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Abstract

The in-plane vibration of the circular plate structure is important in the transmission of high-frequency vibration, but

none have produced an exact frequency equation of the in-plane vibration of a clamped circular plate. Therefore, this

paper focuses on deriving the frequency equation for the in-plane vibration of the clamped circular plate of uniform

thickness with an isotropic material in the elastic range. To derive the frequency equation for the clamped circular plate in

the cylindrical coordinate, kinetic and potential energy for in-plane behavior were first obtained by using the

stress–strain–displacement expressions and applying Hamilton’s principle, which led to two sets of highly coupled

differential equations for the equations of motion. Substitution of Helmholtz decomposition for the coupled differential

equations produced uncoupled equations of motion. The assumption of a harmonic solution for the uncoupled equations

led to wave equations. Using the separation of the variable, the general solutions for the wave equations were obtained.

The solutions generated the in-plane displacements in the r and y directions. Finally, the application of boundary

conditions yielded the frequency equation for the clamped circular plate. The derived frequency equation was validated by

finite element analysis and by comparison of previously reported results.

r 2007 Elsevier Ltd. All rights reserved.
1. Introduction

In platelike structures, transverse vibrations are of great practical importance, as transverse motion is easy
to excite from external sources. Such motion can also interact strongly with the surrounding acoustic
environment. However, rotating disks are important in in-plane characteristics, and platelike structures in
most applications have direct in-plane forces or in-plane force components due to imperfections in the
manufacturing, assembly or alignment of the supporting mounts. In many mechanical systems, the bearing
radial force is transmitted to the housing by in-plane excitation, which can be modeled by the plate panels. The
in-plane mode of a plate occurs at relatively high frequencies. They may nonetheless be important from a
design point of view. In-plane vibration can play a major role in the transmission of high frequency vibration
through a built-up structure. Therefore, an accurate analysis must consider the presence of these vibrations.
ee front matter r 2007 Elsevier Ltd. All rights reserved.
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Nomenclature

a radius of plate
er, ey, ez unit vector in cylindrical coordinates
E Young’s modulus
G shear modulus
h plate thickness
i complex number
Jm Bessel function of the first kind
r, y, z cylindrical coordinates
t time
u, v, w displacements
Yn Bessel function of the second kind
g shear strain

e normal strain
r density
s normal stress
t shear stress
n Poisson’s ratio
o frequency (rad s�1)
U, H scalar and vector potentials
r
2 Laplacian in polar coordinate

Superscripts

4 frequency domain quantity
� dot, time derivative
0 derivative with respect to argument
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Many studies have been devoted to transverse vibration, and the natural frequencies and mode shapes for
transverse vibration have been well documented [1]. Wah [2] studied the transverse vibration of circular plates
with a large initial tension for the case of simply supported and clamped edges. Reismann [3] calculated the
response of a clamped, circular plate to the action of an arbitrarily placed, harmonically oscillating,
transverse, concentrated force. For the in-plane response of finite rectangular plates and a general media,
Farag and Pan [4,5] calculated the forced response of finite rectangular plates to in-plane point force
excitations using the orthogonal properties of the assumed mode shapes and more-comprehensive modal
characteristics of the in-plane forced vibration of rectangular plates with several boundary conditions. Bardell
et al. [6] studied the in-plane vibration of isotropic rectangular plates with various boundary conditions using
the Rayleigh–Ritz method. Rizzi and Doyle [7] developed a spectral method as a means of solving two-
dimensional wave propagation problems in semi-infinite and finite media.

For research related to the in-plane vibration of circular plates, Love [8] solved the extensional vibration of
an infinitely isotropic thin circular plate with free edge as an initial approach to the in-plane vibration
of plates. Kane and Mindlin [9] investigated the coupling between extensional vibration and the first mode of
thickness vibration on the circular disk. Holand [10] investigated the frequency parameters of the free in-plane
vibration in circular plates with free edges on the variation of Poisson’s ratio. Ambati et al. [11] analyzed the
in-plane vibration of circular plates and annular rings with free boundaries. Chen and Liu [12] studied the free
in-plane vibration of thin plates of various shapes with a free edge, including a circular plate, and compared
the nodal pattern of plates with different shapes. Irie et al. [13] calculated the natural frequencies for the in-
plane vibration of annual plates with four combinations of free and clamped boundary conditions at the inner
and outer edges using a transfer matrix. Chen and Jhu [14] investigated the effects of the clamping ratio on the
critical speeds and the natural frequencies of the in-plane vibration of a spinning annular disk. More recently,
Farag and Pan [15] proposed natural frequencies and assumed mode shapes by trigonometric functions in the
circumferential direction and by a series summation of Bessel functions in the radial direction according to
three circumferential wavenumber categories of 0, 1, and numbers of more than 1, and investigated the modal
characteristics of in-plane vibration of circular plates with clamped edge. However, no studies dealing with the
exact frequency equation for the in-plane vibration of a clamped circular plate have been published.

Therefore, the purpose of this paper is to derive equations of motion for the in-plane vibration of a clamped
circular plate and to obtain the frequency equation by solving the equations. Validation of the derived
equation uses finite element analysis and a comparison of previously reported results.

2. Analysis

This study analyzes a clamped circular plate that lies in an r–y plane, as shown in Fig. 1. The mid-plane of
the plate is taken at z ¼ 0. The circular plate of uniform thickness with an isotropic material is treated at the
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Fig. 1. A clamped circular plate.
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elastic range for brevity. Using total energy and work and applying calculus of variation, Hamilton’s principle
formulates equations of motion for the mechanical system. Therefore, equations of motion for the in-plane
vibration are derived using Hamilton’s principle. Since the displacements are coupled, they are uncoupled by
the Helmholtz decomposition. Then, the frequency equation for a clamped circular plate is derived.

2.1. Equations of motion for in-plane vibration

The strain–displacement relations in the cylindrical coordinate are given by [16,17]
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qu

qr
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�y ¼
1

r
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where u ¼ uer þ vey þ wez. ð3Þ

Substituting for the strains in Hooke’s law then leads to [16,18]
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Hamilton’s principle, which is employed to derive equations of motion, uses kinetic energy and potential
energy. Kinetic energy for the in-plane behavior is given by [16,18]

T ¼
1

2

Z 2p

0

Z a

0

rð _u2 þ _v2Þhrdrdy. (7)
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In the definition of potential energy for plane stress, potential energy that substitutes strain and stress
relations from Eqs. (1) to (5) is given by [16,18]
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Hamilton’s principle, which applies the calculus of variation to the total energy of system T-U, leads to two
equations of motion:
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2.2. Frequency equation for in-plane vibration

The previously derived equations of motion are highly complex and coupled. However, a simpler set of
equations can be obtained by introducing scalar and vector potentials F and H, known as the Helmholtz
decomposition, such that [18,19]

u ¼ rFþ r�H; r �H ¼ 0. (11)

Therefore, the scalar components of the displacement vector u in the cylindrical coordinates can be
expressed by [17,18]
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Because the in-plane motion in the r and the y direction is considered, the in-plane displacements with (q/
qz) ¼ 0 are given by
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Substituting Eqs. (15) and (16) into Eq. (9) leads to two sets of differential equations:
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In the same manner, substituting Eqs. (15) and (16) into Eq. (10) leads to two other sets of differential
equations:
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where

En ¼
E

1� n2
.

Eqs. (17) and (19) are modified as follows:

r2F ¼
1

c21

€F: (21)

Eqs. (18) and (20) are also converted as follows:
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To solve Eq. (21), the solution assumes to be F ¼ F̂ðr; yÞeiot.
Then, Eq. (21) leads to

r2F̂þ k2
pF̂ ¼ 0, (23)

where kp ¼ o/c1.
Application of the separation of the variable as F̂ ¼ X ðrÞYðyÞ to Eq. (23) leads to
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If the following condition is satisfied, separation occurs as follows:

r2
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X
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Y
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Then, the solutions for Y are given by

Y ¼ sin ky; cos ky. (26)

From the continuity conditions that require F̂ðr; yÞ ¼ F̂ðr; yþ 2pÞ, k ¼ n, where n is an integer.
Bessel’s equation of order n from Eq. (25) is also separated by

X 00 þ
1

r
X 0 þ k2

p �
n2

r2

� �
X ¼ 0. (27)

The solution for X is obtained by

X ðrÞ ¼ CJnðkprÞ, (28)

where the second solution Yn(kpr) has been discarded because of its singular behavior at the origin.
Assuming Hz ¼ Ĥze

iot, Eq. (22) also becomes

r2Ĥz þ k2
s Ĥz ¼ 0, (29)

where ks ¼ o/c2.



ARTICLE IN PRESS
C.I. Park / Journal of Sound and Vibration 313 (2008) 325–333330
The separation of the variable as Ĥz ¼ Y ðrÞOðyÞ yields the same solution for O(y) as Eq. (26). The solution
for Y is also given by

Y ðrÞ ¼ DJnðksrÞ. (30)

Discarding either sine or cosine terms in the Y(y) and O(y), the solutions for Eqs. (23) and (29) are
assumed by

F̂ ¼ AJnðkprÞ cosðnyÞ, (31)

Ĥz ¼ BJnðksrÞ sinðnyÞ. (32)

Then, the displacements for u ¼ ûeiot and v ¼ v̂eiot are given by
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dJnðkprÞ

dr
cosðnyÞ þ

nB

r
JnðksrÞ cosðnyÞ, (33)

v̂ ¼ �
nA

r
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dJnðksrÞ

dr
sinðnyÞ. (34)

The application of the clamped boundary condition of v ¼ 0 at r ¼ a in Eq. (34) yields the following
equations:

B ¼ �
nA

a
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�
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dr
. (35)

Substituting Eq. (35) into Eqs. (33) and (34), Eqs. (33) and (34) reduce to
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dr
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n

a
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� �
, (37)

where A* is a modified constant.
The application of the clamped boundary condition of u ¼ 0 at r ¼ a in Eq. (36) yields the frequency

equation

dJnðkpaÞ

dr

dJnðksaÞ

dr
�

n2

a2
JnðkpaÞJnðksaÞ ¼ 0. (38)

The numerical solution of Eq. (38) for a given n produces the natural frequencies.

3. Numerical results and validation

For the numerical example, a clamped circular plate of a radius of 0.5m and a thickness of 5mm is used.
The material of the plate is aluminum, for which Young’s modulus of 71GPa, a density of 2700 kgm�3,
Poisson’s ratio of 0.33, and a structural loss factor of 0.001 are assumed. With the derived frequency equation,
natural frequencies are calculated in the MATLAB for a frequency range of 0–10 kHz. To validate the
analytical results, the natural frequencies and mode shapes are also computed using the finite element method.
The plate is modeled by 1200 and 3600 shell elements of the 4-node Q4 type using MSC NASTRAN for
Windows. The natural frequencies and the mode shapes by the finite element analysis with elements of 3600
are shown in Fig. 2. Table 1 presents a comparison between the proposed equation and the finite element
method of natural frequencies. Natural frequencies of the finite element analysis are the results of the finite
elements of 3600, and the values in parentheses are those of the finite elements of 1200. The results of the finite
elements of 3600 are close to those of the proposed equation compared to those of finite elements of 1200. The
percentage difference is from 0.02% to 0.78% in the frequency range examined if the results of the finite
element analysis with elements of 3600 are selected as true values. As the frequency increases, the difference
between the finite element analysis and the proposed equation increases to 0.78%. However, if the results of
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Fig. 2. Natural frequencies and mode shapes by the FEM. (a) 3363.6, (b) 3836.4, (c) 5217.5, (d) 5380.5, (e) 6624, (f) 6749.3, (g) 6929, (h)

7019.3, (i) 8093, (j) 8476.5, (k) 8530.6, (l) 9258, (m) 9328.1 and (n) 9887.7Hz.
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the finite element analysis with elements of 1200 are selected as true values, the percentage difference increase
to 2.22%, which is caused by the poor behavior of the finite element method in the high-frequency region.
Thus, finite element modeling with more elements can lead to a more accurate solution. The results of this
work are also compared with those of Farag and Pan [15]. For a comparison of the frequency range of
0–20 kHz, natural frequencies for a clamped circular plate of a radius of 0.5m with the steel material
properties of Young’s modulus of 200GPa, a density of 7800 kgm�3, and Poisson’s ratio of 0.28 are calculated
by the proposed equation. The results of 20 terms in the series summation by Farag and Pan except for
circumferential wavenumber n ¼ 0, are compared in Table 2. The results show good agreement with the



ARTICLE IN PRESS

Table 1

Comparison of natural frequencies of the proposed equation and those of the FEM

n ¼ 0 Proposed

eq. (Hz)

FEM

(Hz)

Diff (%) n ¼ 1 Proposed

eq. (Hz)

FEM

(Hz)

Diff (%) n ¼ 2 Proposed

eq. (Hz)

FEM

(Hz)

Diff (%)

1 3835 3836.4 0.04 1 3362 3363.6 0.05 1 5219 5217.5 0.03

(3838.9) (3366.7) (5213.7)

2 6626 6624 0.03 2 5383 5380.5 0.05 2 6939 6929 0.14

(6620.7) (5375.5) (6910.3)

3 7021 7019.3 0.02 3 8489 8476.5 0.15 3 9925 9887.7 0.38

(7013.4) (8449.8) (9817)

4 9263 9258 0.05

(9247.3)

n ¼ 3 Proposed

eq. (Hz)

FEM

(Hz)

Diff (%) n ¼ 4 Proposed

eq. (Hz)

FEM

(Hz)

Diff (%) n ¼ 5 Proposed

eq. (Hz)

FEM

(Hz)

Diff (%)

1 6764 6749.3 0.22 1 8130 8093 0.46 1 9401 9328.1 0.78

(6722.7) (8022) (9196.5) 2.22

2 8557 8530.6 0.31

(8481.7)

Table 2

Comparison of natural frequencies of this work and those of Farag et al.

n ¼ 0 Farag et al.

(Hz)

Present

work (Hz)

n ¼ 1 Farag et al.

(Hz)

Present

work (Hz)

n ¼ 2 Farag et al.

(Hz)

Present

work (Hz)

1 3860 3860 1 3300 3300 1 5148 5147

2 6434 6433 2 5408 5409 2 6942 6942

3 7068 7067 3 8512 8510 3 9967 9966

4 10,249 10,248 4 9034 9033 4 11,301 11,300

5 13,423 13,422 5 11,792 11,792 5 13,289 13,289

6 16,593 16,592 6 14,315 14,314 6 16,356 16,355

7 17,082 17,081 7 14,995 14,993 7 16,848 16,848

8 18,144 18,145

9 19,657 19,655

n ¼ 3 Farag et al.

(Hz)

Present

work (Hz)

n ¼ 7 Farag et al.

(Hz)

Present

work (Hz)

n ¼ 8 Farag et al.

(Hz)

Present

work (Hz)

1 6709 6708 1 11,828 11,827 1 13,003 13,002

2 8520 8519 2 14,746 14,744 2 16,171 16,169

3 11,377 11,376 3 17,022 17,020 3 18,477 18,475

4 13,408 13,407 4 19,880 19,878

5 14,786 14,785

6 17,861 17,859
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frequency difference of only 0–2Hz, even at a high frequency. Therefore, the proposed equation is well
predicted.

4. Summary and conclusions

In this work, the equations of motion for in-plane vibration were derived using Hamilton’s principle. The
coupled equations were uncoupled by the Helmholtz decomposition. Then, the frequency equation for a
clamped circular plate was derived. Through a numerical example, natural frequencies of a clamped circular
plate were computed. The results of finite element analysis and the previous report were used to validate the
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proposed equation. Finite element analysis and comparison of the previously reported results showed that the
proposed frequency equation was an accurate solution for the in-plane vibration of the clamped circular plate.
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