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Abstract

A two-degree-of-freedom system with impact is considered. The symmetry of the system and its Poincaré map is
described. The symmetric period n—2 motion corresponding to the symmetric fixed point of the Poincaré map is obtained.
If the Jacobian matrix of the Poincaré map at the fixed point has a real eigenvalue crossing the unit circle at + 1, the
symmetric fixed point will bifurcate into two antisymmetric fixed points, which have the same stability via pitchfork
bifurcation. The numerical simulation shows that the symmetric fixed points may have pitchfork bifurcations and Hopf
bifurcations. While the control parameter changes continuously, the two antisymmetric fixed points will give birth to two
synchronous bifurcation sequences.
© 2008 Elsevier Ltd. All rights reserved.

1. Introduction

It makes extensively practical sense to research into the vibro-impact system having small clearances
between the moving components. The clearances exist inevitably between the parts of the machinery due to
various factors. The moving parts will collide with each other while the amplitude goes beyond the critical
value. Because of the existence of impacts, the dynamics of the system is discontinuous and strongly nonlinear.
On the one hand, impacts between the components take great disadvantage to the system, so the collision
should be tried to avoid when the optimization design of machinery with gaps is considered. On the other
hand, impacts between the components are often used to reach some special purpose.

The period-doubling bifurcation cascade in a vibro-impact system was observed numerically by Shaw and
Holmes [1]. Nonlinear dynamics and the bifurcation behavior associated with impact oscillators have been
studied in Refs. [2,3]. Virgin and Begley [4] described some interesting global dynamic behavior of an impact
oscillator with Coulomb damping. An algorithm was applied for the calculation of the Lyapunov exponents
for mechanical systems with impacts in Ref. [5]. Hopf bifurcations of symmetrical and antisymmetrical
motions are shown to exist in a two-degree-of-freedom vibratory system with impact in Ref. [6]. Dynamics of a
vibro-impact system is studied with special attention to interaction of Hopf and period-doubling bifurcations
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[7]. Xie and Ding [8] considered the Hopf—Hopf bifurcation of a three-degree-of-freedom vibro-impact system,
and proved that there exists the torus T' and T? bifurcation. Wagg [9] investigated the rising phenomena,
which occurs in sticking solutions in a two-degree-of-freedom impact system. Ben-Tal [10] shows that
solutions for a class of symmetric forced oscillators can be symmetric or non-symmetric, and solutions lose or
gain the symmetry at a bifurcation point as a physical parameter is varied. The periodic impact motions of
passengers in a vehicle traveling on rough terrain were investigated through a linear model of vehicle and
passenger systems in Ref. [11]. Luo and Chen [12] presented a piecewise linear system to model the vibration of
gear transmission systems, and studied the periodic motions of the system.

We show that the symmetry of the system has great influence on the dynamics of the system. As a general
rule, the symmetric fixed point undergoes firstly a pitchfork bifurcation and gives birth to two antisymmetric
fixed points, which have the same stability. As the parameter of the system changes continuously, the two
antisymmetric fixed points will produce two synchronous bifurcation sequences, respectively.

2. Mechanical model

A two-degree-of-freedom system subjected to periodic excitation is shown in Fig. 1. The system has two
masses M| and M,. M, and M, are connected to two rigid planes via two linear springs K; and K, and two
dampers C; and C», respectively. The excitations on both masses are harmonic with amplitudes P; and P,. The
excitation frequency 2 and phase angle 7 are the same for the both excitations. For the small amplitudes of the
excitations, the system undergoes simple oscillation and behaves as a linear system. However, as the
amplitudes increased, M, begins to collide with stops on M, and the system then becomes discontinuous and
nonlinear. The impact is described by coefficient of restitution R. It is assumed that the duration of impact is
negligible compared with the period of the force, and the friction between M; and M, is negligible, too.

When M, collides with M, at the right and the left stop, the coordinates of M, and M, satisfy the following
relationships:

X, — X, =1B. (1)
Between any two consecutive impacts, we have
X2 — XiI<B 2)

and the non-dimensional differential equations of motion are given by

X1 4+20% +x1 = (1 = f,) sin(wt + 1),
U X2 + 2u.(X0 + urxy = f5 sin(wt + 1), 3)

=

P,sin(QT+1)
—

———

B | | B
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M z k/2
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—

P;sin(QT+7T)
4

Fig. 1. Symmetric vibro-impact system.
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where the non-dimensional variables and parameters are

M, K, G 7 p,
um = 75 u = 7’ u = 77 = 7’
M, “TK e TP+ Py
M] C] Kl XiKl .
=0/ —, =————, t=T\/— xi= , i=1,2. 4
K, ¢ 2VK My M, P+ P @
The velocities of the two masses after impacting can be obtained:
X4 = axij— + bxp_,
Xoy = cXj_ +dxo_, ©)
where
1 - mR m 1 R 1 R m R
a = 7“3 = u ( + ), C = + s d — U . (6)
1 + wy 1+ up, 14+ u, 1+ u,

In Eq. (5), dot (-) denotes differentiation with the non-dimensional time ¢. x;— and X;; (i = 1,2) represent
the non-dimensional velocities of M; before and after impact, respectively. When M, collides with the right
stop of My, the non-dimensional displacements of two masses satisfy

Xy — X1 = by @)
and when M, collides with the left stop of M, we have
Xy —x1 = —by, (®)

where
KB
g P+ Py

©)

The general solution of Eq. (3) is given by
x1 = e (A4, cos(wai?) + A sin(wqi11)) + By sin(wt + 1) + B, cos(wt + 1),
Xy = e (A3 cos(wgrt) + Ay sin(wgrt)) + B; sin(wt + 1) + By cos(wt + 1), (10)

where

My =120 wm=a—p (11)
m

U, u

and A4; (i=1,2,3,4) are the integration constants determined by the initial conditions, B; are the amplitude
constants given by

_ (=0’ —=1)) B, — 2ol 1))
1 - b - b
(1 — 0?)? 4+ 4Cw? (1 — w?)* + 40?2
(uk - umwz)fz Z“ccwfz
= =— . 12
B (U — Um@?)* + 42 ?’ B (e — Un®?)* + 42 2 (12

3. Symmetric period n—2 motion

Suppose that M, collides with the right stop of M, at first, and the origin of the time coordinate is
displaced to this moment (¢ = ¢y = 0). Subsequently, after n/2 forcing period (¢ = t; = nn/w, and n is an odd
number), M, collides with the left stop. At the moment ¢ = t, = 2nn/w, M, collides with the right stop
once again. The periodic motion will be called symmetric period n—2 motion if all the following relationships
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are satisfied:

xi(t) = —x1(to), X14(t1) = =X14(t0), x2(t1) = =x2(t0), X4 (t1) = —X24(t0),
xi(t) = x1(tp), Xi14(2) = X14(t0), x2(t2) = x2(t0), X24(f2) = Xo4 (%), (13)

where x(#;) and X;.(#;) represent, respectively, the non-dimensional displacements and velocities of M;
(i =1,2) after impacting at ¢; (j =0, 1, 2).

Proposition 1. If there are initial conditions T = 19, x1(0) = X190, X1+-(0) = ¥19, X2(0) = X290, X2+(0) = y, Which
result in

x2(0) — x1(0) = by, x2(t1) — x1(t1) = —by,

x1(0) = —x1(#1),  x2(0) = —xa(11),

X1+(0) = —=x14(11) = —[ax1-(11) + bx2—(11)],

X24(0) = —x24.(11) = —[ex1- (1) + dX2-(11)],

|x1(1) = x2(0)|<by, 1 €[0,11], (14)

then the symmetric period n—2 motion of the system exists, and can be expressed by

(1), 0,
xi(f) = {X(Z) relbal i=1,2. (15)

—xi(t — ), t € [t1, 0]
Inserting the boundary conditions (14) into solutions (10), we obtain

w1 Ay =[] cos 19 + uy sin tp — Ulbf,
wrA; =1, cos 19 + up Sin 19 — Uzbf, (16)

such that the phase angle and the integration constants can be solved (see Appendix A). It should be noted
that the existence of the symmetric period n—2 motion requires the conditions:

(uywyp — u2w1)2 + (Liwy — lzwl)2 — (W — wzvl)zb_?->0,

Liwy = bwy 4+ (Wavg — wiv)br #£0, w1 #0, wy#0,

w0t on k=1.23....

k

4n

— =0,1,2.3... 1
w¢2k+160d2, k=0,1,2,3..., (17)

where u;, w;, I;, v;, (i = 1,2) are given in Appendix A, too.

Substituting the phase angle and the integration constants into solution (10), we obtain the symmetric
period n—2 solution:

e_cl[Al cos(mgit) + As sin(wgt)] + By sin(wt + 19) + By cos(wt + 19), t € [0, ],
= e {=[A4] cos(wai(t — 1)) + A5 sin(wa(t — t1))] + By sin(wt + 1)) + By cos(wt + 1), € [t1,1],
(18)

e M[Az cos(wapt) + Ay sin(wgrt)] + Bz sin(wt + t9) + By cos(wt + 19), ¢ €[0,1],
2T e 1[4, cos(waa(t — 1)) + A sin(waa(t — 11))] + By sin(wt + 1) + By cos(wt + 1)), 1 € [11, 1],

(19)
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where the integration constants A, and A, (i=1,2,3,4) are the functions of the initial conditions
(%10, X20, X20, 7o) and (X}, X5, X5, Tp), respectively:

Ay = — By sin 1) — B, cos 1 + X2 —i—bf,
1 .

Ay = o ((={B+ wBy)sin 19 — ({B> + wBy) cos 19 + {x29 + Lby),
d1

A3 = — B3 sin T9 — B4 cos 19 + X0,
1 . .

Ay = o ((—nB3 + wBy) sin 19 — (1B + wBs3) cos 19 + 7x20 + X2, (20)
d2

Ay = — By sin 15 — B, c0s 1, + x5, — by,

1 . ’ / ./
Ay = o [(—=(By + wBy)sin 1) — ({B + wBy) cos 1] + (xhy + X}y — Lby,

/ : / / /
A5 = — B3 sin 1y — B4 cos 1 + X5,

on [((—nB3 + wBy) sin 1 — (1Bs + wB3) cos 1 + 171xh, + X)) (1)

and the two sets of initial condition satisfy

(x/]()y x/203 x/z()a T()) = (_xlo, —X20, _).C209 70 + nTC). (22)

4. Poincaré map and its symmetry

Eq. (3) can be rewritten as

xl == yl ’
)’/1 = —X] — 2Cy1 —+ (1 —fz) Sin(wl + T),
)'CZ = y25
o -
Yo = (cuexy — 2uly, +f; sin(or + 7). 23)
Equivalently,
X =F(X, 7). (24)
where X = (x, ¥y, X2, )’2)T» and
2
F (x, ‘+ 5”) = F(X, ). (25)

Eq. (5) can be rewritten as

Vig =ay,_ +by,_,

Yoy = yi- +dyy, (26)
where y;_ = X;_, y;, = Xix (i = 1,2) denote the non-dimensional velocities of M; before and after impacting,
respectively.

The phase space of the vibro-impact system is
R4 X Sl = {(xlaylﬂx2,y27 t)‘(xlayl’xzayz) € R45 te Sl }7 (27)

where S' is unit circle. And the Poincaré section is chosen as

I, = {(xl,yl,xz,yz,t) e R* x Sl‘xl — Xy = —bf}. (28)
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Subsequently, we define a transformation R : R* x S'—R* x S!:

R: (x1,1, X2, 9, > (—xl, —Y1,—X2, =V, t + %) (29)
and a section:
II, = {(xl,yl,xz,yz, HeR*xS'x —x, = bf} (30)
Due to teS', we have
R>=1 (31)
and
RIT, =1L,
RIT, = IT;. (32)
Where 1 is the identical transformation. According to Egs. (23), (24) and (29), we obtain
RF(X) = F(RX). (33)

Proposition 2. If X(Xo.,7) (t = to+At) is the solution of Egq. (23) which set out from the starting point
Xo = (X10, V10> X20, V29 0) € 1, and X(X1,t + (nn/w)) is the solution of Eq. (23) which set out from the starting
point X; = RXyell,, we have

x(xl, [+ @) — RX(X, 1), (34)
)
Equivalently,
X(Rxo, to + A + %) — RX(Xo, 70 + A?). (35)
Proof. According to Eq. (33), we have
%RX(XO: 1) = RX(Xo, 1) = RF(X(Xo, 1)) = F(RX(Xo, 1)). (36)
Then RX(X,, ?) is the solution of Eq. (23).
Furthermore,
RX(Xy, 70) = RX(Xo, 1 + A1)|,,_, = RXp = X. (37)

Then we prove Egs. (34) and (35) according to the uniqueness theorem of solution. [

Supposing that it takes A¢; time for the solution starting from X, eIl to reach the section Il,, and it takes
At, time for the solution starting from X; = RX, eI, to reach the section I, then we can consider A¢; and
At, as the minimum positive roots of the following two equations, respectively:

x2(Xo, o + A1) — x1(Xo, to + Aty) = —by, (38)
XXy, 11 + An) — x1(Xy, 1) + An) = +by, (39)

where
X, = RX, (40)

and t; = 7+ (nn/w). According to Egs. (36) and (37), At; and Af, can be expressed as the following functions:

Aty = Ati(x10, 105 X205 Y205 10)s
Aty = Atr(x11, Y115 %21, V215 11)- (41)
Considering Eqgs. (35) and (36), we obtain
R(x2(Xo, 19 + Aty) — x1(Xo, o + At1)) = x2(Xy, 1 + Aty) — x1(Xy, £ + Aty) = +by. (42)
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According to Egs. (37) and (40), we have
Aty = At,. (43)

(¥1, X2, ¥2, 1) are chosen as the coordinates of the Poincaré section. Supposing Q; represents the map from
IT; to IT,, and Q, represents the map from I, to I, and defining Q, : Xo—X;, where

Xo = (V10> X20, ¥20» f0) € I},
Xl :(yllax217y219zl)€1_[23 (44)

we have

i1 = ay;(Xo, to + Aty) + by, (Xo, 1o + Aty),
X1 = x2(Xo, o + Aty),
Va1 = ey (Xo, to + At) + dy,(Xo, 1o + Aty),

2
t = to+ Aty (mod E”) . (45)

Defining Q, : X;+—X, where
XZ = (y]2a X22:y229 ZZ) € Hlo (46)

we have

Yo = ay (X, 1 + An) + by, (X, 11 + An),
X2 = x2(X1, 11 + Aty),

t + A, <m0d 2(Z> . 47

15}

The Poincaré map can be given as

P=Q,0Q,, P:ILII. (48)

Proposition 3. The Poincaré map has the symmetry property:

RoQ;=Q,0R. (49)
Proof. According to Egs. (35) and (45), for XoeIl;, we have

Ro QI(XO)
= R(ay,(Xo, to + At1) + by,(Xo, 0o + Aty),  x2(Xo, o + Aty), ey (Xo, o + Aty)
+ dy,(Xo, to + Aty), to + Aty)
= (ay, (X1, t1 + At) + by,(Xy1, 11 + A1), x2oXi, 11 + A, oy Xy, + Aty)

+ dy,(X1, 11 + Aty), 1] + Aty). (50)
According to Egs. (40) and (47), we obtain
Q; o R(Xo)
= Qux(X1)

= (ay, (X1, 11 + Atr) + by, (X, t1 + A),  x2(Xy, 11 + At),  cy(Xi, 11 + Aty)
+dy,(Xi,t1 +A), 1 +An)
=R o Q(Xp), (51)

such that Eq. (49) is proved. [
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Eq. (49) can be rewritten as

Q,=RoQ,oR™. (52)
Introducing a map
Q,=R'0Q, (53)
we obtain the Poincaré map follows:
P=Q,0Q =RoQoR"0Q =R oR"'0Q)=0Q; (54)

5. Stability and bifurcations

If X, eI, satisfies P(X() = X, then X is a fixed point of the Poincaré map P. If the fixed point X, satisfies
Xo =R 0Q,(Xy), (55)
then X, is said to be a symmetric fixed point of P.
Proposition 4. If X, is a fixed point of the Poincaré map, and
Xp =R 0 Q(X,) #X,, (56)

then Xp is also the fixed point of the Poincaré map, and X, and Xg have the same stability (X, and Xg are said to
be a pair of antisymmetric fixed point which corresponds to a pair of antisymmetric period n—?2 motions).

Proof. Substituting formula (50) into Eq. (48), we have
P(Xp) = Q;(Xp) = R0 Q)’(Xp) = R™' Q) o (R 0 Q))’(X)

= (R0 Q)(X,) = Xy, (57)
then Xp is also the fixed point of the Poincaré map, and
DP(X,) = D(R™' 0 Q))(Xs)D(R™' 0 Q)(X,) = BA, (58)
DP(X;) = D(R™' 0 Q)(X,)D(R™' 0 Q)(Xp) = AB, (59)
where
A=DR "0 Q))(X,), (60)
B =DR'0Q)(Xp). (61)
Due to det A#0 for nondegenerate fixed point, we have
BA = A"'(AB)A. (62)
Equivalently,
DP(X,) = A™'(DP(Xp))A, (63)

then DP(X,) is similar to DP(Xy), and both the Jacobian matrices of X, and X; have the same set of
eigenvalues. Hence, we arrive the conclusion that the two antisymmetric fixed points X, and X; have the same
stability. O

6. Computation of the Jacobian matrix
At the instant after impacting, the non-dimensional time is always set to zero, and the phase angle has a

corresponding change at the same time. So the coordinates (y19, X29, 20, Zo) Of the fixed point are translated
into (19, X20, 20, To) in the following computation.
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The Poincaré map is a composition of following four sub-maps: (I) The map from the instant after
impacting at the right stop (z = 0) to the instant before impacting at the left stop (¢ = ¢;). (II) The map of
impacting at the left stop (¢ = ;). (III) The map from the instant after impacting at the left stop (¢ = #;) to the
instant before impacting at the right stop (¢ = ¢,). (IV) The map of impacting at the right stop (¢t = t,). The
four sub-maps above can be expressed follows:

Py (X14(0), x2(0), X24(0), 7(0)—> (X1 (1), x2(21), X2 (11), T(21)),
Py 2 (X1-(21), x2(11), X2 (01), T(21)> (X154 (21), X2(11), X2 (21), T(21)),
P3 : (X14(71), x2(11), Xo4-(11), T(21)=> (X1 (22), X2(22), X2-(12), T(12)),

Py : (G1-(12), x2(12), X2 (12), T(12))=> (X14(22), X2(12), X24.(£2), T(22)). (64)
Let DP;, DP,, DP; and DP, represent the linearized matrices of sub-maps Py, P,, P; and Py, respectively:
[ann ann a3 au bt b b1z bis
Ay axp axn ax by by by by
DP] = 5 DPZ = s
ay ax az; A by bz byz by
| as an a3 am bar by baz bus |
[ci1 cin ez cua di din diz dig]
1 € 3 C4 dy dy dy dxn
DP; — . DP, = . (65)
€31 €3 €33 C34 dyi dn dy dy
| Ca1 o ca3 cm dy dyp duz das |

The Poincaré map can be expressed as

P =Ps0P30P;0P; :(x11(0), x2(0), X21.(0), 7(0))=> (14 (12), X2(£2), X2 (12), 7(12)) (66)
and its Jacobian matrix can be expressed as
DP = DP,DP;DP,DP;. (67)
For maps (II) and (IV), we have the following formula according to the impact law:
a 0 b 0
DP, = DP, = 0100 (68)
¢c 0 d 0
0 0 0 1
and for map (I), we have
DP; (X)) = [ap“} . hj=1,2,3,4, (69)
0X o (X10,X20,X20,%0)

where Xj; denote the coordinates (X1, X20, X20, 7o), respectively, and Py; is the component of P;(X,) given as
follows:
X) = e (A (= cos(waity) — war sin(wai11)) + Ax(=( sin(wait)) + ©a1 cos(waitr)))
+ By cos(wt + 19) — Brow sin(wt) + 1¢)
= Pu(Xo), (700)

X/z =e " (A3 cos(wart)) + As sin(wagaty)) + B; sin(wt; + 1) + By cos(wt) + 1¢)
= P12(Xo), (70b)
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= e " (A3(—n cos(watr) — war sin(warth)) + As(—1n sin(waat) + 0 cos(warth)))
+ Biw cos(wt) + 19) — Byw sin(wt| + 1)
P3(Xo), (70¢)

.
|

T = wt) + 19 = P14(Xo), (70d)
where the function ¢ = #;(X¢, X20, X20, T9) 1S the solution of the following equation:

G(t1, X10, X20, %20, T0) = € 1" (A3 cos(wart1) + Aa sin(waaty)) + Bs sin(wt; + 19)

+ B4 cos(wt; + t9) — e (4, cos(wgit)) + A sin(wgty))

— By sin(wt) + 1) — By cos(wt; + 1) — by = 0. (71)
(a) (b) (c)
0.1 0.4
0
59 03
-0.1
5 \
0.2 3 0.2
° = ’/ 2
45 03 |
b,;=0.2570] b_.¢1=0.2570| 0.1 ,@
-0.4 | T
41 [ba-0.194618 4 ba-0.194618] | 0
AT~ =0.0008) 05 I | [pT=%0.0008) ! AT~ £0.0008]
015 02 025 03 035 015 02 025 03 035 015 02 025 03 035
bf bf bf

Fig. 2. The bifurcation diagrams: u,, = 1.5, u. =1, ux = 1, { = 0.0001, /> = 0.2, R=0.8, w = 2.2: (a) by—7, (b) b—y, and (c) by—x,.

(a) (b)
0.1754 |  (AT=-0.0008](+T--0.0008] o o H] the initial
-+ ) map point
- 0.165 the fina] :
. . map point
0.1754 ] [the final
- || /map point] ¥ 0.16 .
o the final |
0.1753 o ] 0455 @P point|4-

[AT = +0.0008][AT = -0.0008)

X3

0.15
4836 4.838 484 4842 4.844 4846 4 45 5 55
T T
(] (d)
0.25 [AT = 10.0008][AT =-0.0008| 06
05
0.2 0.4
0.3
< 0.15 T )
the initial 0.2
point
0.1
0.1
0
-0.1
0'054 45 5 55 6 4.4 46 48 5 52 54
T T

Fig. 3. On the coordinate plane (z, x»): (a) by= 0.2, (b) by=0.18, (c) by=0.155 and (d) b, = 0.285.
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Considering Egs. (69) and (70), we can obtain the entries of the matrix DP; (see Appendix B) using the
implicit function theorem. Subsequently, we can obtain the entries of the matrix DP; by replacing
(%10, X20, X20, 70) in DPy with (=X19, —x20, —X20, T0 + 17).

7. Numerical simulations
7.1. Bifurcations with the first set of system parameters

The vibro-impact system with parameters: (1) u,, =15, u.=1, =1, { =0.0001, /,=0.2, R=0.8,
® = 2.2, have been chosen for analysis, and the non-dimensional clearance byis taken as a control parameter.
All eigenvalues of DP(X) are computed and listed in Appendix C. With by = by = 0.194618, there is a real
cigenvalue of + 1, and the other three eigenvalues lie inside the unit circle, so by, is the critical parameter value
of pitchfork bifurcation. As b increases to by = by, = 0.2570, there is a pair of complex conjugate eigenvalues
crossing the unit circle, and the moduli of the other pair of complex conjugate eigenvalues is less than 1, hence
by is the critical parameter value of Hopf bifurcations.

Bifurcation diagrams are shown in Fig. 2. Indeed, we can find that by = b1 = 0.194618 is the critical
parameter value of pitchfork bifurcation, and by = by, = 0.2570 is the critical parameter value of Hopf

(a) (b) o (©
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bifurcation. There is a stable symmetric fixed point of the Poincaré map for by € [b/-d,bfczj. If by<bye,
pitchfork bifurcation takes place. If b,> b, Hopf bifurcation occurs.

The projections of Poincaré map on the coordinate plane (t, x») are represented in Fig. 3. In Fig. 3(a), it is
shown that the Poincaré map has a stable symmetric fixed point (4.8402,0.1754) with by = 0.2 € Lbﬁ,l,bﬁ,zj.
With b= 0.18 <by, pitchfork bifurcation has taken place. We can compute one unstable symmetric fixed
point (4.8333,0.1678) when by = 0.18 <by.;. If we add a small perturbations At = +0.0008 to the unstable
fixed point (4.8333,0.1678), respectively, we obtain two initial points. Iterate the two initial points,
respectively, we reach two stable antisymmetric fixed points (4.4654,0.1670) and (5.2174,0.1552), see Fig. 3(b).
As bydecreases to by = 0.155, the two stable antisymmetric fixed points are transformed into two Hopf circles,
respectively, as shown in Fig. 3(c). However, with b, = 0.285<by., there will be Hopf bifurcation of the
symmetric fixed point, as shown in Fig. 3(d).

7.2. Bifurcations with the second set of system parameters

7.2.1. Eigenvalues of the Jacobian matrix

The vibro-impact system with parameters: (1) u,, =1, u.=1, u, =2, {=0.0001, /=02, R=0.38,
by=0.08, are considered, and the frequency w is taken as a control parameter. The eigenvalues of the
Jacobian matrix are computed for we[1.65,3.5]. All the eigenvalues and their moduli are listed in Appendix D.
The stability and bifurcations of the fixed point can be determined by the moduli of the eigenvalues.

With v = w.; = 1.658205, there is a real eigenvalue of + 1, and the other three eigenvalues lie inside the unit
circle, then w., is the critical parameter value of pitchfork bifurcation, so is w = w., = 3.00207. When
w = 1.6500 <w,, all eigenvalues lie inside the unit circle, hence the symmetric fixed point is stable. However,
with w e[w.1,w.>], there is a real eigenvalue being outside the unit circle, and the remainders of the eigenvalues
are strictly inside the unit circle. Then there will be two antisymmetric fixed points bifurcated from the
symmetric fixed point via pitchfork bifurcation.

With welwe,w.;3], all eigenvalues lie inside the unit circle and the fixed point is stable. However, as o
increases and passes through w = w.; = 3.4205, there is a pair of complex conjugate eigenvalues crossing the
unit circle, and the moduli of the other pair of complex conjugate eigenvalues are less than 1, so w3 is the
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critical parameter value of Hopf bifurcation. With further increasing parameter w, there will be a Hopf circle
bifurcated from the symmetric fixed point.

7.2.2. Bifurcation diagrams

The bifurcation diagrams as we[1.6,3.2] are represented in Fig. 4. Let the initial perturbation be
Atg = —0.0008, we obtain the bifurcation diagrams Figs. 4(a)—(c). With Atqg = +0.0008, the bifurcation
diagrams are Figs. 4(d)—(f). If the two cases above are considered at the same time, the bifurcation diagrams
are Figs. 4(g)—(1).
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As Figs. 4(g2)-(1), ® = w.; = 1.658205 is the critical parameter value of the pitchfork bifurcation indeed.
When w e[w.1,0.], there may be two antisymmetric fixed points, and both of them are stable.

It should be noted that the system settles into chaotic motion via period-doublng bifurcations nearby
w = 2.3. However, the Poincaré map resumes two stable antisymmetric fixed points for w>2.405. When o
increases to w = w., = 3.00207, the duration of pitchfork bifurcations ended, and the Poincaré map has only
one stable symmetric fixed point with we[w,w.3].

The bifurcation diagrams with we[1.6,4.5] are represented in Fig. 5. Figs. 5(a)—(c) show the bifurcation
diagrams on Iy, and Figs. 5(d)—(f) represent the bifurcation diagrams on both Il; and IT,. The symmetric fixed
point is stable with we[1.61,w.1], and pitchfork bifurcation takes place with w €[w.;,®.»]. The symmetric fixed
point restores the stable property with we[w.,w.3]. However, with w>w.3, there may be a Hopf circle
bifurcated from the symmetric fixed point. It should be mentioned that the bifurcation diagram on Il; and on
IT, are exactly symmetric, see Figs. 5(d)—(f).

7.2.3. Phase diagrams

The phase diagrams on the coordinate plane (r, x,) are represented in Fig. 6. As seen in Fig. 6(a),
whether the initial perturbation be Aty = —0.0008 or 0.0008, we can obtain a stable fixed point
(4.7558,0.4606). However, when w increases and goes beyond o = w.; = 1.658205, pitchfork bifurcation
takes place. For example, the coordinates of the unstable symmetric fixed point are (4.7627,0.3718) with
w = 1.745. If we add a perturbation At = —0.0008 to this point and iterate it, we obtain one stable
antisymmetric fixed point (5.4926,0.2785). However, If we add a perturbation At = +0.0008 to the initial
point, we obtain another stable antisymmetric fixed point (3.8834,0.2564), see Fig. 6(b). As w increases to
w =22, both of the two stable antisymmetric orbits undergo the first period-doubling bifurcation
simultaneously, and the second period-doubling bifurcation takes place simultaneously nearby w = 2.22,
see Figs. 6(c)—(d). Fig. 6(e) is a local magnification to Fig. 6(c). When w increases to w = 2.226, the four stable
fixed points are transformed into four Hopf circles, see Fig. 6(f). With further increasing w, the non-periodic
motion, or chaos will occur via the Hopf circle doubling, as shown in Figs. 6(g)—(i). Fig. 6(h) is a local
magnification to Fig. 6(g).

When o increases to o = w,, = 3.00207, the duration of the pitchfork bifurcation ended, and the Poincaré
section has only one stable symmetric fixed point with we[w.,w.3]. For example, a stable symmetric fixed
point (4.8471,0.1029) can be obtained whether the initial perturbation Aty = —0.0008 or Aty = 0.0008 is
chosen with w = 3.1 €[w.»,w.3], see Fig. 6(j). However, as w increases and passes through o = w.3 = 3.4205,
Hopf bifurcation of the symmetric fixed point takes place, and Fig. 6(k) represents a Hopf circle bifurcated
from the symmetric fixed point for @ = 3.5.

8. Conclusions

In this paper, a two-degree-of-freedom vibro-impact system with symmetry is considered. The symmetric
period n—2 motion and the Poincaré map of the system are derived analytically, and the symmetry of the
Poincaré map is studied. It is shown that one symmetric fixed point may bifurcate into two antisymmetric fixed
points, which have the same stability via pitchfork bifurcation. And the two antisymmetric fixed points
correspond to two antisymmetric periodic motions of the system, respectively.

The numerical simulation shows that there may be pitchfork bifurcations and Hopf bifurcations in the two-
degree-of-freedom vibro-impact system. If the Jacobian matrix of the Poincaré map has a real eigenvalue
crossing the unit circle at + 1, the symmetric fixed point could be transformed into two antisymmetric fixed
points via pitchfork bifurcation, and both of them have the same stability. While the control parameter of the
system changes continuously, the two antisymmetric fixed points will give birth to two synchronous
bifurcation sequences, respectively.

For the symmetric fixed point, it may be a very special case that period-doubling bifurcations
takes place. Both pitchfork bifurcations and Hopf bifurcations of the symmetric fixed point have
been observed frequently, but period-doubling bifurcations of the symmetric fixed point have not been
obtained yet.
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Appendix A. The phase angle and the integration constants

uwy — upw £ \/(ulwz —wyw1)* + (Lywy — Lwy)* — (w03 — wzul)zbj%

To = 2tan” , A.l
0 Liwy — Lhwy + (wpvy — lez)bf ( )
A= lico + u1so — viby _ leo + uxsg — vzbf’ Ay = pA,
wi w2
Az = A1+ (B1 — B3)so + (By — By)co + by, A4 = qAs, (A.2)
where
so = sin(tg), c¢o = cos(tg), S = sin(mm)dl),
¢ = cos (mm)dl), sy = sin (mw)dz)’ ¢y = Cos (nnwdz)’ (A.3)
) ) )
wi = { — pwgi + aei(hy — phy) + bea(hs — haq),
Wy =1 — qgy + cei(hy — phy) + dex(hs — hagq),
11 = (—a + l)Blw — bB3w + bez(—h3 + /146])(32 — B4),
[y = (=d + 1)Bso — ¢B1w + (—n + qoaz + dex(—hs + haq))(By — By),
uy = (=1 + a)Byw + bByw + bey(—hs + haq)(B; — B3),
Uy = (=1 + d)Byw» + cByw + (=1 + qaz + dea(—h3 + haq)) (B — B3),
v1 = bes(hs — haq),  v2 =0 — quaz + des(h3 — hagq), (A.4)
where
s — 1+e; Cg=-— 14+ e e = e m) )  mnm/e)
€151 €0
hy =ler+oast, h=-=0{si+wac, hy=nc+wans:, hy=—nsy+ wapnc. (A.5)
Appendix B. The entries of the matrix DP,
1 . .
ang = ——e (=L sin(waith) + oar cos(wa1t1)) +p,y (— q—l),
Wd1 /’l
ap =eh <(—C cos(wgitr) — wg sin(wgitr)) + widl(—f sin(wgi 1) + wa COS(wdlll)))
_@)
+pl ( h s
a3 =py (— %),
ais = e (= Bicy + Brso)(—{ cos(wait1) — wa1 sin(wartr)
1 .
+ w—dl((—CBl + wBs)cy + ({By + wB1)so)(—{ sin(wgi 1) + wa1 cos(wailr)))
— Bio sin(wt; + 19) — Byw cos(wt) + 10) + p; (— %), (B.1)
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axy =Py (— %>,

an =e M <COS(wd211) +— sin(wd2t1)> +p (— 2)
(OF)) h
1 .
ay = —e "sin(wnt) + p, (— _q3)’
Wy h

1
ay =e <(—B3Co + Buyso) cos(wartr) + w—((—ﬂ& + wBy)cy
@2

+(nBs+wBs)soy) sin(wat)) + Bsy cos(wty + 19) — By sin(wt) + 19) + ps (— q4>’

h
aszr = p3 (—%),

azp =e M <(_;7 cos(waat) — wgn sin(wgrty)) + —w’zlz (—n sin(wgty) + wg cos(wdztl))) + ps3 (— %),
1 _ .
asy = —e (= sin(want)) + 0z cos(wantr)) + ps <— @),
Wq2 h

azy = €"((—=Bscy + Byso)(—n cos(waty) — way sin(wgai)

1 .
+w—dz((—’l33 + wBy)co + By + wB3)so)(—1n sin(waty) + wa2 COS(wdztl)))

— Byw sin(wt) + 19) — Bsw cos(wt + 19) + ps (— %),

44

a4y =——70, Ap=—-""0, a=——0, ayu=1——"w

pl_ al_

+ A (( sin(aity) — a1 cos(wqit))) + A1 ({ogr sin(wa 1) — o) cos(wat))

+ Ax(—Lwar cos(wait))—wj; sin(wait))]

et [E(A1(C cos(wgrtr) + waqy sin(wgtr))

— Bio* sin(wt) + 19) — Bro? cos(wty + 19),
oP _ )
P2 = 6—;1 = e " (—n(A4; cos(warty) + Ag sin(wartr))
Fwpn(—As sin(wgt)) + Aq cos(wart))) + Byw cos(wt + 19) — Baw sin(wt; + 19),

0Py .
P3= 6113 = e "M [n(A3(n cos(wartr) + war sin(wgnty))

+A44(n sin(wantr) — 0a cos(@ath))) + Az (nwa sin(wantr) — ol cos(watr))

+ As(—noan cos(codztl)—w§2 sin(wdztl))] — Byo? sin(wt; + 19) — Bsw? cos(wt) + 19),

oG |
@=7=——¢ 0 sin(wart),

X10 W1

oG - n . _tt ( .
Gh=—=¢e cos(@aptr) + ——sin(wartr) | — e cos(wait1) + ——sin(war 1) ),

o on W1

oG :
s =—e " sin(wat),

0X2 wn
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oG 1
qa= 3= e " ((—3300 + Baso) cos(wartr) + ——((—n B3 + wBa)co
T0 Wd2
+(nBs + wB3)so) sin(wa211)), (B.6)
oG o .
h= o5 = °C [—n(A3 cos(warty) 4+ Ag sin(waaty))

+oa(—4; sin(want) + As cos(wantr))] + e LA cos(wg1tr) + Aa sin(watr))
—wg1(—A; sin(wgit1) + Az cos(wait))] + (Bzw — Biw) cos(wty + 19)
+ (Byw — Byw) sin(wt) + 19). (B.7)

Appendix C

The eigenvalues of the Jacobian matrix: u,, = 1.5, u. =1, up =1, { = 0.0001, /=02, R=0.8, 0 = 2.2 (by
is taken as a control parameter).

by 0.155 0.18 0.194618 0.2 0.2570 0.285
A 2.7226 1.6250 1.0000 0.6283 +0.1266i 0.0304+0.6390i —0.1570+0.6183i
A2 0.1590 0.2529 0.4180 0.6283—0.1266i 0.0304—0.6390i  —0.1570—0.6183i

A3 —0.8310+0.5525; —0.8302+0.5538; —0.8278+0.5611i —0.8295+0.5551i —0.8278+0.5611i —0.8279+0.5659i
A4 —0.8310—-0.5525;  —0.8302—-0.5538i 0.8278—0.5611i  —0.8295—-0.5551i  —0.8278—0.5611i  —0.8295-0.5659i

|41 2.7266 1.6250 1.0000 0.6409 0.6390 0.6379
[ 0.1509 0.2529 0.4108 0.6409 0.6390 0.6379
i3] 0.9979 0.9979 0.9980 0.9981 1.0000 1.0028
|4l 0.9979 0.9979 0.9980 0.9981 1.0000 1.0028
Appendix D

The eigenvalues of the Jacobian matrix: u,, = 1, u, = 1, u = 2, { = 0.0001, = 0.2, R= 0.8, by = 0.08 (w is
taken as a control parameter).

w 1.6500 1.65820 1.8000 3.00207 3.1000 3.4205 3.5000
A1 0.6236+0.1845;  1.0000 3.0402 1.0000 0.5603+0.3143;  0.1438+0.6234i  0.0564 +0.6356i
A2 0.6236—0.1845i  0.4203 0.1385 0.4133 0.5603—0.3143;  0.1438—0.6234i  0.0564—0.6356i

Az —0.0862+0.9795i —0.1041+0.9779i —0.4202+0.8917i —0.8299+0.5489i —0.7823+0.6158i —0.6164+0.7874i —0.5749 +0.8213i
g —0.0862—0.9795i —0.1041—-0.9779i —0.4202—0.8917i —0.8209—0.5489i —0.7823—0.6158;i —0.6164—0.7874i —0.5749—0.8213i

211 0.6540 1.0000 3.0402 1.0000 0.6425 0.6398 0.6381
|[42]  0.6540 0.4203 0.1385 0.4132 0.6425 0.6398 0.6381
23] 0.9833 0.9834 0.9858 0.9951 0.9957 1.0000 1.0026
|[44]  0.9833 0.9834 0.9858 0.9951 0.9957 1.0000 1.0026
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