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Abstract

An original application of Genetic Algorithms (GAs) is developed in order to optimize spur gear pairs toward vibration

and noise reduction. The approach takes into account the most important parameters of micro-geometric modifications,

namely tip and root relief, therefore the parameter space is eight dimensional. The objective function of the GA depends on

the static transmission error (STE) that is related to teeth flexibility. STE is estimated by means of a nonlinear finite element

approach: either the amplitude of the STE fluctuation or its harmonic content are considered as objective functions.

The effectiveness of the approach is checked on an actual test case: GAs are able to find the optimum after a reasonable

number of steps; such optimum is obtained on static basis and gives a strong vibration reduction. The reliability test proves

that GAs lead to robust optima.

r 2007 Elsevier Ltd. All rights reserved.

1. Introduction

The correlation of the noise radiated from gears with the transmission error has been clarified and described
by many authors [1–3]. Most of design methods and guidelines for producing silent gears are focused on
controlling and reducing sources of excitation such as the static transmission error (STE) and the
manufacturing errors.

Since it is very difficult to design gears considering the actual dynamic behaviour, most of the methods for
reducing gear vibration are based on static calculations.

The actual production technology allows to address the problem on three main areas: (1) macro-geometry,
(2) micro-geometry and (3) surface finishing.

Macro-geometry is defined by gear parameters such as: number of teeth, diameters, pressure angle, backlash
and clearance. Many authors studied the effect of the involute contact ratio ea (the average number of teeth in
contact) on both spur and helical gear vibrations [4–6].

Micro-geometric modifications consist in an intentional removal of material from the gear teeth flanks, so
that the resulting shape is no longer a perfect involute; such modifications compensate teeth deflections under
load, so that the resulting transmission error is minimized for a specific torque [7].
ee front matter r 2007 Elsevier Ltd. All rights reserved.
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Surface finishing and strict manufacturing tolerance are a third way to reduce gear vibrations:
manufacturing profile errors are considered as a possible source of dynamic excitation; indeed, teeth quality
such as surface roughness, surfaces finishing and tolerance can play a significant role: their improvement can
lead to a reduction of radiated noise.

Macro-geometric modifications involve an important and expensive change of the gear pair as well as the
other members of the gear train; they are feasible only at the first steps of the design process. High-quality
surface finishing and strict tolerances can lead to excessive manufacturing costs; moreover, their effect on
vibrations can be disappointingly small.

Therefore, the micro-geometric optimization received great attention in the past. In the following a brief
literature overview is given.

In 1940 Walker [8] considered the tooth deflection in the evaluation of the tooth load, he proposed a
trapezoidal tooth load cycle from which it was possible to estimate the amount of tip relief and its extension
along the tooth profile. The main contribution in this field was given by Harris [9]: he introduced the concept
of STE applied to profile modifications by developing a particular diagram called ‘‘Harris map’’. According to
Harris’s approximation, the tooth deflection doubles its value when only one pair of teeth is in contact; this
implies that, for a particular design load, the effect of the elastic deflection is exactly cancelled by a particular
tip and root relief. In actual gears, such a cancellation is not complete due to the approximation of the
method. In 1970 Niemann [10] developed a similar methodology for low load conditions and referred it as
‘‘short’’ relief with respect to Harris ‘‘long’’ relief. Note that neither ‘‘short’’ nor ‘‘long’’ relief can give low
STE variations both at high and low loads.

The literature offers other design guidelines for profile modifications: Tavakoli and Houser [11] developed
an optimization algorithm to minimize any combination of harmonics of the static transmission error, with
different combinations of tip and root relief; Munro et al. [12] proposed a theoretical method for determining
a set of profile modifications that gives a smooth transmission error curve, when the module of the gear is
larger than 5mm; Cai and Hayashi [13] developed an optimization technique by means of minimization of the
equivalent exciting force; Matsumura et al. [14] and Rouverol [15] defined new methodologies to eradicate
gears noise through profile deviations, respectively for light and high load conditions. Litvin et al. [16] recently
published a paper focused on the effects of misalignement and double-crowning (surface modifications) on the
vibrations of gear drives.

Interesting experiments were carried out by Kahraman and Blankenship [17] who analysed the influence of
the tip relief on spur gears vibrations.

Beghini et al. [18] proposed an iterative method to reduce the peak to peak of the STE: they proposed a
sequential approach, spanning couples of profile modification parameters; therefore, such a method is not an
optimization technique since it is not capable to find either absolute or relative minima.

Fonseca et al. [19] used GAs to get optimal profile modifications of a spur gear pair in order to minimize the
STE. An approximated formulation, based on a cantilever beam model, was used to compute the STE and the
load sharing.

The analysis of the literature shows that, even though several techniques have been developed to improve
the dynamic behaviour of gears, few studies were focused on global optimization approaches.

In the present work an original application of GAs has been developed to get the optimal set of profile
modifications that minimizes either the peak to peak of the STE or its harmonic content. A semi-analytical
FEM approach (software Calyxs [20]) is used to evaluate numerically the STE; this means that the objective
function cannot be defined analytically. Furthermore, the large number of optimization parameters (four or
eight according to the type of modifications) does not allow to sweep out all the domain with a reasonable
computational cost. GAs solve this problem, since they find the optimum with an acceptable number of FEM
calculations.

The optimal solution is checked by means of dynamic simulations; the classical one-degree-of-freedom (dof)
model for spur gear pairs with time-varying mesh stiffness and backlash is considered; the equations are solved
numerically and the dynamic scenario is analysed for a wide range of operating conditions. Such simulations
are performed to clarify the importance of the definition of the objective function. Moreover, a reliability
analysis is carried out in order to verify the robustness of optima obtained with GAs under perturbations due
to manufacturing errors.
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2. Dynamic model

The key point of the present study is the vibration reduction, this is pursued by optimizing the system on
static basis, i.e. minimizing the excitation source due to the static transmission error fluctuation. Therefore, a
dynamic model is needed to check the effectiveness of the optimization on the gear vibration; the model
represented in Fig. 1 is considered to this end. Such model considers spur gears as rigid disks, coupled along
the line of action through a time varying mesh stiffness kðtÞ and a constant mesh damping c; yg1ðtÞ is
the angular position of the driver wheel (pinion), yg2ðtÞ is the angular position of the driven wheel (gear); Tg1ðtÞ

is the driving torque, Tg2ðtÞ is the breaking torque; Ig1 and Ig2 are the rotary inertias; dg1 and dg2 are the
base diameters.

According to the literature [21] the relative dynamics of gears along the line of action can be represented by
the following equation of motion:

me €xðtÞ þ cð _xðtÞÞ þ kðtÞf 1ðxðtÞÞ þ kbsðtÞf 2ðxðtÞÞ ¼ TgðtÞ, (1)

where ð�Þ� ¼ dð�Þ=dt, me is the equivalent mass:

me ¼
d2

g1

4Ig1
þ

d2
g2

4Ig2

 !�1
(2)

TgðtÞ is the equivalent applied preload:

TgðtÞ ¼ me

dg1Tg1ðtÞ

2Ig1
þ

dg2Tg2ðtÞ

2Ig2

� �
(3)

Tg2ðtÞ ¼ Tg1ðtÞðdg2=dg1Þ and Tg1ðtÞ are assumed to be constant.
The dynamic transmission error xðtÞ along the line of action is defined as

xðtÞ ¼
dg1

2
yg1ðtÞ �

dg2

2
yg2ðtÞ (4)

kbsðtÞ is the back side contact stiffness; it is to note that such kind of contact is rarely observed in the case of
high speed and high loads, it is considered here for completeness.

Smoothing backlash functions are considered in order to simulate clearances:

f 1ðtÞ ¼
1
2
½ðxðtÞ � bÞf1þ tanh½lðxðtÞ � bÞ�g�,

f 2ðtÞ ¼
1
2
½ðxðtÞ þ bÞf1þ tanh½�lðxðtÞ þ bÞ�g�, (5)

where 2 b is the backlash along the line of action and l is the shape parameter ðl ¼ 108Þ, the accuracy of
smoothing technique has been proven in Fig. 6 of Ref. [22].

The gear pair mesh stiffness along the line of action is given by

kðtÞ ¼
2Tg1

dg1STEðtÞ
¼

4Tg1

d2
g1dðtÞ

, (6)
Pinion Gear

Tg1

dg1

dg2

Tg2Ig1 Ig2

e (t) k (t)

c

θg2θg1

Fig. 1. Dynamic model of a spur gear pair.
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where

dðtÞ ¼ y1ðtÞ �
dg2

dg1
y2ðtÞ and STEðtÞ ¼

dg1dðtÞ
2

(7)

dðtÞ is the difference between the nominal position of the wheel 1 (pinion) given by the exact kinematics and
the actual position influenced by the teeth flexibility; STEðtÞ is the static transmission error along the line of
action, it depends on time because, during meshing, the reciprocal position of wheels, the contact point and
the number of teeth in contact can change.

Parker et al. [23] described a methodology to compute y1ðtÞ and y2ðtÞ, referred as the rotational dofs of the
pinion and the gear, for small ‘‘rigid-body’’ motions [24]; this approach is followed here for static analyses.

Since no manufacturing errors are included, the mesh stiffness is periodic within a mesh cycle; therefore, it is
expanded in terms of Fourier series:

kðtÞ ¼ k0 þ
XN

j¼1

kj cosðjomt� jjÞ, (8)

where om is the mesh circular frequency, amplitudes kj and phases jj are obtained using the discrete Fourier
transform (DFT); the number of samples n is related to the number of harmonics N ¼ ðn� 1Þ=2; in the
following, n ¼ 15 is considered to ensure enough accuracy in the expansion.

Similarly we have

kbsðtÞ ¼ k0 þ
XN

j¼1

kj cos � jomt� jj þ
sts;1

dg1

� �� �
, (9)

where sts;1 is the thickness of the pinion tooth space at the pitch operating diameter, see Eq. (3.2.32) of
Ref. [21] for details.

A dimensionless form of Eq. (1) is obtained by letting:

on ¼

ffiffiffiffiffiffi
k0

me

s
; z ¼

c

2meon

; t ¼ ont; T̄g ¼
Tg

bmeo2
n

; x̄ ¼
x

b
(10)

and

k̄j ¼
kj

meo2
n

; k̄ðtÞ ¼ 1þ
XN

j¼1

k̄j cos j
om

on

t� jj

� �
,

k̄bsðtÞ ¼ 1þ
XN

j¼1

k̄j cos �j
om

on

tþ jj �
sts;1

dg1

� �
. (11)
3. Profile modifications

Fig. 2(a) shows standard profile modifications on a spur gear tooth, which consist in a removal of material
from the tip (tip relief) or the root (root relief), according to different manufacturing parameters. The ‘‘start
roll angle at tip’’ ats and the ‘‘magnitude at tip’’ magt specify the point on the profile at which the relief starts
and the amount of material removed at the tip radius; ars, magr and are have similar meaning, where the

current roll angle a is given by a ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðd=dg1Þ

2
� 1

q
, see Fig. 2. Typical manufacturing gear processes, such as

grinding, allow to control whether the variation of the removed material is linear or parabolic with respect to
the roll angle. Since the removal of material is measured along the direction normal to the profile, usual
representations of the reliefs are given as deviation from the theoretical involute profile: Figs. 2(c,d) show
examples of linear and parabolic modifications.
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Fig. 2. Representation of profile modification parameters. Tooth shape: (a) linear modifications; (b) parabolic modifications.

K-chart: (c) linear modifications; (d) parabolic modifications.

Table 1

Parameter ranges for the genetic optimization

Parameter Start End

ats Roll angle at operating pitch diameter Roll angle at tip diameter

magt 0 40 mm
ars Roll angle at operating pitch diameter Roll angle at initial point of contact diameter

magr 0 40mm

G. Bonori et al. / Journal of Sound and Vibration 313 (2008) 603–616 607
In the present work the following assumptions are made: (1) the type of profile modification (linear or
parabolic) is chosen before the optimization process and remains unchanged; (2) the ‘‘end roll angle at root’’
are is the roll angle corresponding to the diameter of the initial point of contact along the tooth profile; (3) 2D
plain strain FEM analyses are carried out; therefore, no crowning effects are taken into account.
4. Formulation of the genetic algorithm

The present genetic algorithm is based on a binary encoding of eight parameters, which identify the set of
profile modifications on both pinion and gear profiles. Ranges spanned by each parameter are reported in
Table 1. Such intervals are sampled using 11 bits (2048 samples) for roll angles and 6 bit (64 samples) for
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Fig. 3. Encoding of the profile modifications in a binary string S.
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magnitudes; this sampling allows to obtain a discretization step less than 1mm for the magnitude and less than
2mm for the roll angle diameter d.

The total number of bits needed to encode all parameters is nbits ¼ 68; Fig. 3 shows a graphical
representation of the string. The position of the parameters within the string is set in order to maintain pairs of
correlated variables at the maximum distance from each other; this increases the variation within the
parameter space. For example, the effect of the gear magnitude at tip magt on the STE, is strongly correlated
to the pinion magnitude at root magr, because, during meshing, the pinion root will be in contact with the gear
tip.

Once an initial population of strings is randomly built up for the first trial case, the numerical evaluation of
the STE is performed.

Two different binary codes are now considered: the standard binary code and the Grey code. A general
string S, consisting of nvar substrings si having zi bits, can be decoded into an array X of nvar real
parameters xi.

S ¼ s1s2 . . . snvar ¼ a1a2 . . . am with aj 2 f0; 1g; m ¼
Xnvar
k¼1

zk

X ¼ ½x1; x2; . . . ;xnvar �
T, (12)

The decoding of a substring si can be carried out through the standard binary encoding

xi ¼ x
ð1Þ
i þ

x
ð2Þ
i � x

ð1Þ
i

2zi

Xzi

j¼1

ai�i;j
2j�1 with xi 2 ½x

ð1Þ
i ;x

ð2Þ
i �

i�i;j ¼
Xi�1
k¼1

zi

 !
þ zi � j þ 1, (13)

where x
ð1Þ
i and x

ð2Þ
i define the domain of existence of the i-th variable in a non-constrained problem.

Similarly, for the Grey encoding we have:

xi ¼ x
ð1Þ
i þ

x
ð2Þ
i � x

ð1Þ
i

2zi

Xzi

j¼1

�
zi�j�1

k¼1
ai�

i;k

� �
2j�1 with xi 2 ½x

ð1Þ
i ; x

ð2Þ
i �

i�i;k ¼
Xi�1
k¼1

zi

 !
þ k, (14)

where
L

indicates addition modulo two.
The Grey encoding is a technique for representing integers using the base two; its special feature is that only

one bit changes between the representations of two subsequent integers. According to Bäck et al. [25], this
property increases the performance of GAs during transformations.

The present GA improves solutions by means of a certain number of iterations niter on a population of
npop ¼ 50 strings. The first population is randomly generated; each string is decoded and associated to the
corresponding value of the objective function. This value is called ‘‘Fitness’’, because it is the guideline
parameter, which allows to find better solutions, in the same way as fitness generates the best individuals of a
biological population.
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Fig. 4. Flow chart of the Genetic Algorithm.
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Each iteration is made of three steps: Selection, Crossover and Mutation, see Fig. 4.
The Selection produces a new population by extracting npop strings from the previous one. Extractions are

carried out as in a cheating roulette in which strings having high fitness have higher probability to be
extracted. Here, the probability of extraction of a certain string is defined as the ratio between the string fitness
and the sum of the fitness of all strings within the prior population. A variation of the basic selection
approach, called ‘‘stochastic reminder selection without replacement’’, has been used here because it is less
sensitive to stochastic variations [26].

Once a new population is generated, strings are randomly grouped by two; for each pair a cutting point is
randomly selected; the cutting point can assume a value from 1 to m� 1. The first part of the father string and
the second part of the mother string are combined to obtain the first child string; a second child string is
created with the remaining parts. This process is called Crossover. A peculiarity of the presented approach is
that all strings are used and none is repeated. A crossover probability index pc can be considered in order to
control the number of crossing string pairs, i.e. the velocity of variation of the population. Indeed, the
crossover guarantees variability within high fitness regions.

In order to avoid that some regions are not spanned by the GA, a final step, the Mutation, completes the
algorithm: each bit is changed according to a mutation probability pm.

At the end of each iteration, the best string of the old population replaces the worst string of the new one.
This expedient, called elitism, gives advantages in the case of a large population, by preserving good solutions
from unwanted elimination.

During iterations, the fitness f tends progressively towards a specific value; at the same time, the difference
between the average f̄ and the maximum f max of the fitness, within the population, drops down. All strings
tend asymptotically to the same value, thus drastically reducing the efficiency of the algorithm in selecting the
best string. Furthermore, the fitness must be positive.
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The fitness scaling solves the aforementioned problems by means of a linear transformation:

f 0 ¼ af þ b (15)

coefficients a and b are chosen in order to match the following requirements: the average of the fitness must
remain unaltered and the extraction probability of the string must have the maximum fitness equal to a certain
value cmult:

a ¼
f ð1� cmultÞ

f � f max

; b ¼
f ðf cmult � f maxÞ

f � f max

. (16)

If the minimum of the scaled fitness f 0min is negative, coefficients a and b are recalculated imposing that the
average fitness remains unaltered and f 0min ¼ 0:

a ¼
f

f � f min

; b ¼
f f min

f � f min

. (17)

The limit condition between the previous two cases is evaluated through the following inequality:

f minX
f max � f cmult

1� cmult
. (18)

Since no convergence criteria can be defined for GAs, the evolution of the population during genetic iterations
should be checked. To this purpose, De Jong [27] defined the online performance rON and offline performance
rOFF as follows:

rONðhÞ ¼
1

h

Xj

k¼1

f ðX hÞ with h ¼ 1; . . . niternpop, (19)

rOFFðhÞ ¼
1

h

Xh

k¼1

f �k where f �k ¼ maxff ðX iÞ : i ¼ 1; . . . ; kg, (20)

h ¼ 1; . . . niternpop is an index that counts all strings, without regard to populations.
The online performance represents the mean of the fitness within iterations, the offline performance is the

average fitness of the maxima found at the previous iterations; the latter one is the most suitable parameter to
control the optimization in maximum–minimum problems.

In the present work, both offline and online performances have been checked as a posteriori convergence
criterion.

5. Gear profile optimization

In the present section the GA is applied to optimize the spur gear pair described in Table 2. Note that in the
original case study, profile modifications are not present; in the following it will be referred as case A. In this
case, the natural frequency of the system is on ¼ 3:156� 104 rad=s.

Three different optimizations are performed using the peak to peak value of the STE as objective function
and different values of pc, pm and cmult (cases B, C and D). A fourth optimization (case E) is carried out using
the average of the first seven harmonic components of the STE as objective function. For each case, the
parameters of the GA have been set according to Table 3.

Parameters pc, pm and cmult, for cases B and C, have been taken from literature [27]. For the case D, pc ¼ 1
means that all strings are involved during crossover, while pm has been optimized after some trial simulations.
Simulations with more then 800 iterations show that niter ¼ 100 guarantees sufficient convergence to the
solution.

Table 4 shows the reduction of the STE peak to peak for cases B, C and D with respect to case A: the
algorithm is more efficient using Grey encoding; parabolic (quadratic) modifications are less effective than the
linear one, even though they are much more expensive to manufacture.
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Table 2

Geometrical data for the case study (courtesy of CNH Case New Holland)

Data Pinion Gear

Number of teeth 28 43

Module (mm) 3 3

Pressure angle (deg) 20 20

Base radius (mm) 39.467 60.610

Theoretical pitch radius (mm) 42 64.5

Thickness on theoretical pitch circle (mm) 6.1151 6.7128

Addendum modification (mm) 1.927 2.748

Face width (mm) 20 20

Hob tip radius (mm) 0.9 0.9

Outer diameter (mm) 93.1 139.7

Root diameter (mm) 79.1 126.2

Inner diameter (mm) 40 40

Mass (kg) 0.71681 1.9823

Inertia (kgm2) 0.0008076 0.0047762

Young’s modulus (MPa) 206000 206000

Poisson’s coefficient 0.3 0.3

Centre distance (mm) 111

Backlash (mm) 0.3461

Backlash (2b) on the line of action (mm) 0.312

Backside stiffness phase (rad) 1.594232

Transmission ratio 0.6511

Contact ratio 1.28565

Torque (Tg1) (Nmm) 470000

Damping coefficient (z) 0.01

Table 3

Parameters of the genetic optimization

Case B Case C Case D Case E

Number of strings in the population npop 50

Crossover probability pc 0.6 0.6 1 1

Mutation rate pm 0.033 0.033 0.04 0.04

Multiplier for the fitness scaling cmult 1.5

Number of iterations niter 100

Type of modification Linear Parabolic Linear Linear

Binary code Standard Standard Grey Grey

Objective function Peak to peak of STE Average of harmonics of the STE

Table 4

Peak to peak of the static transmission error

Case A Case B Case C Case D

STE peak to peak (mm) 11.6457 1.73964 2.60228 1.6323

Reduction – 85.06% 77.65% 85.98%

G. Bonori et al. / Journal of Sound and Vibration 313 (2008) 603–616 611
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Fig. 5. Amplitude frequency diagram: case A (grey line); case B (black line). Backward simulation only.
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A dynamic analysis shows that the scenario changes dramatically due to the optimization. In absence of
profile modifications, see Fig. 5 grey line, gears experience the following dynamics: (1) a period doubling (PD)
bifurcation ðom=on ¼ 2:07Þ due to parametric instability, which leads to a huge amplification of oscillation
with contact loosing; (2) fundamental resonance (om=on � 1) having a strongly softening character and
leading to large amplification of oscillation (the nonlinearity means that a contact loosing took place); (3)
peaks at low excitation frequency due to superharmonic resonances related to the presence of higher
harmonics of kðtÞ. After optimizing, in the case B, see Fig. 5 black line, the PD bifurcation completely
disappears and the fundamental resonance is strongly reduced. Resonances at low frequencies are reduced as
well; in this case the improvement is smaller than in the case of the fundamental resonance.

Using parabolic profile modifications, case C, the dynamic performance is worst than the linear
modifications, Fig. 6; such behaviour is not surprising in the view of the peak to peak of the STE, Table 4.
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In particular, even if the parametric instability disappears, there is contact loosing at om=on ¼ 0:5 and all the
superharmonic resonances lead to higher amplitudes.

Using Grey encoding and linear profile modifications leads to satisfactory results, which are comparable to
the case B on the average. Indeed, there is an improvement at low frequencies, Fig. 7, even though the
principal resonance amplitude is a bit larger; however, no contact loosing is observed as well as parametric
instability.

Using the harmonic content of kðtÞ as objective function leads to the best result on the average. Indeed, the
parametric instability disappears, similarly to the other cases, and the amplitude of oscillation is smaller than
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Table 5

Optimal profile modifications according to optimizations: cases D and E

Case D Case E

Pinion Gear Pinion Gear

Tip relief

ats (deg) 31.504 30.036 31.941 29.498

magt (mm) 0.020317 0.023492 0.003809 0.014603

Root relief

ars (deg) 19.943 24.448 24.698 24.337

are (deg) 14.433 20.576 14.433 20.576

magr (mm) 0.002539 0.006349 0.021587 0.025397
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0:12 b over the whole frequency range (Fig. 8); there is a direct proportionality between the harmonic content
of the mesh stiffness and the amplitude of resonance peaks, which reflects the linear behaviour of the gear pair
with profile modifications.

It must be noticed that the optimized mesh stiffness is essentially an even function (small box in Fig. 8): all
simulations (cases B–E) lead to high even frequencies in the spectrum of the mesh stiffness for the optimized
solution. Since the mesh stiffness function origin is located at the pitch point, an even shape corresponds to a
symmetric behaviour between the tooth approach and recession. In this sense, the genetic optimization
technique yields to similar results for uncorrelated configurations such as ‘‘approach’’ and ‘‘recession’’.

Table 5 summarizes the profile modification parameters for the two best cases: the two sets of parameters
are apparently quite different from each other; however, they have a sort of symmetry that can be physically
explained considering that the reduction of tip relief on the pinion is compensated by an increasing of root
relief on the gear. In other words, the set D concentrates modifications on the tip and set E concentrates
modifications on the root.

Profile modifications, proposed in Table 5, are acceptable also from a technological point of view; indeed,
that gear manufacturing tolerances, such as ‘‘K’’ charts, are usually of the order of some micrometre.

6. Reliability analysis

The GA methodology defines an optimal set of theoretical profile modifications; however, in actual gears,
manufacturing errors cannot be avoided and represent a perturbation of the optimum; an important and final
step of a reliable optimization process is to evaluate how much the objective function is sensitive to
perturbations, i.e. the robustness of the process.

GAs are not suitable to find strongly localized minima, because they perform a search preferably in high
fitness area; if the minimum is strongly localized, it is not surrounded by a high fitness neighbourhood and
probably it will not be selected. In order to prove this statement, a statistical search is carried out in the
neighbourhood of the optimal solution, choosing random errors for each parameter. The error for the ith
parameter is randomly set with a normal distribution around the optimum, considering suitable standard
deviations si, such errors are chosen in order to have more than 90% of gears within the tolerance for the
single parameter. Here tolerances are 1mm for magnitudes and 0:2	 for roll angles. The reliability analysis is
carried out on a population of 100 pinion-gear pairs with random errors. Starting from the optimal
configuration ‘‘D’’, which has a STE peak to peak equal to 1:63mm, the result of the analysis is a mean value
equal to 2:1mm and a standard deviation equal to 0:29mm; none of the 100 configurations has a peak to peak
smaller than the optimum found with GAs, this confirms the good performance of the algorithm.

Assuming that the probability distribution of the peak to peak increase is Gaussian (the perturbation is
given in the neighbourhood of the optimum), the probability of having such increase within a certain range is
estimated; results are reported in Table 6. As expected from GAs, the optimum is reliable; indeed, 6.5% of
samples do not give any appreciable variation of the objective function, almost the 80% of samples give a
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Table 6

Reliability analysis

Maximum peak to peak increase (%) Maximum peak to peak ðmmÞ Probability (%) Peak to peak reduction (%)

o 0 1.6323 6.5 486.0

0–20 1.9588 28.2 86.0–83.2

20–40 2.2852 41.8 83.2–80.4

40–60 2.6117 20.2 80.4–77.6

60–80 2.9381 3.1 77.6–74.8

80–100 3.3265 0.1 74.8–71.4
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reduction of performances less than 60%. It is to note that an increasing of peak to peak of 60% is not a bad
result; indeed, such increasing with respect to the optimum is still a 70% less than the non optimized case.

7. Conclusions

In the present study, an optimization approach based on Genetic Algorithms is proposed to improve gear
dynamic performances toward noise reduction. Linear and parabolic profile modifications are considered and
compared by means of several optimization strategies based on static nonlinear FEM analysis.

Genetic algorithms are proven to be an effective optimization tool to design reliable profile modifications
for reducing the gears vibration, i.e. they allow a strong reduction of the vibration amplitude over a wide
frequency range, as proven by dynamic analyses.

The reliability analysis shows that optima found by the present GA are robust in terms of uncertainties in
the manufacturing parameters.
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