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Abstract

The acoustic pressure field inside finite or infinite, fluid-filled waveguides with surfaces having distributed small

deviations (corrugation, roughness, facade irregularities in streets and so on) from the regular shape (smooth surface) is

studied, using an approach called shape profile model. In this approach, the acoustic field is obtained from the coupling

between Neumann modes of the regularly shaped surface that bounds outwardly the perturbed surface of the waveguide

(i.e. on outer side of the perturbed surface). The effect of the rough boundaries on the acoustic field is modelled by an

operator acting on the acoustic pressure, which takes into account both the depth and the slopes of the profile. Two

coupling mechanisms are identified, namely the ‘‘bulk’’ or ‘‘global’’ modal coupling and the ‘‘boundary’’ or ‘‘local’’ modal

coupling. This model departs from those available until now because it does not make use of the so-called multimodal

approach: it lies on the integral formulation in the frame of a modal approach using a unique set of eigenfunctions, in order

to obtain the pressure field inside the wave guide as a coupling between modes.

r 2007 Elsevier Ltd. All rights reserved.
1. Introduction

The literature abounds with many papers in which topics involving acoustic fields within both closed
region and finite or infinite waveguides are of principal focus. Nowadays, among others, there exists an
understanding that acoustic modes coupling occurs in fluid-filled, irregular-shaped cavities, which provides
methodology for predicting acoustical properties of enclosed sound fields [1–10]. The mathematical methods
used rely on standard integral formulation and modal analysis, and the physical mechanisms, which have been
investigated until now are those related to the nature of the modes coupling in the frequency domain.

Regarding the analytical solutions for describing the acoustic coupling in fluid-filled, irregular-shaped
waveguides, when these irregularities are distributed along the walls of the guides, papers are concerned with
effect of roughness surfaces, corrugated walls, surfaces involving periodicities, metal-strip grating, and so on.
Analytical, numerical and experimental methods are involved in these studies [11–29]. Most of the analytical
works deal primarily, among others, with (i) the description of the roughness and its effects on plane waves,
ee front matter r 2007 Elsevier Ltd. All rights reserved.
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Nomenclature

âm amplitude of the mode m in the modal
expansion of the acoustic pressure p̂ðr; tÞ

Âm,
~̂
Am amplitude of the mode m in the modal

expansion of the acoustic pressure for a
monochromatic source, function of x1, x2

or of x1, see Eqs. (20a) and (26d)
Â
½n�

m nth-order perturbation expansion for
Âm

Â
ðnÞ

m nth-order correction term, see Eq. (39)
Bmm see Eq. (13a): Bmm ¼ jbmmjZ0ðx1;x2Þ þ

bmmZd ðx1;x2Þ

c0 adiabatic speed of sound
C0

m amplitude of an incoming wave, created
by an acoustic source of strength Ŝm

d thickness of the inner waveguide sur-
rounded by the corrugated waveguide
considered

DJ domain x1 2 ½0;þ1½, x2 2� �1;þ1½
and 0px3pd

f frequency
f̂ ðr; tÞ source function
Ĝm coefficient of the expansion of the modal

Green function for the quantum number
m

H H ¼ H0+Hd

H0, Hd depths of the small shape deviations at
x3 ¼ 0 and d

k0 wavenumber k0 ¼ o/c0
km eigenvalue such that km ¼ mp/d, m 2 N

kx1m, kx1m wavenumbers such that k2
x1m ¼

k2
x1m ¼ k2

0 � k2
m, see Eqs. (20d) and (26b)

‘ total length of the corrugation
m quantum number of the mode considered
n0, nd local unit vectors normal to the real

surface of the waveguide at the points
x3 ¼ H0 and x3 ¼ d�Hd, and pointing
outside the fluid

N number of teeth in a profile
Nmm see Eq. (10), Nmmðx1;x2Þ ¼

R d�Hd
H0

cm

ðx3Þcmðx3Þdx3

O(r;t) operator Oðr; tÞ ¼ �fðqx1
HÞqx1

þ

ðqx2
HÞqx2

g

p̂ðr; tÞ acoustic pressure

Q̂m strength of the source Ŝm located at
x1 ¼ 0 and x2 ¼ 0, see Eq. (38)

r position vector with components x1, x2

and x3

rJ vector with components x1 and x2

ŝm inner product of the source function and
the eigenfunction cm

Ŝm,
~̂
Sm inner product of the monochromatic

source function and the eigenfunction
cm, function of x1, x2 or of x1

t time
x1, x2, x3 coordinates, x3 being the transverse

coordinate
z0, zd total depths of the small shape devia-

tions, respectively, on the walls x3 ¼ 0
and d

Z(x1) integral of Z(x1) from 0 to x1

aðjÞmm operator, see Eq. (18b)
bmm see Eq. (13b), bmm ¼ ð�1Þ

mþmffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2� dm0Þð2� dm0Þ

p
g
_
mm coupling operator, see Eq. (18a)

d thickness of the waveguide which en-
closes the corrugated waveguide consid-
ered. d ¼ d+z0+zd

dmn Kronecker tensor
d(x) Dirac delta function
DJ Laplacian for x1 and x2: Dk ¼ q2x1x1

þ

q2x2x2
Z, ~Z Z ¼ Z0+Zd, function of x1, x2 or of x1
Z0, Zd ratio of the depths H0, Hd to the

thickness d: Z0 ¼ H0=d, Zd ¼ Hd=d
l acoustic wavelength, l ¼ 2p=k0

lx1m acoustic wavelength along the x1-axis (or
x1-axis), lx1m ¼ 2p=kx1m

L length of the spatial period of a periodic
profile

m quantum number of a mode
x1(x1) new variable, function of x1, see Eqs. (23)

and (24a)
cm(x3) orthogonal and normalised eigenfunc-

tions
o angular frequency
$m see Eq. (26a)
^ complex quantity
� quantity function of x1 and no more of x1
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(ii) the description of plane-wave scattering states and their consequences, (iii) the method of multiple scales to
analyse the modal coupling, (iv) the multimodal analysis; in all cases, the acoustic field is investigated both in
fluid and solid media. But the analytic procedure whereby such perturbed acoustic field in fluid medium can be
expressed as a sum over the unique set of the eigenmodes of the regular-shaped waveguide (not over series of
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Fig. 1. Fluid plate between two perturbed boundary surfaces.
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as many sets of eigenfunctions as it is necessary to follow the shape of the profile of the real
nonhomogeneously shaped waveguide), this sum accounting for a continuously distributed modes coupling
(along a distributed slight geometrical perturbation) through a method relying on the Green’s theorem and the
associated integral formulation, provides situations not considered so far to our knowledge.

Therefore, in the present paper, the acoustic wave propagation in infinite waveguides with surfaces having
small deviations from the regular shape is dealt with (see an example of such waveguide sketches in Fig. 1a,
showing the two-dimensional (2D) corrugation lying on the planes set at x3 ¼ 0 and d, the propagation taking
place in the fluid-filled waveguide between these planes). The study is extensively analytical and relies on
standard integral formulation to describe the nonlocal coupling between modes of a guide with regularly
shaped surface (smooth surface) that bounds the perturbed surface, the nonhomogeneously shaped surface
being finite in extent. The nonlocal effect of the surface perturbation is described by the integral formulation,
introduced through the Green’s theorem; the modal coupling created by the surface perturbation is
emphasised by the modal analysis, establishing an explicit means which can highlight the properties of the
acoustic field in many situations (as indicated below). Despite the apparent simplicity of the model,
the analytical results can be complicated functions of the parameters, which govern the behaviour of the
acoustic field.

In the approach used, called ‘‘shape profile model’’, the boundaries are modelled as geometrically perturbed
surfaces, assuming Neumann (acoustically hard surface) conditions. The acoustic field is obtained from the
coupling between Neumann modes of the regularly shaped surface that bounds outwardly (i.e. on outer side of
the perturbed surface) the perturbed surface of the waveguide. Two coupling mechanisms are identified,
namely the ‘‘bulk’’ or ‘‘global’’ modal coupling and the ‘‘boundary’’ or ‘‘local’’ modal coupling [7]. The former
is related to the coupling of modes throughout the section of the guide (arising from the nonorthogonality of
the modes in the perturbed lateral dimensions of the guide due to the depth of the surface perturbation), while
the latter is related to the coupling through the slope and the depth of the surface perturbation. The behaviour
of the acoustic pressure field is determined by these two mechanisms when propagating along the axis of the
waveguide. The continuously distributed modes coupling along the distributed slight geometrical perturbation
is accounted for in using method relying on integral formulation and modal analysis. Several applications to
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guided waves propagating between two parallel walls, having regularly or randomly distributed shape
perturbations, are presented, showing results expected (or known).

The main purpose of the paper is to contribute at providing an understanding of the physical phenomena
involved and a tractable model to calculate the mode coupling due to small shape deviation of the wall of the
waveguides (see Fig. 1a, the motion of the fluid being assumed to be inviscid and irrotational). This model
departs from those available until now because it does not make use of the so-called multimodal approach: it
lies on the integral formulation in the frame of a modal approach using a unique set of eigenfunctions, in order
to obtain the pressure field inside the wave guide as a coupling between modes. Several examples are discussed
to highlight the main properties of the acoustic fields considered. It is worth noting that the analytical
formalism is applicable not only to infinite, semi-infinite or finite waveguide of any global shape (depending on
the Green’s function chosen in the integral formulation) as long as the nonperturbed eigenmodes are known,
but also to closed cavities having small or large shape deviations [1–9].
2. The shape profile model

The waveguide is assumed to be bounded by two parallel plates having 2D shape perturbations (three-
dimensional problem, Fig. 1a). The fluid layer (sometimes called fluid plate), with regularly shaped surfaces
x3 ¼ 0 and d, which encloses the corrugated waveguide considered, is characterized by its thickness d, the inner
plate surrounded by the corrugated waveguide is characterized by its thickness d; then, denoting the total
depths of the small shape deviations z0 and zd, respectively, on the walls x3 ¼ 0 and d, gives d ¼ d+z0+zd

(Fig. 1b). The depth of the small shape deviations, i.e. the distance between the outer plates with regular shape
(thickness d) and the shape perturbed walls are, respectively, denoted H0(x1, x2) and Hd(x1, x2) at x3 ¼ 0 and
x3 ¼ d, or H(x1, x2, x3 ¼ 0, d). Thus, the coordinates of the real boundaries of the shape perturbed plates are
given by

x3 ¼ H0ðx1; x2Þ and x3 ¼ d�Hdðx1; x2Þ. (1)

Since the coordinates x1, x2 and x3 are dependent on each other on the perturbed surface, the acoustic field
cannot be analytically resolved into independent components in the x1, x2 and x3 directions. As a result, the
acoustic pressure field in the waveguide with surfaces having distributed small deviations can be expressed as
the eigenfunction expansion where the orthogonal eigenfunctions are solution of the Neumann boundary
problem in the regularly shaped waveguide of which surfaces bound outwardly the perturbed waveguide.
Therefore, rigid-walled modes of the bounding regular-shaped cavity (which encloses the waveguide with
perturbed surface) are used to express the mode coupling which occurs in the region bounded by the perturbed
surface.
2.1. The boundary conditions

The boundary conditions satisfied by the acoustic field on the perturbed surface of the waveguide are given
by the requirement that its normal derivative on the surface vanishes at every point of the boundary. Denoting
n0 the local unit vector normal to the real surface of the waveguide at the point x3 ¼ H0(x1, x2) and pointing
outside the fluid, the normal derivative defines as qn0 ¼ n0 � r takes the classical form

qn0 ¼ n0 � r ¼ �
1

N0
½�ðqx1

H0Þqx1
� ðqx2

H0Þqx2
þ qx3

� (2a)

with

N0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðqx1

H0Þ
2
þ ðqx2

H0Þ
2

q
. (2b)

In the same manner, denoting nd the local unit vector normal to the real surface of the waveguide at the
point x3 ¼ d�Hdðx1;x2Þ and pointing outside the fluid, the normal derivative defines as qnd ¼ nd � r takes
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the classical form

qnd ¼ nd � r ¼
1

Nd

½ðqx1
Hd Þqx1

þ ðqx2
HdÞqx2

þ qx3
� (3a)

with

Nd ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðqx1

HdÞ
2
þ ðqx2

HdÞ
2

q
. (3b)

Thus, the Neumann boundary conditions can be written in the form

qn0p̂ ¼ 0

i:e: qx3
p̂ ¼ ½ðqx1

H0Þqx1
þ ðqx2

H0Þqx2
�p̂ (4)

and qnd p̂ ¼ 0

i:e: qx3
p̂ ¼ �½ðqx1

HdÞqx1
þ ðqx2

HdÞqx2
�p̂. (5)

Generally speaking, these Neumann conditions (4) and (5) can be written as follows:

qx3
p̂ ¼ Oðr; tÞp̂;x3 ¼ H0ðx1;x2Þ and x3 ¼ d�Hdðx1;x2Þ, (6a)

where the operator Oðr; tÞ is defined as

Oðr; tÞ ¼ �fðqx1
HÞqx1

þ ðqx2
HÞqx2

g (6b)

with the sign ‘‘+’’ for x3 ¼ H0ðx1;x2Þ at the upper interface and the sign ‘‘�’’ for x3 ¼ d�Hdðx1; x2Þ at the
lower interface.

2.2. The fundamental problem

In the problem addressed here, it is assumed that sources which are set at the input of the considered
domain (at the entrance x1 ¼ 0 of the corrugated waveguide) are such as they create an acoustic field with a
given profile in the x3-direction, or are incident propagating wave coming from x1-�N. Therefore, the
acoustic pressure denoted p̂ðr; tÞ is governed by the set of equations including the propagation equation and
the boundary conditions, which is written as

Dk þ q2x3x3
�

1

c20
q2tt

� �
p̂ðr; tÞ ¼ �f̂ ðr; tÞ; H0px3pd�Hd ; 8rk 2 Dk, (7a)

qx3
p̂ðr; tÞ ¼ Oðr; tÞp̂ðr; tÞ; x3 ¼ H0ðx1; x2Þ and x3 ¼ d�Hdðx1; x2Þ; 8rk 2 Dk, (7b)

Sommerfeld condition when Dk is infinite, (7c)

where Dk ¼ q2x1x1
þ q2x2x2

, q2tt and qxi
stand, respectively, for q2=qt2 and q=qxi, the source function f̂ ðr; tÞ being

assumed to generate an incoming wave at the entrance of the domain of interest Dk (Dk is the domain
x1 2 ½0;þ1½, x2 2� �1;þ1½), x1 and x2 being the two components of the vector rk, and x1, x2 and x3 the
components of the vector r. The operator O(r,t), which represents the effect of the shape perturbations of the
boundaries (Eq. (6b)) is here a complicated operator acting on the spatial coordinates.

2.3. The eigenvalue problem

The solution can readily be expressed in terms of one-dimensional eigenmodes of the three-dimensional
waveguide bounded by the regularly shaped, parallel, and plane surfaces set at x3 ¼ 0 and d on the outer side
of the perturbed surfaces (Fig. 1b), using the modal wave functions that are solutions of the homogeneous
Helmholtz equation subject to Neumann boundary conditions, namely

ðq2x3x3
þ k2

mÞcmðx3Þ ¼ 0; 0px3pd, (8a)
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qx3
cmðx3Þ ¼ 0; x3 ¼ 0 and x3 ¼ d, (8b)

where the eigenvalues km and the eigenfunctions (orthogonal and normalised) cm are given, respectively, by

km ¼ mp=d; m 2 N (9a)

and

cmðx3Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2� dm0Þ=d

p
cosðkmx3Þ, (9b)

dm0 being the Kronecker tensor.
The construction of solutions given below in terms of modal wavefunctions makes use of the following

integral (over the range H0px3pd�Hd):

Nmmðx1; x2Þ ¼

Z d�Hd

H0

cmðx3Þcmðx3Þdx3; (10)

which is given, to the first-order of the small dimensionless quantities (see details in Appendix A):

Z0ðx1;x2Þ ¼ H0ðx1;x2Þ=d (11a)

and

Zdðx1;x2Þ ¼ Hd ðx1;x2Þ=d (11b)

by

Nmmðx1;x2Þ ¼ dmm � Bmm (12)

with

Bmm ¼ jbmmjZ0ðx1;x2Þ þ bmmZd ðx1;x2Þ. (13a)

bmm being given by

bmm ¼ ð�1Þ
mþm

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2� dm0Þð2� dm0Þ

p
. (13b)

It is noteworthy that Nmmðx1;x2Þ is not a scalar product of eigenfunctions, solutions of the set of Eq. (8),
because the integration lies on the interval [H0; d�Hd] and not on the interval [0;d].
2.4. Modal formulation

Expanding the pressure field on the eigenfunctions (9), namely,

p̂ðx1;x2;x3; tÞ ¼
X
m

âmðx1;x2; tÞcmðx3Þ (14)

multiplying Eq. (7a) by the eigenfunction cm(x3), and integrating over the range H0px3pd�Hd :Z d�Hd

H0

cmðx3Þ Dk þ q2x3x3
�

1

c20
q2tt

� �
p̂ðx1;x2;x3; tÞdx3

¼ �

Z d�Hd

H0

cmðx3Þf̂ ðx1; x2; x3; tÞdx3, ð15Þ

solution of the posed problem for the acoustic pressure field is subsequently achieved with the help of Green’s
integral theorem which states

X
m

Nmmðx1;x2Þ Dk � k2
m �

1

c20
q2tt

� �
âmðx1;x2; tÞ ¼ �ŝmðx1;x2; tÞ �

X
m

ĝmmðx1;x2Þâmðx1; x2; tÞ; (16)
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where

ŝmðx1;x2; tÞ ¼

Z d�Hd

H0

cmðx3Þf̂ ðx1;x2;x3; tÞdx3, (17)

ĝmmðx1;x2Þ ¼ �fað1Þmmqx1
þ að2Þmmqx2

þ k2
mBmmg (18a)

with

aðjÞmmðx1; x2Þ ¼ jbmmjqxj
½Z0ðx1; x2Þ� þ bmmqxj

½Zdðx1; x2Þ� (18b)

bmm and Bmm being given, respectively, by Eqs. (13b) and (13a).
Eq. (16) indicates what are the mechanisms involved in the modes coupling. Two coupling mechanisms can

be identified, namely the ‘‘bulk’’ or ‘‘global’’ modal coupling and the ‘‘boundary’’ or ‘‘local’’ modal coupling
[7]. The former, expressed in the left-hand side of Eq. (16) by the term Nmm, is related to the coupling of modes
throughout the section of the guide (arising from the nonorthogonality of the modes in the perturbed lateral
dimensions of the guide due to the depth of the surface perturbation), while the latter, expressed in the right-
hand side of Eq. (16) by the term g

_
mm, is related to the coupling through the slope and the depth of the surface

perturbation itself. The behaviour of the acoustic pressure field is determined by these two mechanisms when
propagating along the axis of the waveguide, the continuously distributed modes coupling along the
distributed slight geometrical perturbation being accounted for in using method relying on integral
formulation.

Taking expression (12) for Nmmðx1;x2Þ into Eq. (16), gives, for a harmonic motion (angular frequency
o ¼ k0c0):

ðDk þ k2
x1mÞÂmðx1; x2Þ ¼ �Ŝmðx1;x2Þ þ bmmZðx1;x2ÞðDk þ k2

x1mÞÂmðx1;x2Þ

�
X
mam

Nmmðx1;x2ÞðDk þ k2
x1mÞÂmðx1;x2Þ �

X
m

ĝmmðx1;x2ÞÂmðx1; x2Þ, ð19Þ

where

âmðx1;x2; tÞ ¼ Âmðx1;x2Þ expðþiotÞ, (20a)

ŝmðx1; x2; tÞ ¼ Ŝmðx1;x2Þ expðþiotÞ, (20b)

Zðx1;x2Þ ¼ Z0ðx1;x2Þ þ Zdðx1; x2Þ (20c)

with

k2
x1m ¼ k2

0 � k2
m. (20d)

The complete resolution of Eq. (19), using integral formulation and inter-modal coupling, is given in
Section 4. In order to highlight the basic phenomena, an approximate qualitative solution, called ‘‘monomode
approach’’, is presented in Section 3.

3. Approximate monomode approach: highlighting of basic phenomena

This first approach is just a qualitative model in order to provide (in particular) a very simple analytical
solution, which highlights the basic scattering phenomena on the irregularities.

3.1. Monomode, one-dimensional propagation equation

In this section, the mode labelled m is assumed to be the only one which is created by an acoustic source of
strength Ŝm (Ŝmam ¼ 0) set at x1o0 i.e. on the left of the input of the corrugation (Fig. 1), the amplitude
of this incoming wave at x1 ¼ 0 being denoted C0

m. This mode propagates inside a waveguide bounded
by surfaces with one-dimensional corrugation (2D problem, x3 2 ½H0; d�Hd �). Therefore, when the
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cross-coupling between any mode m and the mode m (mam) is neglected, Eq. (19) gives, outside the sources,

½1� bmmZðx1Þ�ðDk þ k2
x1mÞÂmðx1Þ ¼ �ĝmmðx1ÞÂmðx1Þ. (21)

Then, reporting expression (18) for the term ĝmmðx1Þ, Eq. (21), truncated to include only the first-order
perturbation expansion with respect to the dimensionless small quantity Zðx1Þ, becomes

fDk � bmmqx1
½Zðx1Þ�qx1

þ k2
x1m � k2

mbmmZðx1ÞgÂmðx1Þ ¼ 0. (22)

It is convenient to change the variable x1 as follows:

x1 ¼
Z x1

0

exp

Z x0
1

0

bmmqx00
1
½Zðx001Þ�dx001

" #
dx01 (23a)

i.e.

x1 ¼
Z x1

0

exp½bmmZðx
0
1Þ�dx01 (23b)

because Z(0) ¼ 0. Expanding the exponential function to the first-order of the small parameter Zðx01Þ, the
change of variable reduces to

x1 � x1 þ bmmZðx1Þ, (24a)

where

Zðx1Þ ¼

Z x1

0

Zðx01Þdx01 (24b)

and then, Eq. (22) takes the form

ðq2x1x1 þ k2
x1m½1þ$m ~Zðx1Þ�Þ

~̂
Amðx1Þ ¼ 0, (25)

where

$m ¼ �ð2� dm0Þð2þ k2
m=k2

x1mÞ, (26a)

k2
x1m ¼ k2

x1m ¼ k2
0 � k2

m, (26b)

~Zðx1Þ ¼ Z½x1ðx1Þ�, (26c)

~̂
Amðx1Þ ¼ Âm½x1ðx1Þ�. (26d)

In some circumstances, namely when considering interior problems (i.e. finite waveguides or cavities), losses
must be taken into account when the frequency is monitored to make the field resonant (here when kx1m ¼ 0)
because the solutions must behave accurately, and therefore it is consequent to express adequately the
dissipation processes, namely the viscous and thermal effects in the boundary layers near the rigid walls as well
as a priori in the bulk of the cavity. But, in practice, such resonant field will not be used, because the only
propagative modes would be relevant for the characterisation of the roughness. Therefore, subsequently, it is
assumed that kx1m is a finite positive quantity (even if it is not necessary in this section because, in fact, this
factor does not appear in the denominator of Eq. (25)).

3.2. Approximate solution

The analytical expression of the amplitude
~̂
Amðx1Þ of the approximate pressure field, solution of Eq. (25), is

truncated to include only the first-order expansion with respect to the small quantity ~Zðx1Þ. This approximate

solution, denoted
~̂
A
½1�

m ðx1Þ, can be written as

~̂
A
½1�

m ðx1Þ ¼
~̂
A
ð0Þ

m ðx1Þ þ
~̂
A
ð1Þ

m ðx1Þ ¼
~̂
A
ð0Þ

m ðx1Þ½1þ �ðx1Þ�, (27)
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where the function
~̂
A
ð0Þ

m ðx1Þ, which can be considered as the zero-order expansion with respect to ~Zðx1Þ and thus
is solution of the following equation:

ðq2x1x1 þ k2
x1mÞ

~̂
A
ð0Þ

m ðx1Þ ¼ 0 (28)

takes the form

~̂
A
ð0Þ

m ðx1Þ ¼ C0
m expð�ikx1mx1Þ, (29)

C0
m being here a constant given by the amplitude of the incoming wave at x1 ¼ x1 ¼ 0.
Then, the first-order term which appears in expression (27)

~̂
A
ð1Þ

m ðx1Þ ¼
~̂
A
ð0Þ

m ðx1Þ�ðx1Þ (30)

is the solution of the ordinary differential equation

d

dx1

d

dx1
� 2ikx1m

� �
�ðx1Þ ¼ �k2

x1m$m ~Zðx1Þ (31)

leading to, for a wave propagating in the direction of the x1-axis,

d

dx1
� 2ikx1m

� �
�ðx1Þ ¼ F ðx1Þ, (32)

where

F ðx1Þ ¼ �k2
x1m$m

~Zðx1Þ þ C1 (33a)

with

~Zðx1Þ ¼
Z x1

0

~ZðxÞdx (33b)

C1 being an arbitrary constant.
The general solution of the first-order equation (32), which represents here more particularly a counter-

propagating wave, is given by

�ðx1Þ ¼ expð2ikx1mx1Þ
Z x1

þ1

F ðxÞ expð�2ikx1mxÞdxþ C2 expð2ikx1mx1Þ, (34)

C2 being another arbitrary constant.
If the walls x3 ¼ 0 and x3 ¼ d are perfectly flat (no small deformation, i.e. ~Zðx1Þ ¼ 0 everywhere), this first-

order term must vanish (�ðx1Þ ¼ 0), and then C1 ¼ 0 and C2 ¼ 0.
Finally, after integration by parts, it follows

~̂
A
½1�

m ðx1Þ

C0
m

¼ 1�
i

2
kx1m$m

Z x1

0

~ZðxÞdx
� �

expð�ikx1mx1Þ

�
i

2
kx1m$m

Z ‘

x1

~ZðxÞ expð�2ikx1mxÞdx

" #
expðþikx1mx1Þ, ð35Þ

~ZðxÞ vanishing for x4‘ (‘ denoting the total length of the corrugation). Note that this approximate result
assumes that the square brackets of the last term of Eq. (35) is much smaller than one.

This result shows that the primary wave expð�ikx1mx1Þ, created by the acoustic source, is slightly scattered
from each point of the perturbed surface, which thus creates in the same mode secondary waves propagating,
respectively, in the same direction as the primary wave and opposite (Fig. 2). This approximate approach is
satisfactory when considering only one mode, but in the usual situations, inter-modal coupling must be
taken into account: this is the aim of Section 4 to provide such more accurate model. Nevertheless, result (35)
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Fig. 2. Scattering phenomena of a single mode on the corrugation. The primary wave (stationary in the x3-direction) propagates in the
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Fig. 3. Fluid plate between two rigid walls: a wall being plane and a wall having regularly distributed corrugations (sawtooth profile).
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conveys interpretations of well-known physical phenomena that it is interesting to highlight here, from this
very simple approach (see Section 3.3).

3.3. Phonon relation

In the case of a one-dimensional periodically corrugated surface (see an example in Fig. 3), relationships
between the acoustic wavelength along the x1-axis (or x1-axis), i.e. lx1m ¼ 2p=kx1m ¼ 2p=kx1m (see Eq. (26b))
and the length of the spatial period (denoted L) appear, involving a phase matching which emphasises the
interference processes as shown in the following (this law of interaction between the acoustic wave and the
periodic grating could be interpreted as a law of conservation of the phonon momentum in the dual space as
sometimes mentioned in the literature [19]). Expanding the expression ~ZðxÞ of the periodically corrugated
surface in Fourier series, the relevant point is that each sinusoidal term of the expansion contributes to the
creation of secondary waves, which are represented in Eq. (35) by products of terms of the form expð�in2p=LÞ
with the terms expð�ikx1mx1Þ. Then, for a finite length ‘ of corrugation, the integration of the second term of
the right-hand side of Eq. (35) leads to an amplitude of the secondary wave propagating backward
proportional to (for the fundamental n ¼ 1) 1=ð2kx1m � 2p=LÞ, showing therefore a very strong coupling
between the primary wave (wavenumber kx1m) and the counter-propagating secondary wave (wavenumber
�kx1m) when satisfying the condition (phonon relation)

2kx1m � 2p=L ¼ 0. (36)

Moreover, the integration of Eq. (35) leads also to arguments of exponential functions of the forms

kx1m and kx1m � 2p=L, (37a)
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which can be combined together as follows to highlight the periods appearing in the result given in Section 5:

�ð2kx1m � 2p=LÞ=2 and p=L. (37b)

4. Inter-modal model using approximate integral solution

The solution of problem (7) can be obtained by carrying out successive approximations of Eq. (19), using at
each stage the integral formulation with an appropriate Green’s function, denoted Ĝmðx1;x2; x01;x

0
2Þ.

A monochromatic source (angular frequency o) is assumed to be flush mounted at x1 ¼ 0 and x2 ¼ 0. Its
strength, related to the mth mode, is given by

Ŝmðx1;x2Þ ¼ Q̂mdðx1Þdðx2Þ, (38)

where d(x) is the Dirac delta function. This function Ŝmðx1; x2Þ vanishes for the modes, which are not created
by the source, thanks to the orthogonality of the eigenfunctions considered and the source function f̂ .

Using an iterative method to express the amplitude of each mode Âmðx1;x2Þ, which assumes that the
coupling functions in the right-hand side of Eq. (19) are small quantities of the dimensionless parameters
Z0ðx1;x2Þ, Zdðx1;x2Þ and of their derivatives with respect to the coordinates x1 and x2, thus the nth-order
solution of Eq. (19) for Âmðx1; x2Þ is written as follows:

Â
½n�

m ¼ Â
ð0Þ

m þ Â
ð1Þ

m þ � � � þ Â
ðn�1Þ

m þ Â
ðnÞ

m , (39)

where Â
½n�

m denotes the nth-order perturbation expansion for Âm, Â
ð0Þ

m the zero-order approximation, Â
ð1Þ

m the
first-order correction term, and so on.

The amplitude of each mode Âm being governed by Eq. (19), the nth perturbation expansion Â
½n�

m satisfies the
approximate equation obtained by replacing Âm in the right-hand side of Eq. (19) by its expression reduced to
the ðn� 1Þth order.

Thus, the zero-order approximation satisfies a version of the Helmholtz equation, namely,

ðDk þ k2
x1mÞÂ

ð0Þ

m ðx1;x2Þ ¼ �Ŝmðx1; x2Þ (40a)

and then integral formulation gives

Â
ð0Þ

m ðx1;x2Þ ¼ Q̂mĜmðx1;x2; 0; 0Þ, (40b)

which is the contribution of the mode m to the direct field at the receiving point x1 when the interfaces are
plane rigid walls.

Taking into account this zero-order solution and discarding the second-order terms in the right-hand side of
Eq. (19), the first-order term Â

ð1Þ

m of the perturbation expansion is governed by Eq. (19) with n ¼ 1, namely,

ðDk þ k2
x1mÞ½Â

ð0Þ

m þ Â
ð1Þ

m �ðx1;x2Þ ¼ �Ŝmðx1;x2Þ þ bmmZðx1; x2ÞðDk þ k2
x1mÞÂ

ð0Þ

m ðx1;x2Þ

�
X
mam

Nmmðx1;x2ÞðDk þ k2
x1mÞÂ

ð0Þ

m ðx1;x2Þ �
X
m

ĝmmðx1;x2ÞÂ
ð0Þ

m ðx1;x2Þ. ð41Þ

The expressions of DkÂ
ð0Þ

m ðx1;x2Þ and DkÂ
ð0Þ

m ðx1;x2Þ being required to satisfy Eq. (40a), this Eq. (41) gives
straightforwardly

ðDk þ k2
x1mÞÂ

ð1Þ

m ðx1; x2Þ ¼ �bmmZðx1;x2ÞŜmðx1; x2Þ

�
X
mam

Nmmðx1;x2Þfðk
2
x1m � k2

x1m
ÞÂ
ð0Þ

m ðx1;x2Þ � Ŝmðx1;x2Þg

�
X
m

ĝmmðx1;x2ÞÂ
ð0Þ

m ðx1;x2Þ. ð42Þ

Then, using integral formulation with the appropriate Green’s function Ĝmðx1;x2; x01; x
0
2Þ, assuming that the

wall perturbation lies in the interval 0ox1o‘1 and 0ox2o‘2, and invoking expression (40b) for Â
ð0Þ

m ðx1;x2Þ,
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leads to

Â
ð1Þ

m ðx1; x2Þ ¼
X
m1

Q̂m1

Z þ1
þ1

Z þ1
þ1

Ĝmðx1;x2; x
0
1; x
0
2Þĝm1mðx

0
1;x
0
2ÞĜm1ðx

0
1;x
0
2; 0; 0Þdx01 dx0

þ
X
m1am

Q̂m1
ðk2

x1m � k2
x1m1
Þ

Z þ1
�1

Z þ1
�1

Ĝmðx1;x2; x
0
1;x
0
2ÞNm1mðx

0
1;x
0
2ÞĜm1ðx

0
1;x
0
2; 0; 0Þdx01 dx0, ð43Þ

and the corresponding approximate solution is

Â
½1�

m ¼ Â
ð0Þ

m þ Â
ð1Þ

m . (44)

One should note that in Eq. (43) integrals from �N to +N are in fact integrals from 0 to ‘1 and ‘2.
When the waveguide is infinite and bounded by surfaces with one-dimensional corrugations (2D problem

considered in Section 5), the coefficient of the expansion of the modal Green function is given by the one-
dimensional Green’s function corresponding to a point source located at a point x01 in the waveguide is given
by, for the quantum number m

Ĝmðx1;x
0
1Þ ¼

expð�ikx1mjx1 � x01jÞ

2ikx1m

. (45)

Finally, the result so obtained leads straightforwardly to the following form, to the (n+1)th order:

Â
½nþ1�

m ðx1;x2Þ ¼ Â
ð0Þ

m þ
X
m1

Z þ1
�1

Z þ1
�1

Ĝmðx1;x2; x
0
1;x
0
2Þĝm1mðx

0
1; x
0
2ÞÂ
½n�

m1
ðx01;x

0
2Þdx01 dx02

� bmm

Z þ1
�1

Z þ1
�1

Ĝmðx1; x2; x
0
1;x
0
2ÞZðx

0
1;x
0
2ÞðDk þ k2

x1mÞÂ
½n�

m ðx
0
1; x
0
2Þdx01 dx02

þ
X
m1am

Z þ1
�1

Z þ1
�1

Ĝmðx1; x2; x
0
1;x
0
2ÞNm1mðx

0
1;x
0
2ÞðDk þ k2

x1mÞÂ
½n�

m1
ðx01;x

0
2Þdx01 dx0. ð46Þ

5. Results

This section aims at providing results illustrating the inter-modal model using periodically or ‘‘quasi-
random’’ one-dimensional corrugated surfaces (2D problem). The phonon relationships, which are written in
Section 3.3 for the monomode approach are first extended in Section 5.1, which permits to highlight strong
couplings between modes in the vicinity of these phonon relationships for periodically corrugated surfaces.
The last Section 5.2 focuses mainly on the propagation upstream and downstream the corrugated domain for
periodic or ‘‘quasi-random’’ sawtooth profiles.

5.1. Influence of a phonon relationship

As already mentioned in Section 3.3, relationships between the length of the spatial period (denoted L) and
the acoustic wavelengths along the x1-axis (lx1m ¼ 2p=kx1m for the mode m generated by the source and
lx1m ¼ 2p=kx1m for the modes m created by the scattering on the corrugation) appear, involving a phase
matching which emphasises the interference processes (phonon relations [19]), namely,

kx1m þ kx1m � 2p=L ¼ 0, (47a)

i.e. using Eq. (20d),

kx1md

2p
¼ �

d

L
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fd

c0

� �2

�
m

2

� �2s
(47b)

and showing therefore a strong coupling between the primary wave (wavenumber kx1m) and the counter-
propagating secondary wave (wavenumber �kx1m). The intersection in the plane ðfd=c0; kx1md=ð2pÞÞ of the
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½3�

m¼0ðx1Þ=A0
m for

the mode m ¼ 0, (b) Â
½3�

m¼1ðx1Þ=A0
m of the mode m ¼ 1 (the only mode generated by the source) and (c) jP̂

½3�
ðx1Þ=A0

mj of the total pressure

variation, when fd/c0 ¼ 1.31 and d/L ¼ 2.5. The length ‘ of the corrugation at x3 ¼ 0 is such as k0‘ ¼ 867.5 (‘E138.1l) which corresponds

to N ¼ 264 teeth (see Table 1 for dimensional quantities). The heights of the teeth are such as z ¼ 0.005; the interface x3 ¼ d is smooth.

0

0.5

1

1.5

2

2.5

0 1 2

f d/c0

k x
1d 

/ (
2π

)

m = 0

m = 2 m = 3m = 1

m = 0

m = 1 m = 2 m = 3

1.261.31

1.36 1.50.5
0.8

Fig. 4. Dispersion curves (thick lines) of the guide with smooth interfaces ðkx1
d=ð2pÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðfd=c0Þ

2
� ðm=2Þ2

q
Þ, and curves (thin lines)

corresponding to the phonon relation (47) ðkx1
d=ð2pÞ ¼ d=L�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðfd=c0Þ

2
� ðm=2Þ2

q
Þ. Solid lines: mode m ¼ 0, dash–dot lines: mode

m ¼ 1, dashed lines: m ¼ 2, dotted lines: m ¼ 3.

C. Potel, M. Bruneau / Journal of Sound and Vibration 313 (2008) 738–759750



ARTICLE IN PRESS
C. Potel, M. Bruneau / Journal of Sound and Vibration 313 (2008) 738–759 751
dispersion curves (thick lines in Fig. 4) with the curves (thin lines in Fig. 4 for d/L ¼ 2.5) representing the
phonon relation (Eq. (47b) with +d/L), permits to predict the values of the frequencies for which there could
exist such a strong coupling for a given ratio d/L.

As an example, for fd=c0 � 1:31, the thin line which represents the phonon relation (47b) for m ¼ 1 has an
intersection with the dispersion curve of the regular-shaped guide corresponding to m ¼ 0 (labelled m ¼ 0 in
Fig. 4). Therefore, when the source creates the mode m ¼ 1, a strong coupling appears with the coupled mode
m ¼ 0. Moreover, as there is an intersection of this thin line with the dispersion curve of the guide for the mode
m ¼ 1 at a value of fd=c0 � 1:36 (thus closed to 1.31), a strong self-coupling between the mode m ¼ 1 created
by the source and the same mode m ¼ 1 appears, perturbing this mode m ¼ 1.

This phenomenon is illustrated on the particular case of a periodically sawtooth profile (shown in Fig. 3)
assumed to be of infinite extent. The acoustic source is assumed to create only the mode m ¼ 1 (incoming
wave), at the forcing frequency f. Four modes are considered in the solution: for the chosen frequency
(fd=c0 � 1:31 with d/L ¼ 2.5), the first three modes (m ¼ 0, 1, 2) are propagative and the last one (m ¼ 3) is
evanescent. The chosen frequency is in the vicinity of the value given by the phonon relation (47b), thus both a
strong coupling between the mode m ¼ 1 created by the source and the coupled mode m ¼ 0, and a quite
strong ‘‘self-coupling’’ of the mode m ¼ 1 occur, as it can be seen in Figs. 5a and b, which present the modulus
of the normalised amplitudes of the modes 0 and 1 as a function of the dimensionless parameter k0x1

(propagative mode m ¼ 2 and evanescent mode m ¼ 3 are not represented: their amplitudes vanish because
their coupling with the other modes are very weak). Fig. 5c shows the total normalised pressure variation
which results from the superposition of the modes m ¼ 0, 1, 2, 3 (Eq. (14)).

As explained in Section 3.3, expanding the expression Z(x1) of the periodically corrugated surface in Fourier
series leads to arguments of exponential functions of the forms

kx1m; kx1m; kx1m � 2p=L and kx1m þ kx1m � 2p=L, (48a)
Table 1

Characteristics of two media, a fluid one (air) and a fluid-like one (glass with only longitudinal waves), and characteristics of the

corrugation for each one, as a function of the dimensionless parameters fd/c0 and d/L: k0 ¼ ð2p=dÞðfd=c0Þ; l ¼ d=ðfd=c0Þ;

f ¼ ðc0=dÞðfd=c0Þ; L=l ¼ ðfd=c0Þ=ðd=LÞ and ‘ ¼ ð2N � 1ÞL=2

Air ‘‘Glass’’ (for longitudinal waves)

c0 (m s�1) 340 5825

r0 (kgm
�3) 1.2 5000

d (m) 5 0.005

fd/c0 ¼ 1.31 l (m) 3.8 0.0038

d/L ¼ 2.5 L/l 0.524 0.524

f (kHz) 0.089 1526

k0 (m
�1) 1.646 1646

k0‘ ¼ 261.7; N ¼ 80 ‘ (m) 159 0.159

k0‘ ¼ 867.5; N ¼ 264 ‘ (m) 527 0.527

fd/c0 ¼ 1.26 l (m) 3.97 0.00397

d/L ¼ 2.5 L/l 0.504 0.504

f (kHz) 0.0857 1468

k0 (m
�1) 1.583 1583

k0‘ ¼ 207.4; N ¼ 66 ‘ (m) 131 0.131

fd/c0 ¼ 0.80 ‘ (m) 6.25 0.00625

d/L ¼ 2.5 L/l 0.32 0.32

f (kHz) 0.0544 932

k0 (m
�1) 1.005 1005

k0‘ ¼ 131.7; N ¼ 66 ‘ (m) 131 0.131

k0‘ ¼ 529.8; N ¼ 264 ‘ (m) 527 0.527
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Table 2

Cut-off frequencies of the two fluid-like media of Table 1, for the first four modes

m ¼ 0 m ¼ 1 m ¼ 2 m ¼ 3

Air (Hz) 0 34 68 102

‘‘Glass’’ (for longitudinal waves) (MHz) 0 0.5825 1.165 1.748

C. Potel, M. Bruneau / Journal of Sound and Vibration 313 (2008) 738–759752
which can be combined together as follows to highlight the periods appearing in Figs. 5a and b in the result
given below:

1

2
kx1m �

2p
L
þ

þkx1m

�kx1m

þ2kx1m

8><
>:

9>=
>;

0
B@

1
CA and

1

2
ðkx1m � kx1mÞ. (48b)

Finally, it can be observed in Figs. 5a and b that the amplitude of the modes m ¼ 1 and m ¼ 0 decrease when
the abscissa of the observation point (k0x1) increases. For the mode m ¼ 1 (Fig. 5b), this decrease has an
approximate exponential shape, with an attenuation factor equal to approximately 10�3mm�1 for the ‘‘glass’’
plate (Table 1). This value has the same order of magnitude (1.5� 10�3mm�1) as that experimentally found in
solid media for roughness profile (shot blasted plate), when A1 Lamb mode propagates [21,22].

The same phenomenon can be observed in Fig. 6, which presents the same result as for Fig. 5b except that
the frequency (fd/c0 ¼ 0.8 with d/L ¼ 2.5) does not satisfy the phonon relation (48b) as one can see in Fig. 4.
Here, the amplitude of the oscillations is much lower, showing that the self-coupling of the mode m ¼ 1 is
weak.

Nota Bene: In order to clarify the orders of magnitude, the dimensional different quantities of interest
(frequencies, wavelengths, etc.) are listed in Table 1 for two fluid-type media: the air (a real fluid) and the glass
when (only the longitudinal waves are taken into account) (Table 2).
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5.2. Propagation upstream and downstream a corrugated domain of finite extent

This section aims at going further in the interpretation of the results and at focusing mainly on the
propagation upstream and downstream the perturbed domain (corrugation).
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½3�

m¼1ðx1Þ=A0
m for the mode m ¼ 1 and (c) jP̂

½3�
ðx1Þ=A0

mj of the total pressure

variation, when fd=c0 ¼ 1:26 and d/L ¼ 2.5. The coordinates of the ends of the corrugation are xi and (xi+‘) with k0xi ¼ 79.2, the length ‘
of the corrugation at x3 ¼ 0 being such as k0‘ ¼ 207.4 (‘E33l) which corresponds to N ¼ 66 teeth (see Table 1 for dimensional

quantities). The heights of the teeth are such as z ¼ 0.005; the interface x3 ¼ d is smooth.

l2

l1

0.8 ≤ l2 � ≤ 1

0.2 ≤ l1 l2 ≤ 0.8
h = �d 

regularly distributed random sawtooth corrugation

�

Fig. 8. Random sawtooth profile. The spatial wavelength L is a constant, but the height of the teeth and the ratios ‘1/‘2 and ‘2/L are

random.
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It is assumed that, inside the 2D waveguides bounded by two parallel plates which are considered below, the
only mode created by the source is the mode m ¼ 0 and that the frequency is such as fd/c0 ¼ 1.26 with
d/L ¼ 2.5, so as a phonon relation is satisfied (thus a strong ‘‘self-coupling’’ of the mode m ¼ 0 and a quite
strong coupling with the coupled mode m ¼ 1 occur, see Fig. 4). The corrugations start at the ‘‘input’’ abscissa
xi such as k0xi � 80, and the length ‘ of the corrugations are such as k0‘ ¼ 207:4 which corresponds to N ¼ 66
teeth (see Table 1 for dimensional quantities) and to ‘ � 33l for the fluid-like media indicated in Table 1. The
heights h ¼ zd of the teeth are such as z ¼ 0:005.

Four sets of results are shown, corresponding to four different sawtooth profiles. The modulus of the
normalised amplitudes of the modes considered and the corresponding total acoustic pressure, as functions of
the observation point, are shown in Figs. 7a–c, 9a, b, 11a, b and 12a–c, respectively, for a periodic sawtooth
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Fig. 9. Modulus of the normalised amplitude of the pressure variation (third order) a random sawtooth profile (see Fig. 8):

(a) Â
½3�

m¼0ðx1Þ=A0
m for the mode m ¼ 0 (the only mode generated by the source), (b) Â

½3�

m¼1ðx1Þ=A0
m for the mode m ¼ 1, when fd/c0 ¼ 1.26 and

d/L ¼ 2.5. The coordinates of the ends of the corrugation are xi and (xi+‘) with k0xi ¼ 79.2, the length ‘ of the corrugation at x3 ¼ 0

being such as k0‘ ¼ 207.4 (‘E33l) which corresponds to N ¼ 66 teeth (see Table 1 for dimensional quantities). The heights of the teeth are

such as the nondimensional parameter z is contained between 0.0015 and 0.005; the interface x3 ¼ d is smooth.
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profile at the interface x3 ¼ 0 (Fig. 3), ‘‘quasi-random’’ profile (Fig. 8), the same periodic sawtooth profile on
each side of the waveguide (x3 ¼ 0 and d), symmetrically (Fig. 10a) or antisymmetrically (Fig. 10b)
corrugated.

For each case, the backward propagation (Figs. 7a, 9a, 11a and 12a), already highlighted by Eq. (35) in the
mono-mode approach (see Section 3.3 and Fig. 3) and created by the back-scattering on corrugation, is
obvious upstream the corrugation (x1oxi), showing interferences between the incident wave and the counter-
propagating wave. Downstream the corrugation, the mean level of the incident mode depends on the profile
because the mode created by the source decreases when the abscissa of the observation point increases.

For the coupled mode m ¼ 1 (Figs. 7b, 9b and 12b), oscillations occur only inside the corrugation as
expected.

When the sawtooth profile is randomly distributed [i.e. when each tooth has a triangular profile,
the lengths ‘1 and ‘2 (see Fig. 8) being distributed randomly with 0:2p‘1=‘2p0:8 and the both
being distributed regularly with a spatial period L (0:8p‘2=Lp1)], the general shapes of the curves
shown in Figs. 9a and b are the same as those given in Figs. 7a and b for a periodic sawtooth profile with the
same spatial wavelength L, but the amplitude of the modes are lower due to the random character of the
profile.

On the other hand, for a symmetrically corrugated (sawtooth profile) waveguide (Fig. 10a), the amplitudes
of both the modes such as (m+m) are even numbers and the total pressure (Fig. 11a for m ¼ m ¼ 0 and
Fig. 11b, respectively) are greater than the amplitudes obtained when the interface x3 ¼ d is smooth (Figs. 7a
and c), whereas the amplitude of the modes such as (m+m) are odd numbers vanishes. These results can be
explained from expressions (18b) and (13a) of the coupling factors aðjÞmmqxj

and k2
mBmm, invoking the expression

(13b) of bmm: for this symmetrical profile, the normalised depths Z0 and Zd are equal (Eq. (11)), and thus the
coupling factors double in amplitude when (m+m) are even numbers and vanish when (m+m) are odd
numbers. For antisymmetrical sawtooth profile (Fig. 10b), this kind of properties does not appear anymore
(Figs. 12a–c).
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of the corrugation at x3 ¼ 0 being such as k0‘ ¼ 207.4 (‘E33l) which corresponds to N ¼ 66 teeth (see Table 1 for dimensional

quantities). The heights of the teeth are such as z ¼ 0.005.
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6. Conclusion

The general subject matter of the paper is the modelling of the inter-modal couplings in waveguides with
nonhomogeneously shaped walls, the shape (the slope) and the depth of the perturbed surfaces being both
taken into account, assuming Neumann conditions (shape profile model).

A mono-mode approximation which consists in considering only one acoustic mode by neglecting the
coupling between different modes, leads to a simple interpretation of the involved physical phenomena: the
couplings due to the scattering from the perturbed surface distribute the acoustic energy in the same mode
than the one first considered (created by the acoustic source), through secondary waves propagating,
respectively, in the same direction as the primary wave or opposite, and phonon relations can be highlighted.

In the inter-modal couplings approach, the continuously distributed modes coupling along the distributed
slight geometrical perturbation are accounted for in using method relying on integral formulation and modal
analysis.
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The numerical results analysed in Section 5 highlight the following points, showing that the shape profile
model is successful in several simple situations but also that it can handle a variety of more realistic
situations:
(i)
 Phonon relations are highlighted by the oscillations of the amplitudes of the modes having specific spatial
periods, showing the strong couplings between modes.
(ii)
 When a phonon relation is not approximately (or exactly) verified, the global shape of the amplitude as
function of the observation point is the same, but the amplitude of the oscillations are smaller than those
obtained when the phonon relation is verified.
(iii)
 The amplitude of the modes created by the acoustic source decreases when the abscissa of the observation
point increases along the corrugation, as expected when comparing with experimental results obtained in
isotropic solid media.
(iv)
 The backward propagation is emphasised by the presence, upstream the corrugation region, of modes
created by the scattering on the corrugation.
(v)
 When the guide, bounded by two planes, is corrugated on each side with symmetrical profiles, the odd or
even character of the quantum number modes provides an increase (compared with the case of only one
corrugated interface) or a cancellation of the coupling.
(vi)
 A ‘‘quasi-random’’ periodic profile just leads to a diminution of the oscillation amplitudes of the modes,
compared with a regular periodic profile.
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It can be emphasised that the examples presented here have highlighted the feasibility of the method in
having given results, which assume Neumann boundary conditions. Given the specificity of these examples, it

is clear that the Dirichlet problems, even problems with mixed boundary conditions, are similar analytic
problems to the Neumann one, in the framework of this paper, thereby supporting the methods for
applications involving compressional waves in fluid or solid waveguides with nonhomogeneously shaped
walls.
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Appendix A. Expressions of the function Nlm (x1, x2) (Section 2.3, Eq. (10))

The integral

Nmmðx1; x2Þ ¼

Z d�Hd

H0

cmðx3Þcmðx3Þdx3 (A.1)

takes various forms, depending on the values of the quantum numbers m and m.
When m ¼ m,

Nmmðx1;x2Þ ¼ �
ð1� dm0Þ

2mp
fsinð2mpZd Þ þ sinð2mpZ0Þg þ 1� Zðx1; x2Þ, (A.2)

where

Zðx1; x2Þ ¼ Z0ðx1;x2Þ þ Zdðx1;x2Þ, (A.3a)

Z0ðx1;x2Þ ¼ H0ðx1;x2Þ=d, (A.3b)

Zd ðx1;x2Þ ¼ Hdðx1;x2Þ=d (A.3c)

and when m 6¼m,

2Nmmðx1;x2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2� dm0Þð2� dm0Þ

p ¼
1

ðmþ mÞp
fð�1Þmþm sin½�ðmþ mÞpZd � þ sin½�ðmþ mÞpZ0�g

þ
1

ðm� mÞp
fð�1Þm�m sin½�ðm� mÞpZd � þ sin½�ðm� mÞpZ0�g. ðA:4Þ
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