Available online at www.sciencedirect.com
- . . ]OURNAL OF
ScienceDirect SOUND AND

VIBRATION

ELSEVIER Journal of Sound and Vibration 314 (2008) 217-227

www.elsevier.com/locate/jsvi

He’s homotopy perturbation method to periodic solutions
of nonlinear Jerk equations

. % .o . .. 1
Xiaoyan Ma™, Liping Wei, Zhongjin Guo
Department of Mathematics, University of Tai Shan, Shan Dong 271021, PR China

Received 24 August 2007; received in revised form 11 November 2007; accepted 4 January 2008
Handling Editor: L.G. Tham
Available online 10 March 2008

Abstract

In this paper, He’s homotopy perturbation method is applied to nonlinear Jerk equations involving the third temporal
derivative of displacement. The result reveals that the first-order approximate period is identical to that obtained by the
harmonic balance method. However, the high-order analytical approximate periods and periodic solutions are more
accurate and in better agreement with the exact results. Thus, He’s homotopy perturbation method is very effective for
these third-order nonlinear differential equations.
© 2008 Elsevier Ltd. All rights reserved.

1. Introduction

The nonlinear Jerk equations involving the third temporal derivative of displacement have been widely
studied [1-5]. Recently, Gottlieb [5] has focused on the existence of periodic solutions in appropriate
parameter regions. He has investigated the lowest-order analytical approximations, via the method of
harmonic balance, to periodic solutions to these nonlinear Jerk equations. In this paper, we consider a Jerk
equation of the form

X = J(x, x, ¥). (1)

Consequent to restrictions on the existence of periodic solutions, we only consider the following cubic
nonlinear functions desired by Gottlieb: (I) xx&; (IT) x¥%; (IIT) x2x and (IV) %, with initial conditions x(0) = 0,
X(0) = B and %(0) = 0.

Later, He [6,7] proposed a new perturbation method, the so-called ““He’s homotopy perturbation method”,
which does not require a small parameter in the equation, but in which a homotopy with an imbedding
parameter p€[0,1] is constructed, and the imbedding parameter is considered as a “small parameter”. It takes
full advantage of the traditional perturbation methods and the homotopy techniques and yields a very rapid
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convergence of the solution series. Consequently, this method has been successfully applied to some nonlinear
oscillators and nonlinear problems [6-31].

In this paper, our goal is to apply this method to the Jerk equation. In Section 2, He’s homotopy
perturbation method is applied to the Jerk equation and we obtain the high-order analytic approximate
periods and periodic solutions. In Section 3, we compare the analytic approximate periods and periodic
solutions with the results obtained by the harmonic balance method, as well as with the exact results. Finally, a
brief conclusion is presented in Section 4.

2. General nonlinear Jerk function

The most general Jerk function, which is invariant under time-reversal and space-reversal and only cubic
nonlinear as specified above, may be written as
X 4 axxk + fri? + 0x°x + e’ +9x =0 )

where the parameters o, f8, 0, ¢ and y are constants.

2.1. Jerk function containing displacement times velocity times acceleration, and velocity

For function (I), and a linear term in the velocity is incorporated. The resulting standardized Jerk equation,
after rescaling of both x and ¢, is taken to be

X = xxk — X )
with initial conditions
x(0) =0, X(0) = B, ¥(0) = 0. )
Assume that the angular frequency is w, with the period T given by
T= Zg (5)

Gottlieb [5] gave the approximate result of frequency and period

| 2
w=-VB+4 T="" (6)
2 w

Now, we illustrate the solution of this problem given in Egs. (3) and (4) by He’s homotopy perturbation
method. We construct the following simple homotopy:

X+ 1x =pxxx, pel0,1], (7)

where p is a homotopy parameter. For p = 0, Eq. (7) becomes a linear differential equation and an exact
solution can be calculated. For p = 1, Eq. (7) becomes the original problem. Now the homotopy parameter p
is used to expand the solution x(¢) and the square of the unknown angular frequency w [15,16] as follows:

x(t) = xo(t) + px1(t) + p*x2(O) + PP x3(D + ..., (8)

1= —poy —pPoy —plog — -, ©)

where o;(i = 1,2,3,...) are to be determined.
Substituting Eqgs. (8) and (9) into Eq. (7) and equating the terms with identical powers of p, we obtain a
series of linear equations, of which we write only the first four

X0 + w’Xg = 0, x0(0) = 0, %0(0) = B, %(0) =0, (10)
¥ + 0% = 1% + XoXo¥o, x1(0) = 0, %1(0) = 0, ¥(0) =0, (11)

¥ + @’xy = X1 4 oo + xoX1 ¥ + XoXo¥t + X1XoXg, X2(0) = 0, X2(0) = 0, ¥2(0) = 0, (12)
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“ee 2 . . . . . . . . . . . . . . . .
X3+ ®°X3 = a1 X2 + 02X + A3X0 + XoX1 X1 + XoXoX2 + XoX2X0 + X[ XoX| + X1 X1 X0 + X2X0X0,

x3(0) = 0, x3(0) = 0, X3(0) = 0. (13)
The solution of Eq. (10) can be easily obtained:
B
xo(f) = — sin wt. (14)
1)
Substituting this result into the right-hand side of Eq. (11), we have
B’ B’
X 4+ o’x = (oclB — 4> cos wt + T cos 3wt. (15)

No secular terms in x;(¢) require eliminating contributions proportional to cos wt on the right-hand side of
Eq. (15): then oy = B*/4. According to Eq. (9), we obtain the first-order approximate frequency and period of
Egs. (3) and (4):

1 2
w1=\/1+a1=iv4+32, Tl:w_ﬂi' (16)

It is in agreement with Gottlieb’s result.
The periodic solution of Eq. (11) can be obtained as
: 1. A B
ty=D t — =sin 3wt D= .
x1(1) (sm w 3 sin 3w ), 207

Likewise, substituting Eqgs. (14), (17) into the right-hand side of Eq. (12) gives

(17)

B’wD
X> +602X2 = <OQB+OC]DCO _bo

5 13
> cos wt + (4BZwD - Dw> cos 3wt — ﬁBzwD cos Swt. (18)

No secular terms in x,(¢) require eliminating contributions proportional to cos wt on the right-hand side of
Eq. (18): then o = —BDw; /12. According to Eq. (9), we obtain the second-order approximate frequency and
period of Eqgs. (3) and (4):

/ 2n
wry =140 +ua= (1)%-{—0(2, Tzzw—z. (19)

The periodic solution of Eq. (12) can be obtained as
B’D
288w3

Substituting Egs. (14), (17) and (20) into the right-hand side of Eq. (13) and eliminating the secular terms in
x3(¢), we obtain the third-order approximate frequency and period of Egs. (3) and (4):

/ 2n
w3 =+/1+0 +or+0o3 = w%+oc3, T3:CLT3’ (21)

1
xa(t) = E<23 sin ot — 12 sin 3ot +?3 sin 5wl>, EA (20)

where

1 /1 19
o3 = 3 <EBD2(U% — TBzEa)z — oczDa)z).

2.2. Jerk function containing velocity times acceleration-squared, and velocity

For function (II), a linear term in the velocity is incorporated. The resulting standardized Jerk equation,
after rescaling of both x and ¢, is taken to be

¥=—Xxi — % (22)
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with initial conditions

x(0) =0, x(0) = B, x(0) = 0. (23)
Assume that the angular frequency is w, with the period T given by
2
=" (24)
)
Gottlieb gave the approximate result of frequency and period
2 2
w=—— T="" (25)
4—-B ®
We construct the following homotopy:
¥+ 1x = —pxi?, p [0, 1], (26)

where p is a homotopy parameter and used to expand the solution x(¢) and the square of the unknown angular
frequency w as follows:

x(t) = xo(2) + px1(t) + p2x2(t) + p*x3(0) + - - -, 27)

1= —poy —pPon —ploag — -, (28)

where o;(i = 1,2,3,...) are to be determined.
Substituting Egs. (27) and (28) into Eq. (26) and equating the terms with identical powers of p, we obtain a
series of linear equations, of which we write only the first four

¥ + w’Xo = 0, x0(0) = 0, X0(0) = B, %(0) =0, (29)
¥ 4+ w’x) = 01X — XoXg, x1(0) =0, X1(0) = 0, %(0) =0, (30)
¥ 4+ ¥k = 01X + aaXy — X1 X5 — 2X0XoX1, 2(0) = 0, X2(0) = 0, ¥»(0) =0, (31)

X3 4+ o X3 = o1 X2 4+ 00X + a3Xg — XoX| — 2XoXoXo — 2X 1 XX — X2X{,

x3(0) =0, x3(0) =0, X3(0)=0. (32)
Table 1
Comparison between approximate periods and exact periods for Egs. (3) and (4)
B T, T, (%error) T> (%error) T (error%)
0.10 6.275347 6.27534602 (—0.0000016) 6.27534683 (—0.00000027) 6.27534684 (—0.00000025)
0.20 6.252016 6.25200305 (—0.000021) 6.25201582 (—0.00000029) 6.25201599 (—0.000000016)
0.50 6.096061 6.09558510 (—0.00078) 6.09602457 (—0.0000598) 6.09605904 (—0.000003215)
1.0 5.626007 5.61985178 (—0.1094) 5.62454086 (—0.002606) 5.62579479 (—0.000377)
2.0 4.491214 4.44288294 (—1.0761) 4.46620532 (—0.5568) 4.48208113 (—0.20335)

For B = 0.1, the analytic approximate solutions are: xo(¢) = 0.099875sin w¢, w; = 1.00124922,

Xo(?) + x1(£) + x2(2) = 0.0999 sin w37 — 1.039 x 107 sin 3wsz + 2.80358 x 107 sin Sw3z, w3 = 1.00124908.

For B = 1: xo(t) = 0.894427 sin w;t, w; = 1.1180339,

Xo(£) + x1(2) + x2(£) = 0.918218 sin w3 — 0.00820016 sin 3ws7 + 1.6176 x 10~ sin Swsz, w3 = 1.1168529.
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Similarly, we just give the results for approximate periods and corresponding to periodic solutions of
Egs. (22) and (23)

B
xo(?) = o sin wt, (33)

2 2
601=\/1+0<1=47, T1=—n, (34)

(35)
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Fig. 1. Comparison between approximate solutions and numerical solution for Eqs. (3) and (4). Numerical: -, first-order approximate
solution; e, third-order approximate solution; *, for B=0.1 and 1.
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3 2
wy =1+ +02 = \/? —>BDw}, Tr="—2,
4 (00))

DB’
x2(f) = E(25 sin ot — 20 sin 3wz + 7 sin Sof), Eém,

/ 2n
w3 =+/1+0+0+0a; = w%—i—og, T3=E,

7 125
o3 = EDZ(J);‘ — TEB(,U%

2.3. Jerk function containing velocity-cubed and velocity times displacement-squared

(36)

(37)

(38)

For functions (III) and (IV), after rescaling of both x and ¢, the corresponding standardized Jerk equation

would take the form

X = —x(X* +x%)

with the initial conditions

x(0) =0, x(0) = B, x(0) =0.

Assume that the angular frequency is w, with the period T given by

r=2
w

Gottlieb gave the approximate result of frequency and period:

2n

1
w=—=\3B+ VB +16B>, T =".
2«/5\/ w

We construct the following homotopy:

Table 2

X+ 1x = p[x — x(X2 +x2)], p €0, 1],

Comparison between approximate periods and exact periods for Egs. (22) and (23)

(39)

(40)

(41)

(42)

(43)

B T, T, (%error) T> (%error) T5 (%error)

0.10 6.2753338 6.27532641 (—0.00001178) 6.27533376 (—0.0000000637) 6.27533377 (—0.0000000478)
0.20 6.251809 6.25169045 (—0.0001896) 6.25180767 (—0.000002127) 6.25180780 (—0.00000192)
0.50 6.088449 6.08366801 (—0.00785) 6.08812873 (—0.000526) 6.08815979 (—0.000475)

1.0 5.527200 5.44139809 (—1.55236) 5.50630772 (—0.37806) 5.50818960 (—0.34394)

1.5 4.690247 4.15593644 (—11.39195) 4.42685472 (—5.615744) 4.44735707 (—5.17861)

For B = 0.5, the analytic approximate solutions are: x(() = 0.4841 sin w,z, w; = 1.0328,

xo0(2) + x1(£) 4+ x2(7) = 0.488 sin w3t — 0.0013 sin 3wz + 1.3789 x 107> sin Swyz, w3 = 1.032.

For B =1: x¢(f) = 0.866 sin w;t, w; = 1.1547,

Xo(f) + x1(0) + x2(£) = 0.8945 sin w3z — 0.0101 sin 3cws + 3.9467 x 10~* sin Swst, w3 = 1.1407.
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where p is a homotopy parameter and used to expand the solution x(¢) and the square of the unknown angular
frequency w as follows:

x(t) = xo(t) + px1 () + p*x2(0) + pPx3 () + -+ -, (44)

I =@ —poy —pPag —plog — -+, (45)

where o;(i =1,2,3,...) are to be determined.
Substituting Eqgs. (44) and (45) into Eq. (43) and equating the terms with identical powers of p, we obtain a
series of linear equations, of which we write only the first three

Xo + @’% = 0, x0(0) = 0, %0(0) = B, %(0) =0, (46)

()

Time t

()

-1 ! ! ! ! ! ! ! ! ! !

15 2 25 3 35 4 45 5 55 6 65 7
Time t

Fig. 2. Comparison between approximate solutions and numerical solution for Egs. (22) and (23). Numerical: -, first-order approximate
solution; e, third-order approximate solution; *, for B=0.5 and 1.
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2. . . .3 7. . .
X1+ w X1 = X + o1 Xo — X5 — xp%0, x1(0) =0, X1(0) = 0, X;(0) =0, (47)
X, + 0)2)'62 = X| + o X + Xy — 356%561 — 2X0X0X] — )'clx%,

x2(0) =0,--- X2(0) =0, X2(0)=0. (48)

Similarly, we give the results for approximate periods and corresponding to periodic solutions of Egs. (39)
and (40):

xo(f) = B sin wt, (49)
w

1 2
o) =m\/332+\/934+1632, T, =", (50)
1

w

A B(1 -0}

. 1.
xl(t)=D<sm wt—gsm 3wt>,D= 3203 (1)

/ 2n
wry =140 +ou = w%—l—OCQ,Tz:— (52)

2
w2
where

BD Dw?’
=—(5+9w) ——1.
% 6601( + 0)1) B

3. Comparison with the exact results and that obtained by the harmonic balance method approximate results

In this section, we illustrate the accuracy of He’s homotopy perturbation method by comparing the
approximate results, which are obtained by the harmonic balance method, with the exact numerical results
obtained by solving the third-order differential equation with initial conditions using the computational
software ODE Workbench [32].

Table 3

Comparison between approximate periods and exact periods for Egs. (39) and (40)

B T. T, (%error) T> (%error)

0.10 25.359725 27.06599846 (6.728281) 24.51793815 (—3.319384)

0.20 17.495410 18.43863244 (5.391257) 17.09797854 (—2.2716327)
0.50 10.210761 10.46108252 (2.451546) 10.14660337 (—0.628333)
1.0 2n 27 (0.000000) 27 (0.000000)

2.0 3.508793 3.457325999 (—1.46680) 3.50968304 (0.002536598)
5.0 1.468638 1.43852659 (—2.050295) 1.46795542 (—0.00464771)
10 0.739762 0.72391989 (—2.1415443) 0.73929940 (—0.00625336)
20 0.370580 0.36255873 (—2.1645178) 0.37033273 (—0.00667253)

The analytic approximate solutions for B = 0.5: x((¢) = 0.8324664967 sin w;t, w; = 0.60062477,

x0(?) + x1(t) = 0.8708027 sin wyt — 0.0106486 sin 3wst, wy = 0.61924.

For B =5: xo(¢) = 1.144743 sin w;t, w; = 4.36779225,

xo(#) + x1(t) = 1.09806725 sin wyt + 0.014807 sin 3wst, wr = 4.28022896.
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3.1. Jerk function containing displacement times velocity times acceleration, and velocity

Gottlieb obtained the approximate period given in Eq. (6) in agreement with the first-order approxi-
mation (16). Table 1 compares the approximate periods 77, T, T3 corresponding to the exact period T,.
The relative errors are defined as (T — T,)/T. x 100. Fig. 1 shows that the approximate solutions and
numerical solutions for B = 0.1 and 1. The first-order approximate solution is x(¢) = x((#), the second-order
approximate solution is x(z) = xo(¢)+ x;(#) and the third-order approximate solution is x(¢) = xo(?)+
x1(2) + x5(2).

From Table 1, we find that the third-order approximate period 75 is more accurate than 7 obtained by the
harmonic balance method. As the amplitude B of velocity increases, the relative errors increase. Even when
B = 2, the relative error of third-order approximate period obtained by He’s method is less than 0.2034%, the

B=05

Fig. 3. Comparison between approximate solutions and numerical solution for Egs. (39) and (40). Numerical: -, first-order approximate
solution; @, second-order approximate solution; *, for B = 0.5 and 5.



226 X. Ma et al. | Journal of Sound and Vibration 314 (2008) 217-227

former result obtained by the harmonic balance method is 1.08%. It is also evident that the third-order
approximate solution is more accurate than the former result from Fig. 1.

3.2. Jerk function containing velocity times acceleration-squared, and velocity

Gottliecb obtained the approximate period given in Eq. (25) in agreement with first-order approxi-
mation (34). Table 2 compares the approximate periods 77, T, T3 corresponding to the exact period T,.
The relative errors are defined as (7' — T,)/T. x 100. Fig. 2 shows the approximate solutions and
numerical solutions for B = 0.5 and 1. The first-order approximate solution is x(7) = x((#), the second-order
approximate solution is x(#) = xo(¢f)+ x;(¢) and the third-order approximate solution is x(¢) = xo(?)+
x1(2) + x5(2).

From Table 2 and Fig. 2, the third-order approximate results are very accurate.

Particularly for B> 0.5, it is also evident that the high-order approximate results are more accurate than the
results obtained by the harmonic balance method. In this case, it should be noted that as B—0, we have T, 75,
T3—>2TC.

3.3. Jerk function containing velocity-cubed and velocity times displacement-squared

Gottlieb obtained the approximate frequency and period given in Eq. (42) in agreement with first-order
approximation (50). In Section 2.3, we only present the first- and second-order approximate results for
conciseness. Table 3 compares the approximate periods 7, 7> with the exact period 7,. The relative errors are
defined as (T — T.)/T. x 100. Fig. 3 shows the approximate solutions and numerical solutions for B = 0.5
and 5. The first-order approximate solution is x(7) = x¢(#) and the second-order approximate solution is
x(1) = xo(2) + x1(2).

From Table 3 and Fig. 3, we find that the second-order approximate results are more accurate than the first-
order approximations. It is apparent that if B =1 and w; = w, = 1, the approximate solution is satisfied
exactly. x(¢#) = sin ¢ is an exact solution of Egs. (39) and (40), as can be obtained to solve directly. The relative
errors of approximate periods are larger when B is apart from B = 1, and as B—0, we have T— o0, as B— o0,
we have T—0.

4. Discussion

In this paper, the Jerk equations involving the third temporal derivative of displacement are ana-
lyzed by He’s homotopy perturbation method. For a number of different types of appropriate functions (I)
xx%, (II) x¥%, (III) x*% and (IV) x°, the results for periods and periodic solutions were compared
with the results obtained by the harmonic balance method and numerical computations. It is found
that the first-order approximation is identical to the result obtained by the harmonic balance method.
However, the high-order approximations are more accurate and in better agreement with the exact results.
Thus, He’s homotopy perturbation method is very effective for these third-order nonlinear differential
equations.
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