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Abstract

We present the governing equations of transverse vibrations for rotating cylindrically orthotropic disks and calculate

their normal oscillatory modes. We use a collocation method to discretize the ordinary differential equation that

determines the radial variation of the lateral displacement field in the linear regime. We then construct a nonlinear

eigenvalue problem in the matrix form for given azimuthal wavenumbers and compute the eigenfrequencies and their

conjugate mode shapes through solving a determinantal equation followed by evaluating the adjoint matrix of a singular

linear map. We reveal some notable features of mode shapes in isotropic and orthotropic rotating disks and discuss on

their eigenfrequency spectra as the material and geometric properties are varied.

r 2008 Elsevier Ltd. All rights reserved.
1. Introduction

Rotating disks are major components of hard disk drives in computer technology. They are accessed by
magnetic heads that are capable of recording (reading) the data on (from) the magnetic material, which is
usually protected by a nano-scale layer of hydrogenated amorphous carbon. There is an air gap between the
head and the disk whose major function is to levitate the head through aerodynamic forces and prevent the
direct contact between the head and the disk. The air gap, however, must be small enough to permit the leaked
magnetic field (of the head) to pass through the carbon coat and reach the magnetic material. This
requirement puts severe constraints on the vibration characteristics of the disk. Moreover, data access rate is
directly proportional to the rotational speed of the disk, which cannot be increased endlessly due to
subsequent emergence of stochastic oscillations near resonant speeds. Recent studies of Jalali and Angoshtari
[1], and Angoshtari and Jalali [2] based on projected Nowinski’s [3,4] governing equations showed that chaos
is an inherent characteristic of spinning disks that occurs in long time scales. Detection and control of chaotic
response to the harmonically exerted aerodynamic force is still an unresolved technological problem.

The fundamental step in the study of full nonlinear equations is to unveil the natural frequencies and mode
shapes (i.e., the eigenmodes) of spinning disks in the linear regime. This very first step, however, is so difficult
to allow for exact analytical treatment of the problem. The power series solutions of the rotating disk problem
ee front matter r 2008 Elsevier Ltd. All rights reserved.
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(in the Nowinski theory for isotropic plates) were constructed by Everesman and Dodson [5]. Soon after their
approximate method, a numerical method was developed by Barasch and Chen [6] who assumed a linear
combination of four independent solutions and integrated the governing equations of radial eigenfunctions
using Adam’s method and obtained a determinantal equation for finding the eigenfrequencies. Their method
gives more accurate results than series solutions [7], but its implementation is costly because at each step one
needs to guess an eigenvalue and integrate a system of ordinary differential equations (ODEs) over the radial
domain, and then check for the fulfillment of the frequency equation. Therefore, the integration phase must be
repeated until the eigenvalue converges. More recently, Bauer and Eidel [8] applied the Ritz–Galerkin [15]
method and constructed an infinite dimensional eigenvalue problem for computing the natural frequencies of
isotropic Nowinski disks in the linear regime. They found the solutions of an auxiliary truncated problem and
used them as a basis set for expanding the transverse displacement field of a rotating disk in the radial
direction. Although Bauer and Eidel’s [8] method is analytical, the need for the evaluation of weighted
integrals (while applying the Ritz–Galerkin method) slows down the calculation procedure of normal modes
and complicates their subsequent applications in nonlinear theories.

Increasing demand for manufacturing high speed and light rotating disks, motivated us to think of
cylindrically orthotropic composites as candidates for future substitutes of the main material of the hard disk
core, which carries dynamical loads and supports the magnetic material and its protective coating. Among
other industrial applications of orthotropic composites one may quote extremely high-speed energy storage
flywheels, gas turbine components and new generations of light momentum wheels used as spacecraft and
satellite attitude controllers. Many authors have already investigated the stress field and its singularities
(see Ref. [9] and references therein), and buckling of rotating orthotropic disks [10]. It was only recently that
natural frequencies of such systems were calculated using finite element methods [11–13] and a layer-wise
theory [14]. These strategies, however, are not favored if one continues the computations in the nonlinear
regime or requires fast and accurate decomposition of bending waves for control purposes. Moreover, mode
shapes of rotating orthotropic disks and the effects of material and geometrical parameters on them, are other
central issues yet to be explored precisely.

In this paper, we attempt to calculate the eigenmodes of rotating, cylindrically orthotropic disks
using an efficient numerical method. Our method is based on the direct collocation of the ODE that
determines the radial dependence of transverse displacement field. Boundary conditions of any type can be
easily imposed in our method and mode shapes are calculated at the same time that the eigenfrequencies
are found. In Section 2 we use Nowinski’s [3] fundamental assumptions and derive the governing
equations of transverse vibrations in rotating orthotropic disks and linearize them in Section 3. We then
assume a harmonic response and expand the transverse displacement component in Fourier series of the
azimuthal angle, and derive an ODE for the radial eigenfunctions. We collect the radial eigenfunctions and
their derivatives in a state vector and discretize the governing ODE of this state vector using a collocation
scheme in Section 4. We then derive a system of linear equations for the state variables at grid points and
obtain a nonlinear eigenvalue problem whose eigenvectors determine the shape of oscillatory modes. We
present some examples in Section 5 and investigate the modal properties of rotating disks by varying some
important parameters of the disk. We conclude the paper by highlighting the advantages of using composite
materials in hard disk drives.

2. Governing equations of motion

We consider a thin, cylindrically orthotropic, annular plate of uniform thickness h that rotates with the
constant angular velocity O. The outer and inner radii of the disk are b and a, respectively. The disk has a free
outer edge and its inner edge is clamped to a rigid hub. To represent the governing equations and their
corresponding boundary conditions, we adopt the usual polar coordinates ðr; y; zÞ. The origin of the
coordinate system is the intersection point of the axis of rotation and neutral plane of the disk. The z-axis
coincides with the rotation axis and it is normal to the undeformed neutral plane of the disk. Nowinski’s
theory begins with von Karman’s assumption that the displacement field

ur ¼ u�r ðr; y; tÞ � zw;r; uy ¼ u�yðr; y; tÞ � zr�1w;y, (1)
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at an arbitrary point inside the medium, varies linearly along the plate thickness. Here ðu�r ; u
�
yÞ is the vector of

in-plane displacements (in the radial and azimuthal directions), and w ¼ uzðr; y; tÞ is the displacement of the
neutral plane of the disk in the transversal z-direction. The operator ð Þ;m denotes a partial derivative with
respect to m. From Eq. (1) one can compute the strain components �r, �y and �ry (Eqs. (3)–(10) in Ref. [16]),
which are related to the stress components through the constitutive equations of a cylindrically orthotropic
material (Eqs. (6)–(18) in Ref. [16]):

sr ¼
Er

1� nrynyr

ð�r þ nyr�yÞ, (2)

sy ¼
Ey

1� nrynyr

ð�y þ nry�rÞ, (3)

sry ¼ Gry�ry, (4)

Ey

Er

¼
nyr

nry
. (5)

Here Er and Ey are, respectively, Young’s moduli in the radial and azimuthal directions, nry and nyr are
Poisson’s ratios, and Gry is the shear modulus. The resultant normal and shear forces are thus calculated as

ðNr;Ny;NryÞ ¼

Z þh=2

�h=2
ðsr;sy;sryÞdz. (6)

Let us introduce the stress function F so that

Nr ¼ r�1hF ;r þ r�2hF ;yy �
1
2
rhO2r2, (7)

Ny ¼ hF ;rr �
1
2rhO2r2, (8)

Nry ¼ �ðr
�1hF ;yÞ;r. (9)

The resultant forces defined in Eqs. (7)–(9) satisfy the in-plane equations of momentum balance if we ignore
the inertia forces associated with u�r and u�y. This is a basic assumption of Nowinski’s theory that guarantees
the existence of F . Hamilton’s principle and the compatibility equation of strain components lead to the
following nonlinear partial differential equations for the evolution of w and the stress function:

rhw;tt þDrL1wþDyL2wþ 2DcL3wþ rhO2rw;r þ
1
2
rhO2r2r2w ¼ hLðw;F Þ, (10)

dyL1F þ drL2F þ 2dcL3F � ð3dy � dr þ nyrdy � 3nrydrÞrO2 ¼ �1
2
Lðw;wÞ, (11)

where r is the mass per unit volume of the disk material, and the operators Li ði ¼ 1; 2; 3Þ and L are defined as

L1A ¼ A;rrrr þ 2r�1A;rrr, (12)

L2A ¼ r�4A;yyyy � r�2A;rr þ 2r�4A;yy þ r�3A;r, (13)

L3A ¼ r�2A;rryy � r�3A;ryy þ r�4Ayy, (14)

LðA;BÞ ¼ A;rrðr
�1B;r þ r�2B;yyÞ þ B;rrðr

�1A;r þ r�2A;yyÞ � 2ðr�1A;ry � r�2A;yÞðr
�1B;ry � r�2B;yÞ. (15)

The constant coefficients in Eqs. (10) and (11) are:

Dr ¼
Erh

3

12ð1� nrynyrÞ
; Dy ¼

Eyh3

12ð1� nrynyrÞ
; Dry ¼

Gryh3

12
; Dc ¼ nyrDr þ 2Dry, (16)

dr ¼
1

Er

; dy ¼
1

Ey
; dc ¼

1

2Gry
�

nry

Er

. (17)
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Eqs. (10) and (11) are, respectively, the extensions of Eqs. (6-30) and (6-31) of Ref. [16] to uniformly rotating
disks. The associated boundary conditions (see below) that involve the stress function F are also different from
the non-rotating case and they affect the solution procedure substantially. We remark that the ignorance of
in-plane inertias reduces the number of dependent functions from three to two, and simplifies the governing
equations significantly. However, it is justified only for small rotational velocities. For very high-speed disks
that the quantities

O2u�r ; O2u�y; 2Ou�r;t; 2Ou�y;t, (18)

cannot be ignored, one should follow a formalism similar to what Baddour and Zu [17,18] developed for
isotropic disks.

There are two sets of boundary conditions associated with the governing field equations. The first
set of conditions is imposed at the inner radius r ¼ a where the disk is clamped to the central rotating hub.
The in-plane displacement fields have zero boundary values at the clamped edge:

u�r ða; y; tÞ ¼ 0; u�yða; y; tÞ ¼ 0 (19)

and the boundary conditions of w are:

wða; y; tÞ ¼ 0, (20)

w;rða; y; tÞ ¼ 0. (21)

The second set of boundary conditions is imposed at the free edge of the disk, where the bending moment
Mr, edge reaction Qr þ r�1qMry=qy, and in-plane forces ðNr;NryÞ must vanish (e.g., Eqs. (3)–(15) in Ref. [16]).
At r ¼ b we obtain

Mr ¼ 0) w;rr þ nyrðr
�1w;r þ r�2w;yyÞ ¼ 0, (22)

Qr þ
1

r

qMry

qy
¼ 0) w;rrr þ r�1w;rr � k2r�2ðw;r þ r�1w;yyÞ þ ð2D̄� nyrÞr

�2ðw;ryy � r�1w;yyÞ ¼ 0, (23)

Nr ¼ 0) r�1F ;r þ r�2F ;yy �
1

2
rO2r2 ¼ 0, (24)

Nry ¼ 0) �r�1F ;ry þ r�2F ;y ¼ 0, (25)

where we have defined D̄ ¼ Dc=Dr. The boundary conditions (19) cannot be directly used for solving Eq. (11).
What we need are the boundary conditions of F at r ¼ a. For deriving such conditions we use the relations
between the in-plane strain and displacement components:

��r ¼ u�r;r �
1

Eyh
ðk2Nr � nyrNyÞ, (26)

r��y ¼ u�r þ u�y;y �
r

Eyh
ðNy � nyrNrÞ, (27)

��ry ¼ u�y;r � r�1u�y þ r�1u�r;y �
1

Gryh
Nry, (28)

where we have defined k2
¼ Ey=Er and used the constraint nryEy ¼ nyrEr (see Eqs. (2)–(5)) to get nry ¼ nyr=k2.

Since u�y;y and u�r vanish at the clamped edge, from Eq. (27) we obtain

F ;rr � nyrðr
�1F ;r þ r�2F ;yyÞ þ

1
2
ðnyr � 1ÞrO2r2 ¼ 0 at r ¼ a. (29)

We now differentiate Eqs. (27) and (28) with respect to r and y, respectively, and eliminate u�y;ry using the
resulting equations. This leaves us with the following relation:

��y þ r��y;r � �
�
r � �

�
ry;y ¼

1

r
ðu�y;y � u�r;yyÞ. (30)
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Both terms on the right side of Eq. (30) vanish because neither u�r nor u�y depend on y at r ¼ a. Therefore, after
substituting from Eqs. (7)–(9) in Eqs. (26)–(28) and then in Eq. (30), we obtain

F ;rrr þ r�1F ;rr � k2r�2F ;r þ nyr � k2
�

Ey

Gry

� �
r�3F ;yy

þ
Ey

Gry
r�2F ;ryy þ nyr �

3

2
þ

1

2
k2

� �
rO2r ¼ 0 at r ¼ a. (31)

Eqs. (29) and (31) constitute the boundary conditions of F at the inner clamped edge. For an isotropic
material we have nry ¼ nyr ¼ n, Ey ¼ Er ¼ E and Gry ¼ E=½2ð1þ nÞ�. One can readily verify that with the
assumption of isotropy, our governing equations (10) and (11) and their associated boundary conditions result
in Eqs. (1)–(11) of Ref. [7].

3. Linearized equations

The solution of Eq. (11) consists of a linear part Fl and a nonlinear part Fn that satisfy the following
relations:

dyL1Fl þ drL2F l þ 2dcL3Fl ¼ ð3dy � dr þ nyrdy � 3nrydrÞrO2, (32)

dyL1F n þ drL2F n þ 2dcL3F n ¼ �
1
2Lðw;wÞ. (33)

Consequently, the term Lðw;F Þ in Eq. (10) becomes Lðw;F Þ ¼ Lðw;F lÞ þ Lðw;F nÞ. It is remarked that Eq. (32)
is identical to Eq. (7) of Ref. [9]. Since we are interested in the normal modes of linear oscillations, we ignore
the nonlinear terms Lðw;wÞ and Lðw;F nÞ in our subsequent analysis and investigate the solutions of

rhw;tt þDrL1wþDyL2wþ 2DcL3wþ rhO2rw;r þ
1
2
rhO2r2r2w ¼ hLðw;F lÞ. (34)

The governing equation of Fl is independent of w and its boundary values at the inner and outer edges have no
y dependence. Thus, the homogeneous and particular solutions of F l will depend only on r. Defining a ¼ a=b,
Eqs. (32), (24), (29) and (31) result in (see also Eq. (8) in Ref. [9])

F l ¼ rO2½c1a3�
ffiffi
k
p

r1þ
ffiffi
k
p

þ c2a
3þ
ffiffi
k
p

r1�
ffiffi
k
p

þ c3r
4�, (35)

where

c1 ¼
ð1� kÞ½ðk2

� n2yrÞa
3þk þ ðk þ nyrÞð3þ nyrÞ�

a2ð9� k2
Þð1� k2

Þ½ðk � nyrÞa1þk þ ðk þ nyrÞa1�k�
, (36)

c2 ¼
ð1þ kÞ½�ðk2

� n2yrÞa
3�k þ ðk � nyrÞð3þ nyrÞ�

a2ð9� k2
Þð1� k2

Þ½ðk � nyrÞa1þk þ ðk þ nyrÞa1�k�
, (37)

c3 ¼
3� k2

� 2nyr

8ð9� k2
Þ

. (38)

In the isotropy limit (k2
¼ 1 and nyr ¼ n), Fl becomes [7]

F l ¼ rO2 1

32
ð1� nÞr4 þ c1b

2r2 þ c2b4 ln r

� �
, (39)

with

c1 ¼
1

16

ð1þ nÞ½3þ nþ ð1� nÞa4�
½1þ nþ ð1� nÞa2�

,

c2 ¼
1

8

a2ð1� nÞ½3þ n� ð1þ nÞa2�
½1þ nþ ð1� nÞa2�

. (40)
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The quartic part in Eqs. (35) and (39) is the particular solution of Fl and the other terms are homogeneous
solutions.

We seek for the oscillatory solutions of Eq. (34) in the time domain. This suggests to assume wðr; y; tÞ ¼
W ðr; yÞeiot where o is the frequency of oscillations and i ¼

ffiffiffiffiffiffiffi
�1
p

. The continuity of w in the y-direction implies
the periodicity condition W ðr; yÞ ¼W ðr; yþ 2pÞ. Therefore, we can expand W ðr; yÞ in Fourier series and write

wðr; y; tÞ ¼ eiot
X1

m¼�1

cmðrÞe
imy. (41)

It is the real part of Eq. (41) that gives the physical solution. We define the parameter b2 ¼ rh=Dr and
introduce the new independent variable x ¼ r

ffiffiffiffiffiffiffi
bO

p
. Substituting Eqs. (41) and (35) in Eq. (34) and collecting

the coefficients of eimy leaves us with the following ODE for cmðxÞ:

d4cm

dx4
þ G3ðxÞ

d3cm

dx3
þ G2ðxÞ

d2cm

dx2
þ G1ðxÞ

dcm

dx
þ G0ðxÞcm ¼ 0, (42)

where

G3ðxÞ ¼
2

x
, (43)

G2ðxÞ ¼
1

2
ð1� 8c3Þx

2 �
2m2D̄þ k2

x2
� x2

af 1ðxÞ, (44)

G1ðxÞ ¼
3

2
ð1� 8c3Þxþ

2m2D̄þ k2

x3
�

x2
a

x
f 2ðxÞ, (45)

G0ðxÞ ¼ 12c3 �
1

2

� �
m2 þ

k2m4 � 2k2m2 � 2D̄m2

x4
þ

m2x2
a

x2
f 2ðxÞ � l2. (46)

Here we have defined l ¼ o=O, ðxa;xbÞ ¼ ða
ffiffiffiffiffiffiffi
bO

p
; b

ffiffiffiffiffiffiffi
bO

p
Þ, and the functions f j ðj ¼ 1; 2Þ are

f jðxÞ ¼ kj�1 c1ð1þ kÞ
x

xa

� �k�1

þ c2ð�1Þ
j
ðk � 1Þ

x

xa

� ��k�1
" #

. (47)

Eq. (42) is an ODE with real coefficients. The solution of cmðxÞ will thus be real. The reason is that Eqs. (10)
and (11) involve even–order partial derivatives of wðr; y; tÞ and F ðr; y; tÞ with respect to y and t. The only
exception is the last term of the operator LðA;BÞ, but it does not give rise to complex coefficients, for it is a
product of two first order partial derivatives with respect to y. All these mean that circumferential bending
waves have not r-dependent phase angles and spiral-like patterns are impossible.

For a non-rotating isotropic disk, Eq. (42) reduces to

d4cm

dy4
þ

2

y

d3cm

dy3
�

2m2 þ 1

y2

d2cm

dy2
þ

2m2 þ 1

y3

dcm

dy
þ

m4 � 4m2

y4
� o2

� �
cm ¼ 0, (48)

with y ¼
ffiffiffi
b

p
r. Eq. (48) admits the classical solution

cmðyÞ ¼ A1Jmð
ffiffiffiffi
o
p

yÞ þ A2Y mð
ffiffiffiffi
o
p

yÞ þ A3Imð
ffiffiffiffi
o
p

yÞ þ A4Kmð
ffiffiffiffi
o
p

yÞ. (49)

Jm and Y m are the well-known Bessel functions of the first and second kind, and Im and Km are
modified Bessel functions of the first and second kind, respectively. Ai ði ¼ 1; 2; 3; 4Þ are constant coefficients.
The solution (49) must satisfy the boundary conditions of w. This leads to a system of linear equations

Bðm;oÞ � A ¼ 0; A ¼ ðA1;A2;A3;A4Þ
T, (50)

with Bðm;oÞ ¼ ½Bijðm;oÞ� ði; j ¼ 1; 2; 3; 4Þ being a 4� 4 matrix whose elements consist of Bessel (and modified
Bessel) functions and their derivatives at ymin ¼ a

ffiffiffi
b

p
and ymax ¼ b

ffiffiffi
b

p
. The frequency equation of a

non-rotating disk is thus the simple determinantal equation det½BðoÞ� ¼ 0, which has infinite number of
eigenvalues, each corresponding to an eigenmode. However, the general solution of Eq. (42) and the frequency
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equation are not known for rotating disks (neither isotropic nor orthotropic) in terms of elementary and/or
special functions. Therefore, we adopt a numerical method for calculating l and its associated eigenfunction.

4. Direct collocation in the radial direction

Let us introduce the state variables

F � ðf1;f2;f3;f4Þ
T
¼ ðcm;c

0
m;c

00
m;c

000
mÞ

T (51)

and write Eq. (42) in the compact matrix form

dF
dx
¼ Cðm; l;xÞ � F. (52)

The prime sign denotes the derivative of a function with respect to its argument and the matrix C is defined as

Cðm; l;xÞ ¼

0 1 0 0

0 0 1 0

0 0 0 1

�G0ðxÞ �G1ðxÞ �G2ðxÞ �G3ðxÞ

2
66664

3
77775. (53)

We now divide the physical x-domain to N intervals of the same length Dx ¼ ðxb � xaÞ=N, and adopt a finite
difference scheme [20] to discretize the system of Eq. (52) as

Fkþ1 � Fk

xkþ1 � xk

¼ C m; l;
xkþ1 þ xk

2

� �
�

Fkþ1 þ Fk

2

� �
; k ¼ 1; 2; . . . ;N. (54)

Here Fk ¼ ðf
1
k;f

2
k;f

3
k;f

4
kÞ

T denotes the state vector at the grid point xk ¼ ðk � 1ÞDxþ xa. Defining I as a
4� 4 identity matrix, and after rearrangement of terms in Eq. (54), we arrive at

Ukðm; lÞ � Fk þ Vkðm; lÞ � Fkþ1 ¼ 0; k ¼ 1; 2; . . . ;N, (55)

where Ukðm; lÞ and Vkðm; lÞ are square matrices of the form

Ukðm; lÞ ¼ �I�
1

2
DxC m; l; kDxþ xa �

Dx

2

� �
, (56)

Vkðm; lÞ ¼ I�
1

2
DxC m; l; kDxþ xa �

Dx

2

� �
. (57)

The system of Eq. (55) together with the boundary conditions

f1
1 ¼ 0, (58)

f2
1 ¼ 0, (59)

f3
Nþ1 þ

nyr

xb

f2
Nþ1 �

nyrm
2

x2
b

f1
Nþ1 ¼ 0, (60)

f4
Nþ1 þ

1

xb

f3
Nþ1 �

1

x2
b

½k2
þm2ð2D̄� nyrÞ�F2

Nþ1 þ
m2

x3
b

ðk2
þ 2D̄� nyrÞF1

Nþ1 ¼ 0, (61)

constitute a system of 4� ðN þ 1Þ equations for N þ 1 unknown vectors Fk ðk ¼ 1; . . . ;N þ 1Þ. We assemble
all Fk in a single vector of dimension 4� ðN þ 1Þ as

C ¼ ðFT
1 ;F

T
2 ; . . . ;F

T
Nþ1Þ

T, (62)

and obtain

Dðm; lÞ �C ¼ 0, (63)
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so that

Dðm; lÞ ¼

Ua 0 0 0 � � � 0

U1 V1 0 0 � � � 0

0 U2 V2 0 � � � 0

..

. ..
. . .

. . .
. . .

. ..
.

0 0 � � � 0 UN VN

0 0 � � � 0 0 Vb

0
BBBBBBBBB@

1
CCCCCCCCCA
, (64)

where 0 is a null matrix of dimension 4� 4, and the blocks Ua and Vb are 2� 4 matrices that correspond to
the boundary conditions at xa and xb [see Eqs. (58)–(61)], respectively. They are:

Ua ¼
1 0 0 0

0 1 0 0

� �
, (65)

Vb ¼

�
nyrm

2

x2
b

nyr

xb

1 0

m2ðk2
þ 2D̄� nyrÞ

x3
b

�½k2
þm2ð2D̄� nyrÞ�

x2
b

1

xb

1

0
BBBB@

1
CCCCA. (66)

The linear system (63) has physical solutions for C should the determinant of D vanish. This gives us the
nonlinear eigenvalue equation

det½Dðm; lÞ� ¼ 0. (67)

The roots of Eq. (67) are the eigenvalues of Eq. (42) with the associated boundary conditions at x ¼ xa and xb.
We denote the eigenvalues by lm;n. They are indexed by the azimuthal wavenumber m and the root number
nX0 that indicates the number of the radial nodes of the corresponding eigenvector. We refer to n as the radial
wavenumber. Waves with m40 and mo0 are forward- and backward-traveling, respectively, and ring modes
correspond to m ¼ 0.

Once the root lm;n is found, we construct the adjoint of Dðm; lm;nÞ. Any column of adj½Dðm; lm;nÞ� is thus the
eigenvector Cm;n associated with lm;n [19] and we have

Dðm; lm;nÞ �Cm;n ¼ 0. (68)

According to Eqs. (51) and (62), the vector Cm;n contains the discretized mode shape cm;nðxkÞ ðk ¼ 1; 2; . . . ;
N þ 1Þ and its three successive derivatives. This is an interesting result because the derivatives of cm;nðxÞ,
which can then be used in the calculation of disk slope, bending moments and resultant shear forces, are
computed together with the displacement field and with the same accuracy. The vectors Cm;n are orthogonal.
Consequently, cm;nðxÞ make an orthogonal, complete basis set in the radial direction and the functions cmðxÞ

can be expressed as a linear combination of cm;nðxÞ in the following form:

cmðxÞ ¼
X1
n¼0

am;ncm;nðxÞ, (69)

with am;n being constant coefficients. They are determined using initial conditions.
An alternative way for the calculation of Cm;n is through the method of singular value decomposition

(SVD). Application of this method is recommended when a large N is needed to assure the convergence of the
eigenvalue equation. Implementation of the SVD technique is quite routine. After computing lm;n one can
decompose Dðm; lm;nÞ in the form D ¼ ET � S �G [20] where E and G are square matrices of the same
dimension as D, and S is a diagonal matrix whose elements are the singular values of D. The column of G
corresponding to the smallest singular value is the eigenvector associated with lm;n.
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5. Solved examples

To this end, we apply our numerical scheme to explore the normal modes of rotating disks which are
clamped to a central rigid hub. Our eigenvalue equation (67) depends on two geometrical parameters: xa and
a, two material properties: nyr and k, and the azimuthal wavenumber m. Without loss of generality, we set
xb ¼ 5 and vary the ratio a in our analysis. At first, we demonstrate our method for non-rotating and rotating
isotropic disks. This helps us to understand the influence of disk rotation on the radial eigenfunctions and
probe the accuracy of the collocation scheme. For our isotropic disks we set n ¼ 0:3. We then investigate a
class of orthotropic disks whose filaments are placed in the hoop direction. This implies k241. As our case
study we choose the graphite–epoxy composite with k2

¼ 40, Gry=Er ¼ 0:5 and nyr ¼ 0:25.
A preliminary investigation of the eigenvalue equation shows that the function det Dðm; lÞ½ � is oscillatory (in

terms of l) and its amplitude increases substantially as l is increased. Therefore, we adopt a hybrid technique
to capture all roots of the eigenvalue equation. We first isolate a root by a univariate search, then approach it
using the bi-section method. For higher eigenfrequencies, the bi-section method converges to the isolated
root so fast because the function det½Dðm; lÞ� varies steeply when l is large. For lower eigenfrequencies a few
bi-section steps is followed by Newton’s algorithm to speed up the convergency. We start our calculations with
N ¼ 50 and increase it until the relative accuracy falls below 10�6. For N ¼ 100 we have obtained credible
results and we do not observe a notable correction on the eigenfrequencies for a larger value of N ¼ 200.
Table 1 compares the eigenfrequencies computed using the collocation method (given N ¼ 100) with the
results of analytical equation (50) for a non-rotating isotropic disk with n ¼ 0:3 and a ¼ 0:2. It is evident that
the maximum relative error remains below 0:001, which shows the excellent performance of the collocation
method.

Fig. 1 shows the variation of eigenfrequencies versus the parameter a for rotating isotropic (left panels) and
orthotropic (right panels) disks. We have plotted lm;n for 0pnp2 and 0pmp3. As one could anticipate, in
both disks the eigenvalues increase as the radial and azimuthal wavenumbers are increased. Disk stiffening is
also a natural consequence of increasing the parameter a: all eigenvalues, independent of their radial and
azimuthal wavenumbers, are increasing functions of a [7]. Nevertheless, eigenfrequencies of higher azimuthal
wavenumbers have a robustness against the variations of a. This robustness is more visible for orthotropic
disks whose lm;n curves exhibit a flatness for small values of a as m increases. This property of orthotropic
disks is also inherited by their critical buckling load as discussed in Ref. [16] and references therein.

We have analyzed the mode shapes of rotating isotropic and orthotropic disks as the parameter a varies and
compared them with mode shapes of classical, non-rotating isotropic disks. Some of our results have been
illustrated in Figs. 2 and 3. Our plots display the eigenfunctions cm;n for 0pnp2 and 0pmp3. We have
normalized the maximum of each eigenfunction to unity. The eigenfunctions have some anticipated features as
far as boundary conditions and radial wavenumbers are concerned: they join the central rigid hub with a zero
slope, have a negligible curvature (but not zero) at the outer boundary due to the free edge, and the number of
their radial nodes is equal to n.

For a non-rotating isotropic disk with a ¼ 0:2 (left panels in Fig. 2) it is seen that radial eigenfunctions have
almost the same behavior for different azimuthal wavenumbers m. For the rotating disk of the same a ¼ 0:2
(right panels in Fig. 2) differences between mode shapes are more distinguishable. As the azimuthal
Table 1

The eigenfrequencies om;n of a non-rotating isotropic disk computed using analytical and collocation methods for n ¼ 0:3 and a ¼ 0:2

Analytical Collocation ðN ¼ 100Þ

m n ¼ 0 n ¼ 1 n ¼ 2 n ¼ 0 n ¼ 1 n ¼ 2

0 518.109 3229.125 9408.445 518.050 3229.835 9416.601

1 481.303 3452.569 9695.353 481.208 3453.252 9703.452

2 644.710 4195.926 10 612.556 644.625 4196.627 10 620.596

3 1261.468 5541.008 12 261.886 1261.481 5541.982 12 270.250
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Fig. 1. Variation of the eigenfrequencies lm;n ¼ om;n=O versus a for xb ¼ 5. Left panels: a rotating isotropic disk with n ¼ 0:3. Right

panels: a rotating orthotropic disk with k2
¼ 40, nyr ¼ 0:25 and Gry=Er ¼ 0:5. (a) n ¼ 0. (b) n ¼ 1. (c) n ¼ 2. (d) n ¼ 0. (e) n ¼ 1. (f) n ¼ 2.
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wavenumber increases, the local minima/maxima of cm;n are shifted to larger radii. The magnitude of such a
shift is larger for smaller values of a (left panels in Fig. 3). This property of radial eigenfunctions means that in
rotating disks each annular region is dominated by a single azimuthal wave. The physical reason for such a
distribution of local extrema is ascribed to the rotation-induced flattening of the disk, which is more effective
for large m and in the regions near to the hub. By increasing a, the overall bending stiffness of the disk
increases too, and the mode shapes are not affected by the disk rotation considerably. Mode shapes of
orthotropic disks (right panels in Fig. 3) show more flattening near the inner edge as m increases. The outward
shift of radial nodes is also significant. The trend shows that modes with high azimuthal wavenumbers must be
localized near the outer free edge.

The fundamental radial eigenfunctions ðn ¼ 0Þ exhibit another interesting feature, which is observed only in
rotating disks with small a. That is the negative curvature of c0;0 and c0;1 at intermediate radii. We have not
identified this feature for waves with m41. Figs. 2(d), 3(a) and (d) clearly show the transition from a negative
to a positive curvature as m increases. We have examined other k241 values that correspond to
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circumferentially reinforced composites. The general behavior of modes is similar to what we reported in
Fig. 3. However, mode shapes of radially reinforced composites with k2o1 have a different behavior. In Fig. 4
we have demonstrated cm;n for an orthotropic disk with k2

¼ 1=40, nry ¼ 0:25 and a ¼ 0:1. The material is the
same graphite–epoxy composite, but with radially stretched fibers. It is evident that dependency of mode
shapes on the azimuthal wavenumber m has become very weak and there is no sign of flattening near the inner
boundary for large values of m. This is because the fiber bundles look like radial flexible beams whose
interactions with their neighbors in the y-direction are negligible. In other words, a radially reinforced
composite shows little resistance against the propagation of circumferential waves of any wavenumber m.

6. Conclusions

We presented a fast and efficient numerical method based on the direct collocation of a fourth-order ODE
to calculate the eigenfrequencies and mode shapes of rotating disks. Our approach is superior to existing
methods in the literature because of two reasons. Firstly, the collocation scheme converges very fast by taking
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a few hundred grid points for all values of the parameter 0oao1. Secondly, mode shapes and their derivatives
with respect to the radial variable are calculated at the same time that we find the eigenvalues. Moreover,
boundary conditions of any type can easily be imposed through the 2� 4 matrices Ua and Vb. The only
technical (and time consuming) issue is to isolate the roots of the determinantal equation det½Dðm; lÞ� ¼ 0.
Since det½Dðm; lÞ� is an oscillatory function of l, we suggest to apply the steepest descent method to locate the
extrema of det½Dðm; lÞ�. Noting the fact that a root lies between a maximum and a minimum of det½Dðm; lÞ�,
the classical bi-section algorithm would then provide the most reliable (if not the fastest) route to the isolated
eigenfrequency.

Our displays of eigenfunctions for both isotropic and orthotropic disks unveiled a very important property
of mode shapes of rotating disks: the extrema of the radial eigenfunctions cm;n are shifted to larger radii as the
azimuthal wavenumber m increases. This effect is more prominent for orthotropic disks and for small values
of the geometrical parameter a. Higher order modes (waves) of orthotropic disks exhibit extreme flattening
over a vast region of the disk. The energy of these waves is thus concentrated near the outer edge. We call this
phenomenon the edge localization effect, which has significant consequences in nonlinear regime when modes
begin to interact and stochastic solutions occur in the phase space.
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So far, all investigators [1,2,4,7] have studied the interactions of a forward and a backward traveling wave of
the same azimuthal wavenumber m under the influence of an external point load of the form ðP0=r0Þdðr� r0Þd
ðy� OtÞ. The fundamental question that strikes our mind is whether in realistic rotating disks we can excite
waves of any azimuthal Fourier number by a prescribed r0. The answer to this question has become possible
by our visualization of mode shapes. As Fig. 3 shows, the extrema (and nodes) of cm;n with different azimuthal
wavenumbers do not occupy the same annular region. Therefore, we need regionally concentrated initial
(or dynamic) loadings to excite a prescribed circumferential wave. For a point load this means that our choice
of the pair ðm; r0Þ is highly constrained. An immediate implication is for the nonlinear development of double-
mode circumferential waves, specially for those of the form [1,2,4,7]

wðr; y; tÞ ¼ cm;nðrÞ½xnðtÞ cosðmyÞ þ ZnðtÞ sinðmyÞ�. (70)

Such a wave can be individually treated only if r0 is chosen in harmony with m. However, in a typical hard disk
drive, r0 is actually time-dependent and the aerodynamic force of the head is indeed a moving point load.
Thus, new families of circumferential waves are activated as the head moves in the radial direction. The excited
waves (with different m) gradually constitute groups of interacting waves and the disk dynamics enters to a
very complex epoch. Identification of regular and stochastic waves in these conditions is a new mathematical
challenge, highlighted by the present work. Composite disks with k2o1 do not suffer from the mentioned
consequences of the distribution of wave components in the radial direction because mode shapes associated
with a given radial wavenumber n overlap for all choices of m (see Fig. 4). Radially reinforced composite disks,
however, are susceptible to buckling and we do not suggest their application in the hard disk technology.
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