotating circular plate subjected to certain boundary conditions can lose stability
under inertial load. Ouyang and Mottershead [9] analysed vibration and stability of a rotating car disc brake.
For the case of the thick circular plate described by Karman’s nonlinear plate theory stability analysis is given
in Wolkowisky [10]. Stability of a clamped annular plate, which is descibed by Karman’s nonlinear plate
theory, is presented in Machinek and Troger [11]. In this paper, the Ljapunov–Schmidt method was used.
Raju and Rao [12] presented stability analysis of a moderately thick circular plate. Maretic and Glavardanov
[13] examined the stability of a heated rotating circular plate with elastic support.

When manufacturing constructs with rotating annular plates, the plate is sometimes mounted onto the shaft
with an overlap. Before mounting the plate and when stationary, the plate radius of the inner edge is less than
the shaft radius by a small value d (Fig. 1a), which will be referred to as an overlap. It will be assumed that the
shaft is ideally rigid. After forcing the shaft into the plate, the inner edge radius is changed and the stress
appears in the plate. In this paper we shall look at two cases of supporting the plate: the first (Fig. 1b) when the
plate outer edge is clamped to a rigid cylinder revolving axially with the plate, and the second (Fig. 1c) when
the outer edge is free.

We note that the assumption on the shaft being ideally rigid makes this plate model is unacceptable in most
practical cases since the elastic moduli of the shaft and the plate are usually of the same order of magnitude.
However, there is a case where up to the same reasonable point our model can be acceptable from the physical
annular plate

rigid shaft

right
cylinder

Fig. 1. The plate and shaft: (a) before mounting, (b) after mounting with an overlap—outer edge is clamped, and (c) after mounting with

an overlap—outer edge is free.
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point of view. This case, shown in Fig. 1c presents plate models of grinding wheels and sand paper wheels for
polishing. These plates are made of materials having significantly smaller elastic moduli than steel used for the
shaft. An overlap usually occurs as a consequence of mounting or as a consequence of mistakes in
manufacturing. However, it can also be induced by thermal effects caused by unequal coefficients of thermal
expansion of the plate and shaft.

This paper will look at what the impact of both the overlap and angular speed is on transverse vibration of
the plate and its stability.

2. Mathematical formulation of the problem

We will consider the thin annular plate shown in Fig. 2, with thickness h, and the radius of outer edge a,
while its inner edge before mounting with the plate at the still state is of radius b. The plate spins at the
constant angular speed o. Let (r,j) be a movable polar coordinate system bound to the middle area of the
plate with the point of origin at the point O. The angle j is measured starting at the line OP, which moves
together with the plate.

As a result of the overlap on the inner edge of the plate being axially symmetrical, the points in the middle
plate area will not move in the circular direction, i.e. only radial u(r) and transversal displacements w(r) will exist.

Using Karman’s theory, the relationship between normal in-plane forces Nr and Nc and the displacement u

is given by

Nr ¼
Eh

1� n2
du

dr
þ

1

2

qw

qr

� �2

þ n
u

r

" #
,

Nc ¼
Eh

1� n2
u

r
þ n

du

dr
þ

n
2

qw

qr

� �2
" #

, ð1a;bÞ

where E is the Young modulus and n the Poisson ratio, whose value will be assumed to be 0.3. The squared
term in Eqs. (1) will be important when examining plate stability, while it will be neglected in case of small
transverse vibrations. The normal forces in the plate are given by the equation of equilibrium

d

dr
ðrNrÞ �Nc þ rhr2o2 ¼ 0, (2)

where r denotes mass per unit volume. The transverse motion of the plate is modelled using the classical
Kirchhof plate theory with in-plane stresses. The governing differential equation of the motion is

Dr4w ¼ �rh
q2w
qt2
þNr

q2w
qr2
þNc

1

r

qw

qr
þ

1

r2
q2w
qj2

� �
� rhro2 qw

qr
, (3)

where D ¼ Eh3=12ð1� n2Þ is flexural rigidity.
u
r

b

a
ϕ

P

O

h

Fig. 2. Geometry of an annular plate.
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The boundary conditions of the plate mounting with an overlap on the inner edge read

ujr¼b ¼ d; wjr¼b ¼ 0;
qw

qr

����
r¼b

¼ 0. (4a2c)

The boundary conditions on the outer edge in case of clamping are (see Fig. 1b)

ujr¼a ¼ 0; wjr¼a ¼ 0;
qw

qr

����
r¼a

¼ 0, (5a2c)

while in case of the free edge they are (see Fig. 1c)

Nrjr¼a ¼ 0; Mrjr¼a ¼ 0; Qr �
1

r

qMrc

qj

� �����
r¼a

¼ 0, (6a2c)

where Mr and Mrc denote moments, and Qr the transversal force.
Solving the linearised equations (1) and Eq. (2) with boundary conditions (4a) and (5a), that is (4a) and (6a),

normal in-plane forces will be

Nr ¼ rho2 a2a1 þ
a4

r2
a2 þ a3r2

� �
þ

Edh

a
a5 þ

a2

r2
a6

� �
,

Nc ¼ rho2 a2a1 �
a4

r2
a2 þ a4r2

� �
þ

Edh

a
a5 �

a2

r2
a6

� �
, ð7a;bÞ

where in case of clamping

a1 ¼
ð1þ k2

Þð1þ nÞ
8

; a2 ¼
k2
ð1� nÞ
8

,

a5 ¼ �
k

ð1� k2
Þð1� nÞ

; a6 ¼ �
k

ð1� k2
Þð1þ nÞ

, ð8Þ

while for the free edge

a1 ¼
ð1þ nÞ½3þ nþ k4

ð1� nÞ�

8½1þ nþ k2
ð1� nÞ�

; a2 ¼
k2
ð1� nÞ½3þ n� k2

ð1þ nÞ�

8½ð1þ nÞ þ k2
ð1� nÞ�

, (9)

a5 ¼
k

1þ nþ k2
ð1� nÞ

; a6 ¼ �
k

1þ nþ k2
ð1� nÞ

.

In both cases of boundary conditions it is

a3 ¼ �
3þ n
8

; a4 ¼ �
1þ 3n

8
. (10)

In all these expressions k ¼ b/a.
In the case of the plate with the free outer edge the expressions for normal in-plane forces Nr and Nc, given

by Eqs. (7a) and (7b), are similar to the ones obtained in Refs. [6,7] in the sense that the forms are the same but
some of the coefficients are different. Due to these differences, caused by a different way of generating initial
stresses, it is very difficult to compare the obtained results. Actually comparison is possible only in some
special cases. In the case of the plate with the clamped outer edge, the coefficients in Eqs. (7a) and (7b) are
significantly different from the ones in Refs. [6,7]; hence, it is not possible to find similarities between the
results presented here and the results obtained in Refs. [6,7].

Substituting r ¼ b into Eq. (7a) and using Eqs. (9) and (10) we obtain the value of the in-plane forces Nr at
the inner edge of the plate

NrðbÞ ¼ rho2a2 1� k2

4
�

Edh

a

ð1þ nÞk2
þ 1� n

ð1� k2
Þkð1� n2Þ

, (11)
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for the clamped outer edge, and

NrðbÞ ¼
1� k2

ð1� nÞk2
þ 1þ n

rho2a2 ð1� nÞk2
þ 3þ n

4
�

Edh

a

1

k

� �
, (12)

for the free outer edge. For the sign of Nr we adopt the usual convention, meaning that the force is positive if
the plate is in tension. Eqs. (11) and (12) imply that the value of Nr for small values of angular speed is
negative at the inner edge of the plate. The increase of the angular speed leads to the increase of Nr and at
some point Nr reaches zero. Further increases will cause the normal force Nr to become positive, which is not
in agreement with the physical constraints.

In that case the plate detaches from the shaft, which results in changing boundary conditions since the plate
inner edge becomes free. In order to maintain the overlap the force should meet the condition

NrðbÞo0, (13)

so the condition that the angular speed must meet is

o2o
4 ð1þ nÞk2

þ 1� n
� �
ð1� k2

Þ
2kð1� n2Þ

Ed
ra3

(14)

for the clamped outer edge, and

o2o
4

½3þ nþ ð1� nÞk2
�k

Ed
ra3

(15)

for the free outer edge. In this paper we will consider only the cases where the previously mentioned conditions
are met.

After replacing Eq. (7) into Eq. (8) and introducing non-dimensional values

l ¼
ro2a4

Eh2
; y ¼

w

h
; x ¼

r

a
; t ¼ t

ffiffiffiffiffiffiffiffiffiffi
D

hra4

s
; p ¼

da

h2
, (16)

the following partial differential equation will be obtained:

r̄
4
yþ
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� Z la1 þ pa5 þ
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�
¼ 0, ð17Þ

where r̄
4
¼ r̄

2
r̄

2
is a non-dimensional biharmonic operator and Z ¼ 12ð1� n2Þ. Using non-dimensional

values, the boundary conditions on the inner edge (4b,c) change into

y
��
x¼k
¼ 0;

qy

qx

����
x¼k

¼ 0. (18a,b)

Non-dimensional boundary conditions at the outer edge in case of clamping (5b,c) change into

y
��
x¼1
¼ 0;

qy

qx

����
x¼1

¼ 0, (19a,b)

while after replacing the appropriate standard expressions for moments and the force, the boundary
conditions for the free edge (6b,c) will be

q2y
qx2
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qx
þ n

q2y

qj2
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The problem of determining frequencies of transverse vibration of a rotating plate with an overlap reduces
to solving the partial differential equation (17) with corresponding boundary conditions.

3. Numerical solutions

The solution of Eq. (17) is obtained applying the Galerkin method. To this end, the solution is assumed in
the form

ȳ ¼
XM
m¼0

XN

n¼0

AmnY mnðxÞ cos nj sin Ot, (21)

where Amn are undetermined coefficients, M and N are the numbers of the basic functions used in the
approximation, and n is the number of nodal diameters. Non-dimensional natural frequency O of transverse
vibration is

O ¼ ON

ffiffiffiffiffiffiffiffiffiffi
rha4

D

r
, (22)

where ON is the natural frequency and Ymn are the functions chosen to satisfy the boundary conditions of the
plate. They are presently assumed to be of the following form:

Y mn ¼ 1þ c1mnxþ c2mnx2 þ c3mnx3 þ c4mnx4
� �

xm, (23)

where the constants cs
m n are chosen so that the boundary conditions are satisfied. By substituting Eqs. (21) and

(23) into Eq. (17) and applying the Galerkin procedure, the following equations are obtained:

XM
m¼0

Am nðamnjn � O2bmnjnÞ ¼ 0; j ¼ 0; 1 . . .M ; n ¼ 0; 1 . . .N, (24)

where

amnjn ¼

Z 1

k

amnY jnxdx; bmnjn ¼

Z 1

k

Y mnY jnxdx. (25a,b)

The expressions to be integrated in Eq. (25a) are

amn ¼
d4Y mn

dx4
þ

2

x

d3Y mn

dx3

� Zðla1 þ pa5Þ þ Zla3x
2 þ

1þ 2n2 þ Zðla2 þ pa6Þ

x2

� �
d2Y mn

dx2

�
Zðla1 þ pa5Þ

x
þ Zla4x�

1þ Zðla2 þ pa6Þ þ 2n2

x3
� lZx

� �
dY mn

dx

þ
Zðla1 þ pa5Þ

x2
þ Zla4 þ

n2 � 4� Zðla2 þ pa6Þ

x4

� �
n2 Y mn. ð26Þ

The problem of determining transverse vibration frequencies of the plate with an overlap is reduced to solve
the frequency equation representing the system of algebraic equations (24) determinant. In the rest of the
paper it has been assumed that the number of assumed functions M1000 is 8 when determining frequencies.

4. Results and discussion

Figs. 3 and 4 show the first two lowest frequencies O, which are obtained as the lowest solutions of the
frequency equation. The frequencies are shown with respect to non-dimensional angular speed l and non-
dimensional overlap p for a plate with the clamped outer edge. Doing that, it has been assumed that k ¼ 0.2.
The number of node diameters n changes from 0 to 3 for the first frequencies, while it assumes values 0 and 1
for the second frequencies. Bearing in mind condition (14), which determines the maximal value of angular
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Fig. 3. The first transverse vibration frequencies of a plate with the clamped outer edge (k ¼ 0.2) for different values of the number of

nodes diameters n.
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Fig. 4. The second transverse vibration frequencies of a plate with the clamped outer edge (k ¼ 0.2) for different values of the number of

nodes diameters n.
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speed on the diagrams, the corresponding frequencies have been determined. Those frequencies are denoted by
thicker lines than others on the diagrams. They intersect the frequency lines for constant values of p, and the
part of the lines where the overlap has not been achieved has been denoted by a dashed line. Hence, only part
of those lines denoted by a continuous line is important for consideration.

For plates with the clamped outer edge, the overlap brings about a frequency decrease. Increase of angular
speed at the same overlap value influences vibration frequency change in a complex way. The diagram of
frequency change at n ¼ 0 given in Fig. 3 is particularly interesting. The frequency decreases with the increase
of parameter l for lower overlap values. For higher overlap values, when l increases, vibration frequencies
first increase and then decrease. If p46.005, the line of frequency change bends, forming an arc whose
beginning and end are on the l-axis. In these cases, vibration is possible only when the parameter l is between
these end points. If l is out of this range, the frequency equation will not have the corresponding solution for
O, that is, the lowest one will correspond to the second frequency. In case p46.177, the line of frequency
change transforms into a point denoted A. Its corresponding parameter l is lA ¼ 17.175. With increase of the
overlap p, vibration of the plate with the clamped edge with the first frequency and n ¼ 0 is no longer possible.
Point B is obtained in a similar way, where n ¼ 1 and p ¼ 7.516, and whose corresponding l is lB ¼ 24.290.
All these frequencies are solutions of the frequency equation. But the question arises whether they are possible,
because stability loss of the plate and vibration cessation may occur under the given parameters.
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It is important to note that for certain l and p values, frequencies are equal to zero, and in such cases
stability loss occurs by the dynamic criterion. For n ¼ 0, p ¼ 6.005 there will be only one point at the right
end, the frequency of which is zero for each curve. Based on this, the diagram of stability can be drawn and it
is shown in Fig. 5. The diagram for n ¼ 1 has been drawn in a similar way, and for higher n values these
diagrams are unimportant, so they have not been shown. In order to study plate stability, it is important to
determine the minimal l value (for the p given) at which loss of stability occurs. It is obvious that the shape
n ¼ 0 is important for a plate with the clamped outer edge, because all minimal l values correspond to that
shape. In order to maintain the overlap, due to the limit that exists for l parameter values, the part of the
diagram that is below the limiting line, drawn thicker than other lines, is important for consideration. Because
of this, the parameter area for which stability is provided is limited by this boundary line and the line n ¼ 0,
and that area is shaded. Hence, critical values of the parameter l are on the line CADE, where the p and l
coordinates of points C, D and E are given by C(6.0052; 0), D(6.0052; 33.0864) and E(3.9877; 71.5130). The
part of the area around point A is interesting, i.e. the area limited by the vertical line CD and the curve CD.
Stability is provided for parameter values inside this area, but, if the parameter l decreases to zero, the plate
will not be stable. This means that a non-rotating plate at the overlap p ¼ 6 will be unstable and that, if it
starts moving so that l is, for example, l ¼ 20, it will be stable. We will discuss the type of bifurcation at
stability loss later.

The first two transverse vibration frequencies of a plate with the free edge, and where k ¼ 0.2, are shown in
Figs. 6 and 7. Similar to the case of a plate with the clamped edge, there is a limitation of the angular speed
value in case of this plate too. That is why some lines are shown dashed. It is assumed that the number of
nodes diameters n changes from 0 to 3 in case of the first frequency, while in case of the second it is either 0 or
1. In case of this type of boundary conditions, the transverse vibration frequency increases when the angular
speed parameter increases. Besides that, in case there is an overlap, the vibration frequency will decrease,
unless n ¼ 2 or 3. In these exceptional cases, frequencies will increase.

At certain values of the overlap and at parameter l, the frequency of transverse vibration is equal to zero, so
stability loss occurs at these points. It can be observed in Fig. 6 that for n ¼ 0, the frequency equation has a
real solution when l is greater than the critical value, and there is no solution when l is less than the critical
value. Based on this, it can be concluded that the plate will be stable if l4lcr, and unstable otherwise. Fig. 8
can be produced using the data shown in all these diagrams. It shows dependence of the parameter l on the
overlap for n ¼ 0 and 1, while shapes for n41 are not important. Bearing in mind that the plate is stable for
l4lcr, the only shape that is important for determining the critical value of l is n ¼ 0. The area of stability,
which is limited by the line n ¼ 0 and the boundary line of critical values of parameter l, is shown in Fig. 8 as
the shaded area. For point F, which is on the p-axis, it is given that p ¼ 2.3639.

It can be noted based on the presented analyses that a plate can lose stability when it is not rotating, but is
only subjected to an overlap. For that very reason the analysis of impact of an overlap on stability of a non-
rotating annular plate has been performed. In Fig. 9 the critical value of the overlap p with respect to the
parameter k for both cases of boundary conditions has been shown. The analysis has been performed for n ¼ 0
100

80

60

40

20

0
0 2 4 6 8p

λ

E n = 1

n = 0
D

A

C

B

Fig. 5. Critical angular speed l with respect to the overlap p at k ¼ 0.2 in case of a plate with the clamped outer edge.
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Fig. 6. The first transverse vibration frequencies of a plate with the free outer edge (k ¼ 0.2) for various values of the number of nodes
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Fig. 7. The second transverse vibration frequencies of a plate with the free outer edge (k ¼ 0.2) for various values of the number of nodes

diameters n.
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Fig. 8. The critical angular speed l with respect to the overlap p at k ¼ 0.2 in case of a plate with the free outer edge.
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to 3, but in case of the free outer edge, the overlap values obtained for n ¼ 2 and 3 are out of the range
presented in the figure, so they have not been shown at all. It is obvious that the critical overlap value for both
cases of boundary conditions are the ones that correspond to the basic shape (n ¼ 0).
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Fig. 9. The critical overlap with respect to the parameter k: (a) clamped outer edge, and (b) free outer edge.
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5. Bifurcation analysis

The previous section consideration shows that linear analysis implies that loss of stability occurs when the
number of nodes diameters equals zero. In this section we will perform nonlinear analysis to confirm that loss
of stability really follows from linear equations and to determine the postbuckling behaviour of the plate. We
will use nonlinear von Karman’s equations for an axisymmetrical plate for the governing equations. As a
consequence, all partial derivatives with respect to the coordinate j are zero. Keeping this in mind, the
equilibrium equation in the vertical direction reads

d

dr
ðrQrÞ ¼ �

d

dr
ðrNryÞ, (27)

where

y ¼ �
dw

dr
(28)

is the slope of the tangent in the radial direction. If we introduce the following non-dimensional quantities:

Q ¼
Qra

3

Eh4
; N ¼

Nra
2

Eh3
; Y ¼

ya

h
(29)

and integrate Eq. (27) using the boundary conditions (5c) for the plate clamped at the outer edge and
Eqs. (6a,c) for the plate free at the outer edge, we get

Q ¼ �NYþ
C

x
, (30)

where C is a constant. In case of the plate clamped at the outer edge C ¼ 0, while for the plate free at the outer
edge C ¼ Q(1).

Using Eq. (30) the governing equations describing deformation of the plate can be written in the form

dy

dx
¼ �Y;

dY
dx
¼ K ;

dK

dx
¼ �ZNY�

ZC

x
�

K

x
þ

Y
x2

,

dN

dx
¼

U

x2
�

1� n
x

N � lx;
dU

dx
¼ ð1� n2ÞN �

1

2
Y2 �

n
x

U ;
dC

dx
¼ 0, ð31a2fÞ

where we introduce the radial curvature kr and the following non-dimensional parameters:

U ¼
ua

h2
; K ¼

kra
2

h
. (32)

We note that the differential equation (31f) is not necessary in case of the plate free at the outer edge. The non-
dimensional boundary conditions for the plate clamped at the outer edge are

UðkÞ ¼ p; yðkÞ ¼ 0 YðkÞ ¼ 0, (33a2c)
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at the inner edge, while at the outer edge we have

Uð1Þ ¼ 0; yð1Þ ¼ 0; Yð1Þ ¼ 0. (34a2c)

In case of the plate free at the outer edge the boundary conditions at the inner edge are given by Eqs. (33a–c),
while at the outer edge they become

Nð1Þ ¼ 0; Kð1Þ þ nYð1Þ ¼ 0. (35a,b)

The trivial solution to Eqs. (31a–f) reads

yT ¼ 0; YT ¼ 0; KT ¼ 0; NT ¼ l a1 þ
a2

x2
þ a3x

2

 �

þ p a5 þ
a6

x2


 �
,

UT ¼ l ð1� nÞa1x�
a2

x
ð1þ nÞ �

1� n2

8
x3

� �
þ p ð1� nÞa5x�

1þ n
x

a6

� �
; CT ¼ 0. ð36a2fÞ

Introducing perturbations we can write the non-trivial solutions to Eqs. (31a–f) in the form

y ¼ yT þ yn; Y ¼ YT þYn; K ¼ KT þ Kn,

U ¼ UT þUn; N ¼ NT þNn; C ¼ CT þ Cn. ð37Þ

Substituting Eq. (37) into Eqs. (31) and then linearising the system obtained in this way we get the linear
system that after applying the boundary conditions leads to Un

L ¼ 0, Nn
L ¼ 0 and the following differential

equation:

x2 d
2Yn

dx2
þ x

dYn

dx
þ ðb1x

4 � b2x
2 � b3 � 1ÞYn ¼ �ZCnx, (38)

where

b1 ¼ �Zla3; b2 ¼ Zðla1 þ pa5Þ; b3 ¼ Zðla2 þ pa6Þ. (39)

We note that the coefficients ai depend on the type of the supports and they are given by Eqs. (8)–(10). The
general solution to Eq. (38) in case of the plate clamped at the outer edge reads (see Ref. [14])

Yn

L ¼ A1
1

x
Ma;b

ffiffiffiffiffi
b1

p
x2i


 �
þ A2

1

x
Ma;�b

ffiffiffiffiffi
b1

p
x2i


 �
�

CnZ
b3

RðxÞ, (40)

while in case of the free outer edge it becomes

Yn

L ¼ A1
1

x
Ma;b

ffiffiffiffiffi
b1

p
x2i


 �
þ A2

1

x
Ma;�b

ffiffiffiffiffi
b1

p
x2i


 �
. (41)

In solutions (40) and (41) the symbol Ma;bðzÞ stands for Whittaker’s function defined by

Ma;bðzÞ ¼ e�z=2zð1=2Þþb1F1
1
2
þ b� a; 1þ 2b; z

� 

, (42)

where A1 and A2 are integration constants, i ¼
ffiffiffiffiffiffiffi
�1
p

,while the parameters a and b and the variable z are
given by

a ¼
b2i

4
ffiffiffiffiffi
b1

p ; b ¼
1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ b3

p
; z ¼

ffiffiffiffiffi
b1

p
x2i, (43)

and 1F 1ðg; t; zÞ is Kummer’s function defined by

1F1ðg; t; zÞ ¼ 1þ
X1
n¼1

gðgþ 1Þ . . . ðgþ n� 1Þzn

tðtþ 1Þ . . . ðtþ n� 1Þn!
. (44)

The function R(x) in Eq. (40) is a particular solution to Eq. (38). We assume that R(x) has a power-series
representation

RðxÞ ¼
X1
s¼0

Csx
sþ1, (45)
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where Cs are constants to be determined. Substituting the particular solution (45) into Eq. (38) and dividing by
�C*Z we obtain

x2
X1
s¼1

Csðsþ 1Þsxs�1 þ x
X1
s¼0

Csðsþ 1Þxs þ ðb1x4 � b2x
2 � b3 � 1Þ

X1
s¼0

Csx
sþ1 ¼ x. (46)

From Eq. (46) it follows

C0 ¼ 1; C1 ¼ 0; C2 ¼
b2

8� b3
; C3 ¼ 0; Cs ¼

b2Cs�2 � b1Cs�4

s2 þ 2s� b3
. (47)

For the plate clamped at the outer edge solution (40) and boundary conditions (33c) and (34c) lead to

Yn

LðkÞ ¼ A1F 1 þ A2F2 �
CnZ
b3

F3 ¼ 0, (48a,b)

Yn

Lð1Þ ¼ A1F4 þ A2F 5 �
CnZ
b3

F 6 ¼ 0,

where

F 1 ¼
1

k
Ma;bð

ffiffiffiffiffi
b1

p
k2iÞ; F2 ¼

1

k
Ma;�bð

ffiffiffiffiffi
b1

p
k2iÞ; F 3 ¼ RðkÞ, (49)

F4 ¼Ma;bð
ffiffiffiffiffi
b1

p
iÞ; F 5 ¼Ma;�bð

ffiffiffiffiffi
b1

p
iÞ; F6 ¼ Rð1Þ.

Integrating Eq. (31a) and then using the boundary conditions (33b) and (34b) we have

yn

LðkÞ � yn

Lð1Þ ¼

Z 1

k

Yn

L dx ¼ 0. (50)

Next, we substitute the general solution given by Eq. (40) into Eq. (50) to obtain

A1F 7 þ A2F8 �
CnZ
b3

F9 ¼ 0, (51)

where

F7 ¼

Z 1

k

1

x
Ma;bð

ffiffiffiffiffi
b1

p
x2iÞdx; F8 ¼

Z 1

k

1

x
Ma;�bð

ffiffiffiffiffi
b1

p
x2iÞdx; F 9 ¼

Z 1

k

RðxÞdx. (52)

Using Eqs. (48a), (48b) and (51) we obtain the characteristic equation

F 1ðF5F 9 � F6F8Þ þ F2ðF6F 7 � F4F9Þ þ F3ðF 4F 8 � F5F7Þ ¼ 0. (53)

Now solution (40) becomes

Yn

L ¼ A1Re
1

x
Ma;bð

ffiffiffiffiffi
b1

p
x2iÞ þ

F3F 4 � F1F6

F2F 6 � F3F5

1

x
Ma;�bð

ffiffiffiffiffi
b1

p
x2iÞ þ

F 1F 5 � F4F2

F 2F 6 � F3F5
RðxÞ

� �
. (54)

In the case of the plate free at the outer edge it follows from the general solution (41) and the boundary
condition (33c) that

Yn

LðkÞ ¼ A1G1 þ A2G2 ¼ 0, (55)

where

G1 ¼Ma;bð
ffiffiffiffiffi
b1

p
k2iÞ; G2 ¼Ma;�bð

ffiffiffiffiffi
b1

p
k2iÞ. (56)

Using Eq. (31b) the boundary condition (35b) becomes

d

dx
Yn

Lð1Þ þ nYn

Lð1Þ ¼ 0. (57)
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We note that the derivative of Whittaker’s function reads as follows (see Ref. [15, Eq. (13.4.32)])

dMa;bðzÞ

dz
¼

1

z

1

2
z� a

� �
Ma;bðzÞ þ

1

z

1

2
þ bþ a

� �
Maþ1;bðzÞ. (58)

Since the derivative of Ma,b(z) with respect to x is

dMa;bðzÞ

dx
¼

dMa;bðzÞ

dz
2
ffiffiffiffiffi
b1

p
ix, (59)

from solution (41) and boundary condition (57) it is seen that

A1G3 þ A2G4 ¼ 0, (60)

where

G3 ¼ ð
ffiffiffiffiffi
b1

p
i� 2a� 1þ nÞMa;bð

ffiffiffiffiffi
b1

p
iÞ þ ð1þ 2bþ 2aÞMaþ1;bð

ffiffiffiffiffi
b1

p
iÞ, (61)

G4 ¼ ð
ffiffiffiffiffi
b1

p
i� 2a� 1þ nÞMa;�bð

ffiffiffiffiffi
b1

p
iÞ þ ð1� 2bþ 2aÞMaþ1;�bð

ffiffiffiffiffi
b1

p
iÞ.

Eqs. (55) and (60) lead to the following characteristic equation:

G1G4 � G2G3 ¼ 0. (62)

The angle of the tangent in the radial direction now becomes

Yn

L ¼ A1
1

x
Re½Ma;bð

ffiffiffiffiffi
b1

p
x2iÞ �

G1

G2
Ma;�bð

ffiffiffiffiffi
b1

p
x2iÞ�. (63)

By integrating Eq. (31a) with use of expression (54) or (63), as well as the boundary condition (33b), the shape
of the plate at stability loss can be obtained.

Solving the characteristic equations (53) and (62) we obtain the critical values of the parameter l. In
Tables 1 and 2 we compared these values to the ones calculated by using the Approximate Galerkin method in
the third section. From these tables one can conclude that the agreement between the results is quite
satisfactory for greater values of k and lower values of p.

In the following paragraphs we apply the Liapunov–Schmidt procedure to investigate the postbuckling
behaviour of the plate. A detailed description of the procedure along with examples is given in Ref. [16,
Chapter VII] or Ref. [17, pp. 30–34]. Due to the complexity of the expressions resulting from applying the
procedure, we skip the intermediate steps and give only the final result, i.e. the following algebraic bifurcation
equation:

gðā; lcr þ DlÞ ¼ c1āDlþ c3ā
3 þOð āj j2Dl; āj j4Þ, (64)

where Dl51 is perturbation of the critical load, ā is a small real amplitude parameter (see Ref. [16], or
Ref. [18]) and c1, c3 are coefficients to be calculated. The formal form of the coefficients c1 and c3 is presented
Table 1

Comparing the critical values of parameter l obtained by Galerkin method to ones calculated from Eq. (53) for the plate clamped at the

outer edge

K p Galerkin (24) Eq. (53)

4 64.35909 64.35907

0.1 5 57.41189 57.41183

6 48.50836 48.50795

4 71.36364 71.36364

0.2 5 57.39411 57.39411

6 33.31625 33.31622
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Table 2

Comparing the critical values of parameter l obtained by Galerkin method to ones calculated from Eq. (62) for the plate free at the outer

edge

k p Galerkin (24) Eq. (62)

4 1.21041 1.21042

0.1 5 2.54244 2.54250

6 4.18134 4.18154

4 2.07111 2.07111

0.2 5 3.47986 3.47987

6 5.01303 5.01303
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by Eqs. 3.23(c) and 3.23(e) on p. 33 of Ref. [16]. In the case investigated here the coefficient c1 is given by

c1 ¼

Z 1

k

a1xþ
a2

x
þ a3x

3

 �

ðYn

LÞ
2 dx. (65)

The coefficient c3 reads

c3 ¼
1

2

Z 1

k

N2xðYn

LÞ
2 dx; (66)

where N2 follows from the following differential equations (see Ref. [16, Eq. (3.22a) on p. 33]):

dN2

dx
¼

U2

x2
�

1� n
x

N2;
dU2

dx
¼ ð1� n2ÞN2 �

n
x

U2 � ðYn

LÞ
2. (67)

The boundary conditions corresponding to Eqs. (67) in the case of the plate clamped at the outer edge is

U2ðkÞ ¼ 0; U2ð1Þ ¼ 0, (68)

while in case of the plate free at the outer edge they become

U2ðkÞ ¼ 0; N2ð1Þ ¼ 0. (69)

We note systems (66)–(69) are equivalent to the one given by Eqs. (67)–(69) and

dz
dx
¼

1

2
N2xðYn

LÞ
2, (70)

subject to

zðkÞ ¼ 0, (71)

where the dependent variable z satisfies c3 ¼ z(1). In the calculations system (67)–(71) is used to calculate the
coefficient c3.

Next we study the qualitative behaviour of the solution. Thus according to Keyfitz [19] we can neglect the
higher order terms in Eq. (64) and conclude that this equation is contact equivalent to

gðā; lcr þ DlÞ ¼ sgnðc1ÞāDlþ sgnðc3Þā
3. (72)

Therefore, Eq. (64) has a pitchfork bifurcation and the type of bifurcation depends on the sign of the
coefficients c1 and c3. If the constants c1 and c3 are of the same sign, the bifurcation is called subcritical, while
in the case when they are of the opposite sign, the bifurcation is supercritical.

Now we analyse the value of coefficients c1 and c3 in case of the plate clamped at the outer edge. For k ¼ 0.2
the stability boundary is presented in Fig. 5. After calculating the values of c1 and c3 along the stability
boundary, we find that c140 and c340 between the points C and A, so that bifurcation is subcritical. Next, we
calculate the values of c1 and c3 between points A and E and get c1o0 and c340. This means that the
bifurcation is supercritical. At point A we have c1 ¼ 0 and c340, so the higher order terms in the bifurcation
equation (64) are needed if the type of bifurcation is to be determined.
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The stability boundary of the plate free at the outer edge is shown in Fig. 8 and it is calculated for k ¼ 0.2.
Calculations show that both coefficients c1 and c3 are positive all the way along the stability boundary, so
bifurcation is subcritical.

Concluding this section we can point out that the smallest positive roots of Eqs. (53) and (62) determine
bifurcation points and represent the critical angular speed lcr for the plate clamped at the outer edge and the
plate free at the outer edge, respectively.

6. Postcritical behaviour of an annular plate with an overlap

In order to obtain the postcritical shape of the plate, we numerically integrate the nonlinear system of
differential equations (31). For the plate clamped at the outer edge and k ¼ 0.2, the non-dimensional
deflection at x ¼ 0.6 against the angular velocity l is presented in Fig. 10a. The values of an overlap p used to
obtain diagrams are 6, 6.1, 6.17755 and 6.23.

For p ¼ 6 it can be noted that an increase of l leads to an increase of deflection; hence the bifurcation is
supercrtitical. When p ¼ 6.1, there are two curves in Fig. 10a. The first of them, corresponding to smaller
values of l, m shows that an increase of l leads to a decrease of deflection, which implies the occurrence of
subcritical bifurcation. The second curve corresponds to the larger values of l and leads to supercritical
bifurcation. Therefore, for p ¼ 6.1 there are two critical values of l, upper and lower, so that the plate remains
stable when l takes values between them. By increasing the overlap the distance between the critical values of l
is getting smaller and for p ¼ 6.17755 it disappears. It has been shown that at this value of the overlap
the parameter c1 is c1 ¼ 0. By increasing the overlap further to p ¼ 6.23, the plate becomes unstable for each
value of l.

By taking p ¼ 6.1 the different buckled shapes of the plate are shown in Fig. 10b. The dashed line represents
subcritical, while the full line represents supercritical buckled shapes. It can be seen that increase in angular
y 
(0

.6
)

y

xλ

Fig. 10. Postcritical behaviour of the plate clamped at the outer edge (k ¼ 0.2): (a) deflection at x ¼ 0.6 with respect to l and certain

values of overlap p, and (b) postcritical shape for p ¼ 6.1.

y 
(1

)

λ x

Fig. 11. Postbuckling behaviour of the plate free at the outer edge (k ¼ 0.2): (a) deflection at the outer edge with respect to l and certain

values of overlap p, and (b) postcritical shape for p ¼ 15.
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velocity causes the place of maximum deflection to get further and further away from the centre of the plate.
These results are in agreement with the results obtained by using the dynamic method of stability analysis
presented in Sections 3 and 4 and the results obtained by using the adjacent equilibrium method for stability
analysis presented in Section 5.

For the plate free at the outer edge we integrate numerically the nonlinear system (31) by taking k ¼ 0.2 to
determine deflection at the outer edge. The relation between this deflection and the angular velocity is shown
in Fig. 11a for p taking the values 5, 10 and 15. From this figure it follows that for all values of p deflection at
the outer edge of the plate decreases as angular velocity increases. By assuming the value p ¼ 15, the different
shapes of the plate after losing stability are shown in the Fig. 11b. This case also shows that plate
displacements are greater when it does not rotate (l ¼ 0), than when it does (for example, at l ¼ 20), which
implies subcritical stability loss, as was mentioned earlier.

7. Conclusions
1.
 Mounting of a rotating plate with an overlap can have great influence on lateral vibration frequencies. It
is shown that an overlap influences vibration frequencies in a very complex way, and depending on the
number of nodes diameters can increase or decrease in frequencies. In the vibration mode with no nodal
diameters an overlap at the inner edge of the plate decreases vibration frequency. Thus in this case the
influence of an overlap is similar to the influence of the thermal effect in Refs. [6,13] or to initial in-plane
stresses [6,7].
2.
 A plate mounted with an overlap can loose stability. For both boundary conditions and for all values of
the parameter k loss of stability occurs in the mode with no nodal diameters. The stability boundary is
determined in two different ways. In the first case the Galerkin method is used while in the second case the
stability boundary followed from the linearised governing equations. The analytical solution to the
linearised governing equations is expressed in terms of Whittaker’s function. It is also shown that both
ways lead to the same stability boundary.
3.
 In the case of the plate clamped at the outer edge, bifurcation can be both supercritical and subcritical
depending on the values of parameters. However, the postbuckling analysis of a plate free at the outer
edge shows that only subcritical bifurcation is possible.
4.
 For certain values of angular velocity it is possible to achieve increase of values of critical overlap that
causes stability loss compared with the plate that does not rotate. Therefore, in these cases rotation can be
used to stabilise the plate.
5.
 We want to mention one possible way to generalise the problem presented here. Namely, we think that it
could be very interesting to treat this problem by taking an elastic shaft instead of the rigid one in order to
find out how elasticity influences the stability boundary.
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