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Abstract

This paper proposes to solve and simulate various Kirchhoff models of nonlinear strings using Volterra series. Two
nonlinearities are studied: the string tension is supposed to depend either on the global elongation of the string (first
model), or on the local strain located at x (second, and more precise, model). The boundary conditions are simple Dirichlet
homogeneous ones or general dynamic conditions (allowing the string to be connected to any system; typically a bridge).
For each model, a Volterra series is used to represent the displacement as a functional of excitation forces. The Volterra
kernels are solved using a modal decomposition: the first kernel of the series yields the standard modes of the linearized
problem while the next kernels introduce the nonlinear dynamics. As a last step, systematic identification of the kernels
lead to a structure composed of linear filters, sums, and products which are well-suited to the sound synthesis, using
standard signal processing techniques. The nonlinear dynamic introduced through this simulation is significant and
perceptible in sound results for sufficiently large excitations.
© 2008 Published by Elsevier Ltd.

1. Introduction

In musical acoustics, sound synthesis aims to produce a more and more realistic result for complex systems
such as musical instruments. Usually, these instruments involve nonlinear propagation phenomena as soon as
vibrations are sufficiently large in instruments such as gongs, dynamics of bowed strings, piano soundboards,
etc. Thus, physical models which include nonlinear phenomena have been derived and usually solved using
numerical methods, as in Ref. [1]. For sinusoidal type excitations, methods such as nonlinear modes [2,3] or
the harmonic balance [4,5] are interesting alternatives.

In this article, nonlinear models of damped strings are solved using Volterra series (see Ref. [6,7]). This
method allows both analytic and numerical solutions to be performed without requiring sinusoidal-type
excitations. More precisely, once the analytic kernels of the series are derived, straightforward identifications
lead to structures composed of linear filters, sums, and products. This yields efficient simulations from
standard signal processing techniques, which are well-adapted to real-time synthesis. Moreover, decomposing
the kernels on the modal basis yields original but natural interpretations: it exhibits precisely the nonlinear
dynamics of each spatial mode.
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Physical models of strings are numerous. Historically, the first information on the equations of the motion of
a string appeared in the 18th century with the works of d’Alembert [8] and Euler [9] who, respectively, wrote the
two linear partial differential equations for small vibrations of a string and transverse vibrations of a bar
(see also Ref. [10]). During the 19th century, Kirchhoff derived a model of a one-dimensional perfectly flexible
string, including a nonlinearity due to the variation of tension [11]. This model has been re-investigated by
Carrier in Ref. [12] from which new string models of musical instruments have been elaborated. For instance, in
Ref. [13], Anand focused on the non-planar transverse vibrations (with celerity ¢;) and neglected the longitudinal
ones (with celerity ¢/), assuming that ¢7>c¢?. On the other hand, in Ref. [14], Narasimha states that the
longitudinal motion cannot be neglected even for small amplitudes. Both these works (and others) have been
unified by Watzky in Ref. [15] with a three-dimensional model of a nonlinear stiff string. This generalization
includes a torsion coupling and allows the introduction of inharmonicity using the hypothesis of a linear elastic
behaviour. Advanced models and experimental results on strings can also be found in Ref. [16].

This work focuses on three mono-dimensional nonlinear models (M1,M2,M3) of perfectly flexible strings
with large transverse waves: the nonlinearity can be globally integrated (M 1,M2) or locally distributed (M3) in
space; the boundary conditions can be homogeneous (M1,M3) or it is possible to connect the string to another
system, typically, a bridge (M2).

The paper is organized as follows: Section 2 presents the three models; Section 3 introduces the Volterra
series; Sections 4-6, detail the calculation of the Volterra kernels for (M1)-(M3), from which simulable
structures are deduced. Section 7 presents results and comparisons in both the time and time—frequency
domains. Section 8 develops conclusions and perspectives.

2. Physical models of strings
2.1. Geometry, physical constants, and excitation

Consider the displacement u(x, #) of a perfectly flexible string (Fig. 1) with a length L (m), an initial tension
Ty (N), and a small circular section with radius R (m). The material is characterized by a density p (kgm™3), a
Young’s modulus £ (Pa), a standard fluid damping  (s~') introduced by the transverse mass force —&(du/0?),
and a structural damping x (m?s~') introduced by +x(3°1/0:0x?). These dampings model thermoelastic losses
and viscoelasticity [17].

The string is supposed to be motionless before = 0 and the transverse displacement is denoted u(x, ) for all
(x,1) € Q x R" with Q =]0, L[ and Q = [0, L]. It is excited by a transverse mass force f 4 (x, 1) = ¢(x)f (1) where
¢ is positive and spatially distributes the total force f(z), so that

pA/Q(;’)(x) dx=1 with 4 =znR%. (1)

Two simplified models of the nonlinear propagation (NL1,NL2) and two kinds of boundary conditions
(B1,B2) are described below for transverse vibrations.

2.2. Nonlinear models of propagation, boundary and initial conditions
2.2.1. Model with a global variation of tension (NLI)
The Kirchhoff equation models the transverse vibrations of a string [11]. If the fluid and structural damping

forces are included, it is given by
L 2
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Fig. 1. Characteristics of the string.
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where ¢ = \/To/pA is the wave celerity (ms~!) and b = E/2pL is the coefficient of the nonlinearity (ms~2)
which takes into account the variation of tension. This model holds under three hypotheses [18]: (H1) the
transverse vibrations are confined to a plane; (H2) the string is perfectly flexible (second-order equation); (H3)
the nonlinear effects are due to the global variation of length.

2.2.2. Model with a local variation of tension (NL2)
The Kirchhoff—Carrier equations model both the longitudinal (v) and the transverse (1) vibrations which are
coupled through the variation of tension. For an undamped string [12], they are given by, V(x, ) € Q x R},

u_ d T(0u/0x) 6212 a T(1 + (dv/0x))

pA— = and pAd—
02 0x | fiou/ox? + (1 + @oforx)? 0F ot fou/oxy + (1 + @ufox)y’

€)

where T — Ty = EA(\/(6u/6x)2 + (1 + (0v/0x))* — 1). Neglecting dv/dx in Eq. (3a) and including the fluid
and structural damping forces define the model (NL2) which governs a damped wave u decoupled from wv:

o%u Pu o |(To+ EAG/1 + (du/ox)* — 1))ou/ox

pPA—+ pA(3 — pAK —— = —
al@x @x /1 + (au/ax)z

or?
Note that this model involves a nonlinearity (local with respect to x) with no integral operator as in (NL1). In
this model, (H3) is relaxed, but only transverse waves are (still) assumed to be significant.
This model (NL2) will illustrate how the solutions and the simulations are modified because of local—rather
than global-—monlinearities. A more realistic model with coupled waves will be solved in a future work.

4)

2.2.3. Boundary conditions (BI,B2) and initial conditions
Boundary conditions (B1) are homogeneous Dirichlet conditions, i.e. the string has no displacement at
extremities:

V(x,?) € {0;L} x RT, u(x,f) =0. ®)
Boundary conditions (B2) are defined by
V(x,0) € (0; L} x RT,  u(x, 1) = u(0), (6)

where uy and u; represent excitations. These excitations are both displacements but could be both forces
(Qu/0x(x, 1) = uy(1) for (x, 1) € {0; L} x R™), or even mixed excitations. These choices do not affect the method
proposed in the following, but only the solutions. The latter conditions (B2) allow the string to be connected to
a bridge or to other mechanical systems, at its extremities.

For all the cases studied here, the string is supposed to be motionless for <0 so that initial conditions
are zero:

ou
V(x, 1) e Q x {0}, ke{0;1}, w(x, 1) =0. (7

2.3. Dimensionless models
__ The changes of variables and functions given in Table 1 yield the dimensionless models (M1,M2,M3) on

=10, 1[:
(M1) = (NL1, Bl): Clamped string with a global variation of tension:

1 Qi a2~ R
1 +8/0 (6)2) ‘| 6~2 f¢a (8)

V(%D e {0 1) x R, (X, =0, 9)
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Table 1
Changes of variables, of functions, and of dimensionless coefficients (Eq. (1) translates into fol dF)dx=1)

Dimensional Dimensionless
Geometry Physical constants Variables/coefficients Functions
L=138 = -3 L_ X . I iL
m p =7800kgm ¥=Li=7 b
a0 = TC
R=15mm E=2x10"Pa WL 5455102 d(X) = pnR2LH(FL)
¢
Reference §=3s7! p= L =281 x107° Lf (E)
= c
)= ——= "+
1@ AREU
displacement: ¢=0.01m2s! E(U*) PR = B
P . = PO 07107 T30 = df @
2p(Le)
U*=R To=2161N *\ 2 i
n= <U—> =6.94 x 1077 uz(—)
L iz () = <
U*

The proposed values are used in Section 7: the string is made of steel [19,20]; 0, x, and T are tuned to have realistic damped sounds and

the fundamental frequency /' = ¢/2L = 55Hz with ¢ = /T /pA.

V(%,7) € Q x {0}, @ 7) =0 and %(fc,i):o.

(M?2) = (NL1, B2): Same string with dynamic boundary conditions:
1 /A~ 2
0
1+ / (—”) dx
0 ax

V(ED € (0:1) x Ry, (3,1 = (),

62ﬁ+a6ﬁ P O
of ol Tompi

V(%,7) € Q x RY,

V(%,7) € Q x {0}, @ 7)) =0 and %(i,i) =0.
(M3) = (NL2, Bl): Clamped string with local variations of tension:
cu o, o0 _ o [u- @ e

V(5. € (0:1) x R}, (%5 =0,

V(%,7) € @ x R,

V(%,7) € Q x {0}, &% 7)) =0 and %(2,3:0.

For sake of legibility, the tilde symbols will be omitted in the following.

3. Introduction to Volterra series

(10)

(11)

(12)

(13)

+f<;), (14)

(15)

(16)

Volterra series have been mainly used to solve nonlinear electronic circuits and ordinary differential
equations including regular nonlinearities (see Refs. [21-24]). They represent the solution (for “‘control
engineers”’, the output of a system) as an infinite sum of multi-convolutions fed by the excitation (the input of

a system). It extends “‘linear filtering” to the case of “‘weakly nonlinear behaviours™.
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3.1. Definition and properties

A causal system (in the “control engineers’ meaning’’) with input f, output u (see Fig. 2) is described by a
Volterra series with kernels {£,},cn+ if

VieR", u()= Z/ hy(ti)f(t—11) ... f(t — 1) dTyp, 17)
=1 (R+)"
with the notation (t;.,) = (71, 72,...,7,) and dt;,, = dr;dzy - - - d7,,.

Eq. (17) can be interpreted as follows: for n = 1, the term is a standard linear convolution so that /; is the
impulse response of the linear contribution. For n = 2, the term introduces a quadratic contribution of f on
the output u. More generally, the nth term is associated with a homogeneous nonlinearity of order n which
takes into account some memory through a “multi-convolution™.

Moreover, as in the linear case, generalized transfer functions H,(s;.,) (denoted with capital letters) can be
defined as the Laplace transform of the generalized impulse responses /,(t1.,) ((s1:,) = (51, . ..,5,) denotes the
Laplace variables). For a damped (i.e. stable) causal system, they are defined by

V(Sl:n) €YD (C(-)&-)n’ Hn(sl:n) = / " hn(len)ei(Slrl+m+snrn) dTl:m
(R )ﬂ

where  is the domain of definition and C{ is the set of complex numbers with a strictly positive real part
(see Refs. [25, (29.1.2); 22] for more details).

Remark 1. Embedded Volterra series are: (a) linear filters (4, = 0 for n>=2); (b) instantancous functions
u(t) = h(f(¢)) which admits a series expansion A(f) = :janf ": (c) their combinations (sum, product, cascade,
see Section 3.2).

Remark 2. For the case (b), /,(t1.,) = ,0(11.,) in the time domain (6 denotes the Dirac distribution), and
H,(s;.,) = a, in the Laplace domain.

Remark 3. For inputs f which are zero before ¢=0, Eq. (17) becomes u(t)=> o, f[o’,]n Ra(T1:)

f(t—1))...f(t—t,)dryy,. Such a dynamic is that of a system with null initial conditions. This limitation
can be removed using a more general definition of Volterra series (see Ref. [24]).

Remark 4. From a mathematical point of view, the convergence of the series holds for inputs f such that
[f(t)] <p where p is the convergence radius of the characteristic function @, (x) = 37 ||A,||;x" with the L!-
norm |4, = fR" |, (T1.)dT1y, (see Ref. [22]). In this case, |u(?)| < ¢, (sup,erlf()]) (see Refs. [24,26,27] for
other results on the convergence). Nevertheless, we will not study the convergence of the Volterra series in this
paper: in practice, low-order truncations of the series yield good approximations, if the nonlinearity is not

activated by “too large inputs”, as discussed in Section 7.

3.2. Intercomnection laws

The following interconnection laws will be useful to solve (M1)—(M3).

Consider two Volterra series with kernels {a,},cn+ and {b,},en+. The systems with input f and output u
defined, respectively, in Figs. 3 and 4 and, if b, = 0 for n>2, in Fig. 5 are still described by a Volterra series.
Their kernels {c,},en+ are given in the Laplace domain, respectively [22, pp. 34,35] by

Cn(sl:n) = An(sl:n) + Bn(slzn)a (18)
f(®) Ty | u(f)

Fig. 2. System with input f and output u described by a Volterra series {/,},cn=-
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Ua(t)+up(t) =u(t)

Fig. 3. Interconnection: sum of outputs.

Ua(t)

Fig. 4. Interconnection: product of outputs.

J(@) b, u(t)

{au} (linear)

Fig. 5. Interconnection: cascade of a Volterra system with a linear system.

f() W u(z,1)

Fig. 6. Volterra system representing the solution u(x, ¢) of (M1).

n—1

Culsin) = Y Ap($1)Bup(pi10), (19)
p=1

Cu(s51:0) = An(s1:0)B1 (S/l\n)a (20)

with the notation §7., = 51 + - - - + 8.

4. Solution and simulation of (IM1) using a Volterra series

In this section, the displacement u(x, ¢) of a string governed by (M1) and driven by a force f starting from
t = 0 is solved. The spatial distribution ¢ is considered as an a priori given data of the problem. In Section 4.1,
the Volterra series which maps f'to u is defined. In Section 4.2, the kernels of the series are solved and explicit
expressions are given. In Section 4.3, structures composed for linear filters, sums and products are identified
from which a numerical simulation is derived.

4.1. Derivation of the Volterra kernels for (M1 )

4.1.1. Modelling the solution by a Volterra series

Consider the displacement u(x,?) as the output of a system (in the ‘“‘control engineers’ meaning’)
with input f(¢). This defines a nonlinear system that depends on the space variable x so that the corres-
ponding Volterra series has kernels parameterized by x, denoted hff) (see Fig. 6). The solution is
represented by

V(x,0) € @ x RY,  u(x,1)= i/[o] B (t—1) . f(t = Ta) dTi. (21)
n=1 N

Note that, from Remark 3 in Section 3.1, this solution naturally satisfies Eq. (10).
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(a)
u(z,t) (Va) w, (2, 1) P
gidipem: -~
(VD) wy (T,
o—> % —)-@—)- _Ef(jl' dx ( [)
f(t) 4 0
(Vd) (\2 52 3)”(1 (1)) = aiid (e 1))
—é(z) = a2
(}943(1)/“)“{(1 t) -
i
L__ {agx)} W (. t) -
i (z) | |welz, t)
I(t) . {bn } _(\O 0
* - {c%x))} we(x, 1) > Al
{d%x) } wylx, t) )__\_J

Fig. 7. Equivalent block-diagrams representing Eq. (8).

4.1.2. Equation satisfied by the kernels inside the domain Q.

Eq. (8) requires that the kernels h,(f) satisfy an equation inside Q. This equation can be derived in the Laplace
domain using the interconnection laws (see Section 3.2), as detailed below.

The block-diagram in Fig. 7(a) translates Eq. (8) into wg(x, 1) + wy(x, Hwe(x, 1) + wy(x, 1) = 0, where
W = (Q%u/0r2) + oBu /1) — (1 + B /30))(@%u/0x2), wy = —¢ [ (Qu/dx)* dx, we = 8%u/0x2, wa(x, 1) = G(x)f (1),
and where u is represented by Eq. (21).

Each system which maps f'to w4 can be represented by a Volterra series (see Fig. 7(b)), the kernels of
which can be deduced from interconnection laws, in the Laplace domain, as follows:

Block (Va): in the Laplace domain (with respect to the time variable), the operator (8 Jot?) + a(0/0t) —
(1 4 B(d/01))(@* /0x*) becomes s> + as — (1 + fs5)d? /ax>. Thus, from Eq. (20), the cascade of {H"} and this
linear operator defines the Volterra series {Ailx)} (see Fig. 7(b)) with, for all n € N*,

AI(;C)(Sl:n) = |:(S/l\n)2 + as/l\n - (l ﬂsl n)_ H(Y)(Sl n)
Note that, indeed, the spatial operator o /0x? can be applied on hff) (and Hff)) since it commutes with time

operators (and their Laplace transform)':

0? u(x 0 0?
ox2  ox?

Z / KO (= 71). . S = ) e

> 2 ()
= Z\/[;),t] a h (Tl n)f(t _ ’L‘l) f(t _ ,L.n)d,L_l:n.

IThis holds under the standard hypotheses of the Lebesgue’s dominated convergence theorem (see e.g. Ref. [28]) and the Leibniz integral
rule (see e.g. Ref. [25, (3.3.7)]).
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Block (Vb): Similarly, the cascade of {Hff)(sl;,,} and the linear spatial operator 0/0x defines the kernels
OHY(s},,)/0x. Then, from Eq. (19), the cascade with the square yields Zz;i(6/6x)H,(;‘)(s1:p)(a/ax)Hff_)p(s,,Jr1:,,).
Finally, the cascade with the spatial integral operator —¢ [, dx defines the Volterra series {Bff)} (see Fig. 7(b))
with, for all n € N*,

B (s1) = —¢ / Z S H (s p)—H< D (Sp41m) dx.

Block (Ve): The cascade of HE,’") with 02 /dx? leads to the kernels

or
(Y)(Sl n) = _2 E;X)(Sltn)-

Block (Vd): For this case, wa(x, 1) = —p()f (1) = [ d\(01)f (¢ — 11) dvy with d{7(t)) = —¢(x)3(t1) where &
denotes the Dirac distribution (with Laplace transform 1). Hence, the corresponding Volterra kernels in the
Laplace domain are given by

Df{x)(slzn) = _51,n¢(x)a

where 0, denotes the Kronecker symbol (;; equals 1 if i = j and equals 0 else).
Using Egs. (18) and (19), the Volterra kernels of the whole system in Fig. 7(b) are given by, for all n € N*,

AD(s1,) + SZIB V)(slk)C 1 Siea1:) + DS (s1,,). Now, this system maps f to 0 so that it defines the zero
system for which all the Volterra kernels are zero. This leads to the equation satisfied by H ff)(slzn) inside Q, for
all n e N* : V(x,51,) € @ x (CF)",

azHSC)(Sl:n) _ Eﬁ,x)(sl:n)

r /\n 2H(X) ) — = — 22
[1(51:0)] n (S1:0) Ox2 1+ﬁsl:n’ =
with
E(s1) = (). 29
H(»c)(sl )aH( )(S ot ) aZH( (s )
E( )(Sl n) =& _— S ! n>2 (24)
p;l Ox ox2
prqtr=n
and
N s2 4 as
VSE(D(), F()_ +ﬁs (25)

For each n € N*, Eq. (22) is a linear second-order differential equation on Hif) with respect to x. Indeed,
kernels E? only involve H'Y) = with p,q,r<n—1.

4.1.3. Equations satisfied by the kernels at the boundaries

The boundary conditions Eq. (9) impose a null displacement at x € {0; 1}. This means that kernels /" are
zero at x € {0; 1} (see Fig. 8).

In the Laplace domain, this yields, for all n € N*:

V(x,s10) € {051} x (C))",  HY(s1,,) = 0. (26)
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f(t) W u(z=0,t) =0
L/

Fig. 8. Boundary condition on hff) at x = 0 (the same condition holds at x = 1).

4.2. Solving the Volterra kernels
4.2.1. Analytic solution
For each n € N*, Egs. (22)—(26) define a linear boundary value problem, the solution of which is given by
(see Appendix A.1),
V(X s1n) € @ X (7 HY(s1) = / GOx, &, 5T ES (s1.0) dE, 27)
Q

where, for all (x,&,5) € Q x Q x C,

cosh((1 + x + &)I'(s)) — cosh((1 — |x — EDI(s))
2(1 + Bs)I'(s) sinh I'(s) ’
Note that G does not depend on the choice of the square root for I' since I'—~ — I" keeps G invariant.
For n = 1, this solution is exactly that of the linearized problem ((M1) with ¢ = 0) where the Green function

G(x,¢,5) = (28)

G is applied on the spatial distribution E(lx) (s1) = ¢(x) in the Laplace domain. For n>2, Eﬁf) involves kernels
H;f) with p<n — 1 (see Eq. (24)) so that Eq. (27) is a recurrence equation which makes the explicit derivation

of analytic expressions possible. Nevertheless, in the following, we choose to use a modal decomposition: it
helps to simplify these recurrent integral equations into recurrent algebraic equations.

4.2.2. Modal decomposition

For each n € N*, the linear boundary value problem, Egs. (22)—(26), admits an orthonormal basis of
eigenfunctions % = {ex};cn+ on the Hilbert space L*(Q) (see e.g. Ref. [29]). Functions e; which define the
spatial modes are

V(k,x) € N* x Q,  ex(x) = v/2 sin(knx). (29)

They satisfy: (i) the Dirichlet boundary conditions; (i) d%¢; /0x? = —(kn)’ey; (iii) for all (i, /) € (N*)? (e;, ¢j) =
0;j (Kronecker symbol) where the scalar product on L*(Q) is defined by Y(f,g) € (L*(Q))% {f,g) =

Jof (¥)g(x) dx.
Consider the decomposition of Hff) on 4, given by, for all n € N*,
V(si) € (CFY's  HPY(s1)= > Hi(s1)ex(x), (30)
L keN*

where H,Ek] = (H,(f),ek) denotes the projection of H,(f) on e¢;. The relations satisfied by Hg‘] are obtained by
projecting Eqs. (22)—(24) on 4, as detailed in Appendix A.2. This yields the following algebraic equations, for
all (n,k) € (N*), (s1.0) € (CJ)",

HY(s1) = QT E (51 G
EW(s)) = (¢, ex) = (2
EW(sy,) = ek’ Z Z CHY 1) H(5p11p19) H(Spegern) i n>2, 33)
pgr=1 [LeN*
pgtr=n

where Q¥l(s) is the rational function given by

OM(s) = [s* + (« + pk>n®)s + k*m?] ", (34)
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Imag.: angular freq.
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100 J S

-15 -1 -0.5 0
Re.: damping

Fig. 9. Poles of 0¥ for 1<k<K = 100 and (, ) given in Table 1.

which is analytic in C{ . Indeed, for «>0 and >0, a straightforward analysis proves the real parts of the poles
of O are all negative (or zero for the particular case « = f# = 0). More precisely, these poles correspond to
damped oscillating modes if 1<k<K* = 22,690 (complex conjugated pair of poles) and purely evanescent
ones if k= K* (real negative poles). A detailed study of such an analysis can be found in Ref. [30] for the case
of a bar with similar dampings. Fig. 9 represents the poles in the Laplace complex plane, for the typical values
o and f given in Table 1.

Computing the analytic expressions for orders n € [1, 5]y leads to, Y(k, s1.,,) € N* x (C)",

HY(s1) = ¢, 0M(50), (35)

H[zk](slzz) =0, (36)

HY(s1.3) = —ek*n* Q(573) [Z szE“(sl)Hﬁ"’(sz)] H{(s3). (37)
teN*

H{(s14) = 0, (38)

HYs15) = — ek’n* 0W(s73) lz 2 H (513 H (s4) H(55)
teN*

+ 3 CHYs)H (0.0 H s5) + > szE”(sl)HE“(sz)Hg"](s3;5>] : (39)
£eN* teN*

Remark 5. For n =2, the sum on p,q,r>1s.t. p + ¢ + r = n is empty so that, from Eq. (33), EL"] and Hgf) are
zero. More generally, a recurrence proves that for all m e N*,Hg’;l =0 and Hgfr), 1 18 proportional to &”.

Remark 6. For n = 1, the solution leads to the standard modal decomposition of the linearized problem. For
orders n>=2, Eqgs. (31), (33) and (34) show how the dynamics of lower orders (1<p,q,r<n—1 s.t.
p+ q+r=n) generate the nonlinear dynamics of order n. Eq. (33) also indicates what spatial modes
contribute to the dynamics of order n of the mode k: all the modes £ € N* contribute to the elongation
(through the orders p and ¢) while the dynamics of order r (which contribute to the laplacian) are only those of
the mode k.
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4.2.3. Combinatorics, trees, and physical interpretations
The combinatorics due to Egs. (30)—(33) can be reorganized as one summation of elementary terms, the
indexes of summation being naturally described by full® ternary™®® trees,” as detailed below.

Definition 1. Let A, be the sets of ternary trees defined by, for n € N*,

A, =N* ifn=1, (40)

A, =@ if nis even, 41

A, = U {(ar,a2,03) € A, x Ay x Alf(ar) = T(ap)} if n=3 is odd, (42)
g, r =1
pp,tZr zdd
ptqt+r=n

where f(a) is the right-sided leaf of a: for a=k € Ay, f(a) =k; for a=(a;,a,a3) € A, (with n=3),
f(a) = f(a3). Moreover, n(a) denotes the number of leaves of a so that if a € A, and if n is odd, n(a) = n.

a
Examples. ?L denotes the tree a € A such that f(a) = 8.

RN . e \\ / NG represent ternary trees b, ¢ and D such that: f(b) =9,
4 4 9 3 J/\\ 4 2 9
11 11 4
n(b)=5,be As;H(c) =2, 1(c) =7, c € Ay; ¥(d) = 9, n(d) = 5 but note that d¢ As. Indeed, d = (D1, Dy, D3) With
D =8, b, =3 and b3 = (4,2,9) so that, in Eq. (42), the condition f(a;) = f(ay) is not satisfied (twice): first,
because f(d;) = 8#3 = {(d,); second, because D3 ¢ Aj for a similar reason (4 #2).

8

Theorem 1. For all n € N*, kernels Hff) are given by, for all (s1.,) € (Ca’)",

HY(s10) = Y Halsin)erw (), (43)
aeA,
where, for all a € A, (with n odd),
if n=1, Ha(s1) = dy Q" (s0), (44)

if nz=3, Ha(slzn) = - 8[f(al)f(a3)ﬂ:2]2 Q[f(a)](s/l:\n)Hal (Sl:n(al))
XHaz(sn(al)+l:n(al)+n(az))Ha3 (Sn(a1)+11(az)+l:n) with a = ((11 , a2, a3)- (45)

The proof of this theorem is detailed in Appendix A.3.

Interpretation: The trees memorize and isolate each elementary inheritance that each modal linear kernels
transmit to a nth order kernel. For example, kernel H, with ¢ = (4,4,9) € A, and n = 3 models how the
elongation due to the linear dynamics of the mode 4 acts on the linear dynamics of mode 9 and contributes to
its nonlinear dynamics of order n = 3. Kernel Hy (b = (8,8, ¢) € A, with n = 5) models how that of mode 8
acts on the dynamics due to H, (order 3, mode 9) and contributes to the dynamics (mode 9) of order n = 5.
More generally, for { = (f,T,,f3) € A, (n=3, odd), H; models how the elongation introduced by the couple of
dynamics due to (Hj,, Hy,) for the same the mode k = 1(f,) = {(j,) acts on the dynamics due to Hj, (order
n(f;), mode ¥(f;)) and contributes to the dynamics of order n of the mode ¥(f) = ¥(f).

Remark 7. Note that the condition f(a;) = f(a;) in the definition Eq. (42) is due to the integral in Eq. (24) and
the orthogonality of # = {ex}rens-

’This is linked to the nonlinearity of (M1) which is homogeneous(*) of degree 3**. Recall that a ternary tree is a tree in which every node

has at most three children. A full ternary tree is a tree in which every node has zero or three children.
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4.3. Identification of realizable structures for the sound synthesis

Computing the string dynamics from Eq. (21) using time-domain versions of Egs. (43)—(45) leads to an
infinite algorithmic complexity. In practice, infinite sums are truncated. First, only a finite number of modes
are considered using A; = [1, K]y in place of A in Definition 1. This yields good approximations in Eq. (43),
if modes higher than K can be dropped due to negligible ¢, = (¢, ex), or even, is exact if ¢, = 0 for k> K.
Second, only the first kernels Hflx) for 1<n<N =2M + 1 are kept in Eq. (21). This defines the approximation
iin(x, t) such that u(x, ) = iiy(x, t) + o(e™) (see Remark 5).

The realization theory allows to build structures which are well-adapted to the numerical simulation. For
Volterra kernels, realizations can be performed from the regular Volterra kernels (see Ref. [23, Chapter 4] for a
detailed presentation). Here, an alternative identification is proposed in Theorem 2, which does not require to
compute the regular kernels. Then, realizations are deduced and detailed for orders n =1, 3, 5.

4.3.1. Elementary ternary Volterra systems and identification theorem

Definition 2 (Homogeneous Volterra system). A Volterra system & with kernels {/,/},cn+ 18 said to be
“homogeneous” of order n € N*, if &, is non-zero, and if, for all ' € N*\{n}, the kernels /,, are null.

Note that linear filters are homogeneous systems of order 1.

Definition 3 (Elementary ternary Volterra system). A system % with input f and output u is an “‘elementary
ternary Volterra system” if

@ it exists three homogeneous Volterra systems ¥, ¥, <., of respective order p, ¢, r, with respective output
Yas Vb Ve» and all fed by the same input f,
® it exists a linear system %,

such that u is the output of ., fed by the input w(z) = y,(1)y,(H)y.(¢) (see Fig. 10).
From interconnection laws Egs. (19) and (20), the system ¥ is proven to be homogeneous of order
n=p-+ q-+r: its kernel of order n is given by

H(s.) = A]?(Sl:p)B([(S]H—1:p+l/)Cr(Sp+l/+1:n)D1(S/l.;l)9 (46)
in the Laplace domain, where a,, b,, ¢;, and d; denote the non-zero kernels of systems %, 5, ., and ¥y,
respectively.

Theorem 2 (Structure composed of filters, sums, and products). The solution u(x,t) of (M1) obtained from
Eqgs. (21) and (43) to (45) is given by the sum

w0 =Y > ua(era(x), (47)

neN* aeAy,

where the sub-dynamics signals u, can be realized using linear filters and products, as follows:
® if a € Ay, then u, is the output of the linear filter with transfer function H(s) given by Eq. (44);
® if n=3is odd and if a = (a1, az,a3) € A, then u, is the output of the linear filter with transfer function

Ga(s) = —elf(an)l(aa)’] Q" (s) (48)
Sed by the input va(t) = o, (D, (D)tay(?) (see Fig. 11).

di
(linear)

Fig. 10. Elementary ternary Volterra system of homogeneous order n =p + g +r.
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Ugy (t)

U, Va(t) = g, (1) Uy (2) Uy (1) ua(t)
a (ﬂ»@ > (1iﬁq(’>‘ar) —
Uqg (t)J

Fig. 11. Realization of u, for a = (aj, az,a3) € A, with odd n>3: g, is the convolution kernel of the filter associated to the transfer
function G,.

(a)
/U) . (f)k q[k] S H.li‘ (f)
(b)
0 )= (a0’
u“"l(l) " uq(t)
1 ""‘®+—’Yk q[ e

Fig. 12. (a): Realization of u[lk]; (b): realization of u, with a = ((,¢,k) € As.

Proof. The identification is straightforward if =1 or if n is even. Now, let n>=3 be odd. Let
a = (aj,az,a3) € A,. Then, H, (see Eq. (45)) has the form Eq. (46) with p = n(a;), ¢ = n(az), r = n(az), and
Ap=H,, By=H,,, C. = H,,, D\ = G, (see Eq. (48)). The identification of the realizable structure arises
from Definition 3. O

4.3.2. Application: building realizable structures for orders n =1,3,5 B
In practice, the sound synthesis is performed for a finite number of modes k € A; =[1, K]y and a finite
number N of kernels. The solution u(x, 7) given by Eq. (47) is approximated by

in(x, 1) = ZN; Z Ua(t)er()(x) = ZN; kZK: ui(D)er(x), (49)
"= achy =tk
with
W = > ul) (50)
aeA, (k)
and
A(k) = {a € A,lHa) = k). (51)

In this section, realizations of u/] and then of iiy(x, ¢) are derived using Theorem 2.

Forn=1landa=k e A, =[l,K]y, u, = ul is the output of the linear filter with kernel /) = ¢, ¢*1 fed by
J(?) (see Theorem 2 and Eq. (44)). The static gain ¢, (see Fig. 12(a)) measures how much the mode ¢ is excited
by the spatial distribution ¢.

Forn=3,ae A; C (&1)3 has the form a = (¢, ¢, k). From Theorem 2 and Fig. 11, u,(¢) is the output of the
linear filter with kernel g, = —2y,¢™ fed by ul(eyl(0)ul (1), where y; denotes
Vi = ek*nt. (52)
Separating the factors depending on ¢ from those depending on k leads to the realization in Fig. 12(b).
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5 @ u.';‘J(f) i\ u!«il(:’)('k(.r)

i

Fig. 13. Realization of ugk] with its associated modal shape ugk](t)ek(x)A

01
I
I
I
]
&“*ﬁbk L*(L”
]
]
]
' ___________________________
- B
V . Basis B
0 ’Z‘ ( 12 )"
wa(t) =5 2(ul)”
e ) e

Fig. 14. Block-diagram of an o(¢)-simulation of (M1) with K modes: the dashed arrows isolate the linear dynamics (n = 1) of each mode;
the shaded central part isolates the o(¢)-dynamics of a mode k; the shaded bottom part isolates the dynamics of the integral term in (M1)
(gains 1, k and K before the square operators are due to 9/0x); the shaded left part corresponds to simple gains, controlled by the spatial
distribution of the excitation force.

The realization of u[3k] (k € [1,K]y) is obtained by summing the outputs u,(¢) of realizations of Fig. 12(b)

over &3(k) ={(, ¢, k)| e AL, following Egs. (50) and (51). Collecting all these contributions over ¢ and
factorizing by the common linear filter —y,¢/¥! yield the concise realization given in Fig. 13.

As a consequence, the approximated solution #3(x, #) in Eq. (49) can be realized as detailed in Fig. 14.

In this structure, kernels ¢!*l are the impulse responses of second-order AR-filters associated to the transfer
functions Ql(s). If N ‘; denotes the number of sums involved in a digital simulation of ¢¥! (similarly, N ; for
products), the global complexity can be evaluated, as detailed in Table 2.

Digital implementations of linear filters involved in Fig. 14 are very standard (see e.g. Ref. [32]). Here, a
method which preserves the exact eigenfrequencies and the exact dampings is proposed (see details in
Appendix A.4). It leads to the parameters NqJr =4, N; =5.

Nevertheless, the products (in the time domain) of N = 3 signals with a frequency range [0, /] yield a signal
with frequency range [0, Nf™*]. Theoretically, rejecting the aliasing due to sampling with frequency f', requires
that f,/2>Nf* (Shannon-Nyquist theorem). Here, the second-order filters with impulse response g¢i*l
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Table 2
Number of floating point operations to compute u(x, #) for (M 1) with K modes, at a given time, and at N, observation points (see Section 7

for typical values): the number of sums (N*), products (N*), and flops (N1°° = N* 4+ N*) are given for the linear and the third-order
approximations

Linear approx.: N = 1, o(¢") Third-order approx.: N = 3, o(g!)
N* K(Nj + Ny) = Ny KQN} + Ny +2) = Ne—1
N* K(Ny +Ny) KQN + N, +3) -1
NfoPs KN 4 2N,) — N, KQN™™™ £ 2N, +5)— N,
ul' )

o

u I'L l(n'_)

K
. _ 2, (€ [l
l};:l(f) @ L w4(t) = ;( uy ug ')

uil)

11'[:\1(:‘) @ —

er(x)
ul'*‘|(t'_) é—» ) —— [k] ]
Wy . = e ug (1) & ug (1) ex(z)
wa(f) @—»

Fig. 15. Realization of u[sk] with its associated modal shape u[sk](t)ek(x).

25

significantly cut-off the spectrum beyond f;[1 + 1/Q,] where the quality factor is Q; = kn/(a + Bk*n2). As a
consequence,

I 1
3 >NfK(1 + QK) (53)
is sufficient in practice. This condition will be used for the sound synthesis in Section 7.

For n =5, the identification given by Theorem 2 yields the realization given in Fig. 15. Note that this
structure can be also identified using Eq. (39): the first factor in Eq. (39) accounts for the filter with kernel
—7,q*1 which is factorized in the realization (similarly to Fig. 13 for the case n = 3; in the second factor, the
two first terms describes twice the same sub-system which corresponds to the part involving w4(¢) and the gain
2 in Fig. 15; finally, the third term describes the sub-system corresponding to the bottom part involving ugk](t)

and w,(7). The realization given in Fig. 15 allows to complement Fig. 14, yielding a realization of #s(x, 7).
Numerical simulations of 73 and it5s and comparisons are presented in Section 7.

5. Solution and simulation of (M2)

Considering a string and impedance type boundary conditions defines a model which can still be solved
using Volterra series (with the single input f). In this case, the kernels depend on the impedance expressions
(see Ref. [31, Chapter 4]). In this section, a more general case is considered: that of a string governed by (M2)
(see Egs. (11)—(13)), and driven by three inputs which are a force finside 2, a displacement #; at x = 0 and a
displacement u; at x = 1. This problem makes it necessary to define Volterra series for systems with three
inputs, as presented in Section 5.1. The solution is derived in Section 5.2 from which a simulable structure is
identified in Section 5.3.
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5.1. Volterra series with three inputs

For systems with three inputs (ey, ey, e11) and one output u, the definition of Volterra series is generalized as
follows:

1 111 1
W)= 3 [ o B st = ) er(t = 1)

meM
11 I 1 1
xen(t —ty) - en(t — 4, Jem(t — 177) - - em(t — b,

1 11 111
Xdll:m[ dtl myy dll myyy°

where the multi-index m = (my, my;, my)) € M = N3\{(O, 0,0} details the nonlinearity orders due to each input,
while |m| = my + my; + myy denotes the global nonlinearity order of the kernel /4,,.

Remark 8. For a linear problem, all the kernels #,, are zero if |m|>2 and, possibly non-zero if [m| = 1. In this
case, the three available index m € {(1,0,0); (0, 1,0);(0,0, 1)} define the solution as a superposition of three
linear contributions: it leads to the standard superposition principle.

Interconnection laws Eqgs. (18)—(20) become, respectively, for all m € M,

Cm(sl:m) = Am(sl:m) + Biu(S1:m), (54)

Con(S1:m) = > Ap(1:9)By(Spt1:m) (55)

(p.g)eM? sit. p+q=m

Cm(sl:m) = Am(Slzm)Bl (m) (56)

with the notations 1 = (1,1,1), p + ¢ = (p; + 4. Py + 411 P + € for (p, q) € M? and, if p<q (that is p; <g;,
Pu<qu Pi<qm)-

I ll ll 11 111 111 111
(SI’:‘I) (1’1’ 111+1""’s11 P Spn+10 > S Spre Spm+10 -+ Squ > (57)

T _Jd 1 T11 111 111
Spg = Spy + Spr+1 +oeet S + SPII +5, 11+1 tooets 411 + Spur +s P+l +ooet Squr- (58)
f(1 u(x, t) a2 ) Wy (x,1) - [
A getak—(1+68)8 >
uy(l) e {h(x)}
wy (1) e OR (.)
a 1 Wi\ T,
& = (D|—ely.da
| (@ 0) = ww,t)
—o(x) e
) [0 = wilz, .
~/

Fig. 16. Block-diagram representing Eq. (11).
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5.2. Derivation of the Volterra kernels for (M2)

Modelling the displacement u(x, 7) using a Volterra series {4"},,cy With inputs e(r) = £(z), en(r) = uo(t),
en(#) = u;(¢) and translating Eq. (11) into the block-diagram in Fig. 16 allow to derive the following equation
through Egs. (54)-(56): for all m € M and (x, s1.) € Q X ((D(J{)I'"l,

azHﬁ,);)(Sl:m) _ Eg)(sl:m)

F /; ZH(X) m) — = —_— 59
[ (Sl. )] m (Sl- ) ax2 1 + ﬁslzm ( )
with
B = 000 it m=(1,0,0), “
EWY =0 if m=(0,1,0), ©b
EQGM) =0 if m=(0,0,1), 2
aH<*> 1) OH(s, CHy
EX(stm)=¢ ) ( )y el 4, 0 (Sp; £t 22, )
(panem’ - "
ptrqtr=m
The boundary conditions Eq. (12) translate into, for all m € M and (s1.,,) € (CJ)"™,
[HG=O(s), HG=D(sH] = [1,0] if m = (0,1,0), 9
[HG=(, By = [0.1] i m = (0,0,1), (©3
[HO = (s1:m), Hiy = (s1:m)] = [0,0] if m = (1,0,0) or |m]>2. (©0)

For each m € M, Egs. (59)—(66), define a second-order linear boundary value problem which can be solved
analytically, or through a decomposition on a basis, as in Section 4.2. Similarly to (M1), kernels H ﬁ;f) are zero
for even |m)|.

More precisely, exact expressions of Hﬁjf) are given by, for all me M, (s1.n) € (Car)"”‘ and using the
definitions Eqgs. (25) and (28)

H, st = sinh((1 — x)I(sih)/sinh I(sth)  if m = (0, 1,0), (67)

HY(s") = sinh(xI'(s}""))/sinh (") if m = (0,0, 1), (68)

H ) = [ G & ST B sra) 46 i m = (1,0,0) or m >2 (69)
Q

The functions e; € # are the eigenfunctions of the problems Egs. (59)—(66) if m = {(1,0,0} or |m|>=2. The
cases m € {(0,1,0);(0,0, 1)} are associated to two distinct bases of eigenfunctions, even if # still defines an L>-
orthogonal basis. A decomposition on a L*-basis ensures the convergence towards the solution for the
quadratic mean but not necessarily at a given location x: this is the so-called Gibbs’ effect. It will be precisely
the case at x =0 and 1, if we choose % for m € {(0, 1,0);(0,0, 1)}. Nevertheless, this choice simplifies the
derivation Olf ‘solutions. It yields the following results, using the definition Eq. (34), for all m € M, k € N*,
(s1m) € (C]™,

H i) = D HyMstmlen(x), (70)
L keN*
HY¥(s) = ¢, 0M(s})  if m = (1,0,0), (71)

H¥( Y = V2kn(1 + pstHoW(sth if m = (0,1,0), (72)
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HHBY = (— ) 2%kn(1 + st QW if m = (0,0, 1), (73)

k 2 k)l
HEn](SI:m) = —z¢k 7'C4Q[ ](sl:m) § E ZZHI[;[](sl:p)H[q[](sp+1:p+q)
(p.g.r)eM? LleN*
ptqtr=m

x HY sy gr1m) if |m|>2. (74)
The combinatorics can be still organized as one sum of elementary terms, as follows.

Theorem 3. Let B, be the sets of full ternary trees defined by, for m € M,

B,0,0 = N* x {I}, Bo,1,00 = N* x {II}, B(o,0,1) = N* x {III} if |m| =1, (75)

B =9 if |m| is even, (76)

Bu= |J ((b1,b2,b3) € B, x By x B,|/Hby) = (b)) if |m| >3 is odd, (77)
(p.g.)eM?
Ipl.lql.lrl odd
ptqt+r=m

where, for all meM and beB,, the definition of ¥(b) is the following: if |m| =1 so that
b = (k,1) € N* x {I, 1L, 111}, then ¥(b) = k; if |m| =3 is odd so that b = (by, by, b3), then ¥(b) = f(b3).
Then, for all m € M, kernels Hﬁ;f) are given by, for all (x,s1.m) € Q X (Cg)'m‘,

HY (s1m) = Holstmern)(x), (78)
beB,
where, for all b € B, (with |m| odd and b = (b, by, b3) if |m| =3),
if lml =1, Hy=HI" (see Egs. (71)—(73)) (79)
(s1) (82)  (S3) (81)  (85)  (S6)
e ——— =
3 1] [T D 1 [BrK]
f() "‘(1‘.(1.[1: 000 2 -;(><)—>-'{"(l"-“-“j 2
: A : Bk = {ex(x) har<k
BlE] e (K]
L(1,0,0) | 9(1,0,0)
— e e e B
‘ [ K] ' - Lkl
uo(t) fJ‘((I]i]:[,} U (0.1,0) - g(ltl]‘:l_ﬂ} U 00
(K] (K]
h‘((:.].u) Yi0,1,0)
------ SCE R
ek ! [ 5w
uy (t) h{[],“n‘]] '”'g:).n.:)l i | ? ,(}((1]![]11) '“lr},(n.g‘\—/
ill\r\ = | ¢ B IK]
Y(0,0,1) ! w Y001

Block (BW) =Sk S ul “_g.;m

a )
k=1 (p e (V)2 52

Ipl=lai=1

Fig. 17. Block-diagram of an o(g)-simulation of (M2) with K modes: the shaded arrows carry vectors composed of K signals while the non-
shaded ones carry only 1 signal. The first stage (S1) corresponds to three filter-banks of dimension K. The first filter-bank is fed by the force
f(#), second one by uy(r) and the third one by u;(z). The block (Bw) is described in Fig. 18. The stage (S2) corresponds to the
multiplications of a vector signal by a scalar signal in the time domain and (S3) to 3K-filters, each filter being fed by one signal. The stage
(S4) adds six K-dimensional vectors. Then, outside the structure .%», the stage (S5) multiplies (for each coordinate, separately) the
coordinates of two K-dimensional vector, before being added in (S6).
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if lml=3,  Hy(sim) = — e[f0)I03)m°F O S0 Hy, (S1mesy)
X Hbz (Sm(bl )+1:m(by )+m(b2))H53 (Sm(bl )+m(bz)+1:m)a (80)

where mi(b) = (my, my, my;1) = m counts the number of leaves which are labelled by 1, 11 and 111, respectively.

5.3. Identification of a simulable structure and connection to a bridge

An identification in Egs. (70)—(74) for |m| <3 and a finite number of modes (1 <k <K) leads to the structure
presented in Fig. 17, which gives an o(g)-approximation of the solution.

In this figure, hEﬁl are linear filters (see Eqgs. (71)~(73)). Their simulation can be performed as for gi*l
(see Appendix A.4) with C = ¢[1,0] for m = (1,0,0), with C = +/2kn[l1, f] for m = (0,1,0), and with C =
(=D)*'/2kn[1, f] for m = (0,0,1). This is also the case for gl = —y, ¢ (see Eq. (52)) which can be
performed with C = —y,[1,0] for |m| = 1. Thus, all the filters of this structure have the same complexity,
namely, N, = N; =4 and N, = N; =5. The global complexity for a discrete-time realization of this
structure with the optimized version of (Bw) presented in Fig. 18 (right) is detailed in Table 3.

Remark. Choosing P = {Oex/0x(x)};<r<x in place of Bx = {er(x)}1 <k <x computes the output Ous /0x(x, £).
Thus, at x = 0 or 1, this makes it possible the structure to be connected to other systems at the boundaries,

(1,..K]  [1,..,K] [1,..K]

, LK) [L.nK]  [1,...K]
Ur1,0,0) Y=0.1,0) Yr=0,0,1) ws (1) U=1.,0,0) Ur=0.1.0) Yr=(0.0.1) ws (1)
A A

Y

I IE
I
-

Y

—

Fig. 18. Detailed block-diagram of (Bw): the products act on each coordinates separately while sums add all the signals (all coordinates of
all vectors).

Table 3
Number of floating point operations to compute u(x, r) for (M2) with K modes, at a given time and at N, distinct locations for (M2): N;-

denotes the number of sums involved in the simulation of a filter h[lk] (N for products and Ng+ Ny for g[lk])

Linear approx.: N = 1, o(¢%) Third-order approx.: N = 3, o(e')
N* KN} + N, +2)— N, KGN} +3N} + Ny +10) = N, — 1
N* KGN+ Ny) KGN 43N + N, +12) -2

N/Tops KQ3NI™ £ 2N, +2) - N, K(6N™P 42N, +22) = N, — 3
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such as a bridge. Note that Oe;/0x(x) = \/ikn(—l)kx for x € {0,1} and that the convergence holds at these
points when K — oo.

6. Third model

In this section, the string is supposed to be governed by (M3) (see Egs. (14)—(16)). The resolution is
performed similarly to Section 4.

6.1. Cancelling system

No equation on the Volterra kernels can be straightforwardly derived from Eq. (14) and interconnection
laws Egs. (18)—(20), because of the square-root in Eq. (14).

Nevertheless, the Volterra kernels {#,} of a nonlinear system . and those {h~,1} of &y (system ¥ for which
the nonlinearity is approximated by its Taylor expansion until order N) are the same for n<N.

Thus, to obtain results valid at order N = 3, a third-order expansion of (M3) is sufficient and corresponds
to the approximation

0 |(1—Co/)@u/2) | 2e0u| _ @ lau C(auﬂ
ox ’

Ox /1 N n(au/ax)z n Ox Ox Ox
with { =& — (n/2) = 2.27 x 10~*, from which the cancelling system described in Fig. 19 is derived.

The kernels {H,(f)} which correspond to this cancelling system, with the boundary conditions (B1), are
solution of Egs. (22), (23) and (26). Moreover, if n>2, then, for all (x,s1,) € @ x (C{)",

() (¢ (x) ()
E9(s1,) = (3 Z OH ) (s1;p,) OH ) (5p1+1:p1+pz)aHp§ (Spy+py+1:n) @1)
m 0x s ox Ox ox ’
(P1:3)e(N¥)
1tp2tp3=n
so that analytical solutions can still be derived using Eqs. (27) and (28).
The modal decomposition yields Eqs. (29)~(32) and, if n>2, for all (k,s1.,) € N* x (C{)",
EE,k](Sl:n) = _é/ Z Z lpgckl]jHl[,kll](sl:pl)Hl[;lzz](spl+1:p1+p2)Hg(33](Spl+122+l:n)s (82)
(P13)eN")? (k1:3)e(N*)?
p1tpatp3=n
with
W _ [0 (O Ben B |\ _ Kikokskn! g 83
Vigs = <6x ( ax ox ox )%/~ 2 M 3)
(z) u(w, () 52 5 8 a2 We(r, 1)
> {h} sz tog—(L+085)sm

I 5 P wy (0, ) 0
—® —¢($) = —)-@—)-— _Ca — —|— —— -

Fig. 19. Cancelling system for the third-order approximation of (M3).
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and
Sk
/Lg(l]ﬁ = Z 5|k|+fzk2+§3k3|,ka (84)
&Hae(—11)2

so that, in Eq. (82), the sum over (k;.3) € (N*)* is infinite but sparse.
This combinatorics can be organized as one sum of (non-zero) elementary terms, as follows.

Theorem 4. Let [, be the sets of full ternary trees defined by, for n € N*,

Ey = N, (85)
E, =0 1if nis even, (86)
E, = U {e =(e1,e0,03,803) € By x By, x By x {—1; 1Y%} if n=3is odd, 87
(P1:3)e(N*)?
P13 odd
p1t+patp3=n

where T(e) = e if e € Ey, T(e) = |f(e1) + E1(en) + E3T(e3)| if e = (e1, €2, €3, E03) € E, with n=3 and n(e) = n counts
the number of leaves.
Then, for all n € N*, kernels H;x) are given by, for all (x,s1,) € Q x (C§)",

HY(s1) =Y He(s1n)ewo(x), (88)
eck,
where, for all ¢ € E, (with n odd and ¢ = (¢1, ¢, ¢3,&5.3) if n=3),
if n=1, Hds))=H{Ns1), (see Eq. (35)) (89)

(e 1)E(e)T(e3)T(e)*
2

if n=3, Hs1n) = — Q[f(c)](m)Hel(sl:n(el))

X Hc2 (Sn(cl )+1 :n(cl)+rt(e2))He3 (Sn(e] )+n(en)+1 :n)' (90)

Another non-sparse reorganization of Eq. (82) is given by, if n>2, for all (k, s1.,) € N* x (C{)",

k
EWGu) =—1 Y. Y kikaka2pl HEs1, )HY sy, 1,10 HEN S, 4y 410), o1)
(P1:3)e(N*) (kp3)els}
p1+p2t+p3=n

where y, = (knt/2, Kk = {(k13) € (N*)}|3(&y, &) € {—1;+1} k) + Eky + E3ks| = k) is illustrated in Fig. 20,
and the weights i ]% are detailed in Table 4.

Thus, for a finite number K of modes (1 <k <K), identifying linear and third-order kernels from Eq. (91)
rather than Eq. (33) leads to the structure in Fig. 21 (to be compared to Fig. 14).
In this structure, each output v[k](t) of the block (Tw) is given by, for all k € N* and 7 € R™,

o) = oo A ks oo o) (92)

(k1:3)ek3NLKE,

for which the combinatorics can be significantly reduced (about a factor 4) thanks to symmetric
considerations. Indeed, similarly to Fig. 18 for the block (Bw), only the triangular superior part [Kz of Ki
can be preserved (see Fig. 22), with adapted weights }vikl]q (see Table 4), as follows:

K; = K} N (ki) € [1, KL k) <ks <ks), (93)

5[]
My = Cr, ‘Akl 3 ©4)
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M

2 k K1k K ki KK k

Fig. 20. The set Ki, is composed of triplets of integers (k1.3) which belong to: a triangle if (£,.3) = (1, 1) (see (1a)); a couple of semi-infinite
parts of parallel planes if (&.3) = (1,—1) (see (1b,1c)); the cases (&5.3) = (—1,1) and (&,3) = (—1,—1) are symmetric versions of the
previous case. All the contributions are gathered in (2b,2c). Parts which are not intersected correspond to a weight /lE(k]:S = 1, intersections

of 2 planes (blue points) to /1551]_3 = 2, the intersection of three planes (one red point, k| =k, = k3 = k) to 25("1]‘3 =3.

Table 4
Detailed weights /15(1‘1]:3 and ZZ?:}
Cases Ak[lA]S Subcases Ch, 4 jk[@
D:ky=kr=ks =k 3 none 1 3
®2k1 =ky#kand ky =k 2 none 3
(and the two permutations)
@ Other cases, if (ki3) € K} 1 @: k) = ky = ks £k 1
®: ki = ka#£ ks #k 3 3
(and the two permutat.)
©:ky #ky# k3 #k 6
@: Other cases, if (k13)¢ 0 x x
with
Crk, 5 = card{(ky, k2, k3); (k1, k3, k2); (ka, k1, k3); (K3, k1, k2); (ka, k3, k1); (k3, ka, k1)) 95)

The simulation of the structure in Fig. 21 involves exactly the same filters as in Fig. 14. The only difference is
the block (Tw), the simulation of which is performed using Eq. (92), for each mode k£ and at each time.

7. Sound synthesis

In this section, we propose to simulate models (M1) and (M3) for the following parameters:

e the geometry and the physical constants are those given in Table 1.
® the excitation ¢(x)f () is defined by, for x €]0, L[ and 7 € R}

$C) = Py cos(1 0N 1 gL, 96)
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(‘!:;(-!'.I)
L

BASE

Fig. 21. Block-diagram of a o(e3)-simulation of (M3) with K modes. Each output vgk](t) of the block (Tw) is a linear combination of

products of triplets (i) ()} (1)) (1)) (see Eq. (92).

k3

ks

ks

ka

ki

Fig. 22. Views of the set [Ki.

t

f(t) = Fmax? I[O,T](I)a (97)

where xg = 0.63m, £ = 0.072m (X, = xo/L = 0.35, { = £/L = 0.04 so that 4% of string is plucked), ¢« =
n/(2pAL) = 395.7kg™" so that Eq. (1) is satisfied (¢, = 7/(2f) = 39.27), T = 10ms (T = 1.1). Several

Forces Fmax are used to investigate the nonlinear effects: F! = 5N, F2
~3
=11.1, F

F* = 160N (£

max max

—28,

=20N, F?

max

=40N, and

max

— 88.8).

max

=22 i

max max

e the sampling frequency is f, = 44,100 Hz (fS =401), the number of modes is K = 20, the order of
approximation is N = 3 in Section 7.1, and N = 5 in Section 7.2.
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For these data, the resonance frequencies [, = c/L\/ k*m? — (o 4 pk*n2)? /(2n) of the band-pass filters with
kernel qllk] (see Eqgs. (34) and (35)) grow from f|; ~55Hz to fx ~ 1100Hz. The aliasing due to the
nonlinearities is rejected since N < Npax = f,/2f k(1 + ék)_l ~ 20 (see Eq. (53)).

7.1. Third-order approximations (N = 3)

Figs. 23-26 present third-order approximations #3(x,¢) of the (dimensional) displacement observed at
x=057L~ 1m.

For the lowest excitation F. = 5N (Fig. 23), the nonlinear contribution is negligible for both models (M1)
and (M3): the spectrum of u3 is approximately 50 dB lower than that of the linear displacement ;. In the time
domain, the maximal value of contributions u; and u3 are max;|u;| ~ 0.9mm and max,|uz|<0.012 mm,
respectively. In this case, considering nonlinear models and using Volterra series are needless. As a matter of
fact, (M1) and (M3) become equivalent since, precisely, their linear kernels h(lx) are the same.

For F2 . =20N (Fig. 24), the nonlinear contributions u3 begin to be significantly activated and have
similar shapes for both models (M1) and (M3)). Nevertheless, this activation is slightly more perceptible for
(M3) than for (M1): while max,|u;| ~ 3.7mm (for both models), max;|uz| ~ 0.5mm for (M1) and max,|u;| &
0.8 mm for (M3). From a qualitative point of view, it can be observed on the spectra that the eigenfrequencies
are the same for the linear and the nonlinear contributions. This is because the order of the nonlinearity is odd.

For the case F Enax = 40N (Fig. 25), contributions u; and u3 have similar magnitudes (in the time domain as
well as the frequency domain): max,|u;| ~ 7.4mm (for both models), max,|u;| ~ 3.84mm for (M1) and
max,|usz| ~ 6.04mm for (M3). In practice, this case can be viewed as the limit of the o(g)-approximation
validity, and more generally, of using truncated Volterra series.

Finally, for Fﬁm = 160 N (Fig. 26), the nonlinear contribution u3 are greater than the linear one for both
models: max;|u;| ~ 29.5mm (for both models), max,|u;| =~ 245.7mm for (M1) and max,|u;| ~ 386.6 mm for
(M3). The approximation is not valid anymore.

(M1) (M3)
E o5 (@{ o5 (a)
= 0 , 0 :
T -05 -0.5 t
)
0 0.5 1 0 0.5 1
t(ins) t(ins)
E 05 | (b){ 05} (b)
= 0 0
T -05 : -05 t
: ;
€
0.5 0.5
£ 0 0
E -05 -0.5
[%2]
0y 0
m 40 -40
© 80 f -80 f
-120 E : : ; ; ) -120 E i ‘ : i ‘
200 400 600 800 1000 200 400 600 800 1000
f (in Hz) f(in Hz)

Fig. 23. Simulation of (M1) (left) and (M3) (right) for the same excitation with magnitude Fp,x = 5SN. The output u is observed at
x =0.57L ~ 1m. From top to bottom: (a) linear response, (b) output of order 3 alone, (c) sum of the linear and of the nonlinear
contributions, and (d) magnitude of the spectrum of (a) and (b).
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Fig. 24. Idem Fig. 23 with F2__=20N.
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Fig. 25. Idem Fig. 23 with F3 = 40N.
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Fig. 26. Idem Fig. 23 with F*

max

= 160 N.

In practice, such simulations make the estimation of the “operating range’ accessible. But, a more rigorous
way would consist of deriving the radius of convergence of the series and a bound of the error due to the
truncature of the series. Such results can be found for ordinary differential equations with a quadratic
nonlinearity [27] but must be generalized to nonlinear partial differential equations.

Estimations of the fundamental frequency [33] make some time-variations appear when the nonlinear
contributions are significant. But more discernible is the transfer of energy from the low frequencies to the
higher modes through the nonlinear contributions: in Fig. 25, the linear and the nonlinear contributions have
similar magnitudes for the first modes (spectrum), while the nonlinear part has more energy than the linear one
in the medium and high-frequency range. This is clearly perceptible in the synthesized sounds which are more
brilliant at the beginning (before becoming significantly damped). All the more, the transfer of energy is
responsible for transients because of its progressive activation (see Figs. 24 and 25 for 0<7<<0.25).

Thus, on a specific given “operating range”, Volterra series can be an interesting alternative to methods
such as nonlinear modes which are limited to particular excitations, or finite difference methods which require
the solving of the model overall the domain Q. With no space discretization, Volterra series can give
interesting results at reasonable orders.

7.2. Higher order approximations (N =5)

Figs. 27 and 28 detail the contributions at order 5 for the model (M1) and complete Figs. 23-26.
These results corroborate the observations given for order n = 3: the contribution at order 5 is negligible for
FIInax (max,|us| =~ 9.6 x 1073 mm), lower than that of order 3 for F? (max,|us| ~ 0.01 mm), similar to that of

max
order 3 for F3_ (max,|us| ~ 3.1 mm), and greater than that of order 3 for Fﬁlax (max;|us| ~ 3226 mm).

max
Figs. 27 and 28 show that the nonlinear contribution at order 5 requires higher excitation force to appear
that at order 3. The transfer of energy from low to high frequencies is more important. In the time domain,

this contribution increases more slowly, thus enhancing the “brillance” effect at the beginning of the sound.
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Fig. 27. Simulation of (M1) for F} =35N and F2, =20N. From top to bottom: (a) output of order 5 alone, (b) sum of the

contributions up to order 5, and (c) magnitude of the spectrum (order 1, 3, and 5).
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Fig. 28. Idem Fig. 27 for F} =40N and F* = 160N.

max max



302 T. Heélie, D. Roze | Journal of Sound and Vibration 314 (2008) 275-306
8. Conclusion and perspectives

This work has presented an application of Volterra series to simulate nonlinear vibrations of a string. The
method proves to be relevant for the (possibly real-time) sound synthesis of some string instruments for which
excitations can be quite large. It has been illustrated with three models with one or several located excitations,
and global or local nonlinearities. Systematic identifications have allowed the building of structures which give
rise to original physical interpretations, and from which efficient algorithms have been deduced. Indeed, these
involve only elementary floating point operations (sums and products without infinite loops), the number of
which can be precisely estimated.

Nevertheless, the convergence of the series and the estimation of a bound of the error due to truncation are
still difficult to tackle. Some future work could focus on this point. Moreover, three-dimensional-string models
which take into account coupled waves can be necessary for the naturalness of the sound synthesis. Hence, the
study of more accurate models of strings and the analysis of the perception of nonlinear effects by the listener
will be part of following works. More generally, using Volterra series could be applied to other physical
models (bi- or tri-dimensional), and some other generalizations could be carried out, e.g. extensions to the
finite elements method.
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Appendix A
A.1. Green function for the linearized problem: (M) with ¢ =0

Eq. (22) can be written

aXff) (Sl )

V(x, Sl:n) € Qx (C(T)n, dx = A(S/l\:n)ng)(sl:n) + B({l;t)Eglx)(Sl:n)» (98)
where
Hff)(slzn) 0 1 0
(x) — P + — — —1
Xs10) = | 0HW(s1,) |, Y5 €Cf, Als) = eGP ol B(s) = |
Ox +ps
the general solution of which is given by
XEIX)(SI:H) = / e(67X)A(S1:’Z)B(m)ng)(sl:n)di + GXA(SI:n)X;O)(SI:n)a (99)
0

where

AG) Eii(x,s) Ep(x,s) cosh(xI'(s)) sinh(xI"(s))/I'(s)
T | En(x,s) Em(x,s)| ~ |sinh(xI's)I(s)  cosh(xI(s))

From the boundary conditions Eq. (26), [1, O]Xﬁ,x)(slzn) =0 for x € {0; 1} which implies, from Eq. (99), that

aHg,O)(Sl:n) _

Y(s1.) € (Cg)”, ox

1
/0 F(E, 5T E9 (s1.0) dE,
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with F(x,s) = Eja(x — 1,5)/(1 + ps)Ea2(1, s). Hence, denoting 1j(x) = 1 if x € | and 1;(x) = 0 if x¢1, Eq. (27)
is satisfied with, for all (x,&,s) € Q x Q x C{,

E12(£ - X, S)

G(Xs 63 S) = _1[0,)(](5) 1 + ﬁS

+ 1o (OEn(x, )F(S, ), (100)
which proves to be also defined by Eq. (28).

A.2. Model (M1): projection of the Volterra kernels on the modal basis

Projecting Eq. (22) on the spatial modes ¢ yields:

_ . O*HY (s, E9 (s,
(irempa e - S o) = (P o), (101

where Eilx) is defined in Eqs. (23) and (24). Expanding the first member of Eq. (101) and using the linearity of
the scalar product yield

62H£1X)(Sl :n)

([FGTa)PHD (51:0), €x) — <

2
= [F(S/l\n)]2 <H${x)(51:n)a er) — <H£,X)(Sl:n)a aﬁ>

ox2
= [F(5T) P HW(s1.0) + (k) (HD (s1.0), €x)
= (TG + (kmy ) HE (s1.). (102)
Now, the second member of Eq. (101) is [1 + 51,1~ (EW(s1.), ex) where E¥(s;.,) = (EW(s1.,), ex) is given by
ENsy) = (o) ifn=1, (103)
1
EW(s1,) = / EX(s1:0)ex(x) dx (104)
0
1 HoHO(s1. YOHO (s, . ;. RHW )
_, / / l pa( 1) OH; (apﬂm) 4O és,,2+q+l,n) o | dx
0 i1 0 X X X
prq+r=n

1
0

X [ Z 2 (s 1-1:0) sin(mmx) sin(knx)] dx

1
/ [ ST 26607 cos(lm) cos(rO HIN sy, ) HI sy 1) | d
0

pgr>1 (6),62)e(N*)?

p+q+r=n

meN*
= —dnt Y D [CHY 1) H (15 JIH (S girn) i =2, (105)
1_7;11,121 teN*
prqtr=n

Finally, Egs. (101)—(105) lead to Eqgs. (31)—~(33) with the definition Eq. (34).
A.3. Proof of Theorem 1

From Remark 5, the kernels H,(f) with even orders n are null so that Eq. (43) is naturally satisfied from
Eq. (41) in Definition 1.
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For odd orders, the proof is performed by induction, as follows.

For n =1, Eq. (44) is straightforwardly deduced by identification on Eq. (35).

For n>=3, assume that Eqs. (43)—(45) are satisfied for all orders strictly lower than n. Then, from Eq. (24)
and under the standard hypotheses of the Lebesgue’s dominated convergence theorem (see e.g. Ref. [28]) and
the Leibniz integral rule (see e.g. Ref. [25, (3.3.7)]),

EW(s1,) = ¢ Z /([ZHb(lp)

p.gr=1 beA,
prq+r=n

= )] [Z H (sp+1p+q>a G )Ddx

€Ay

[Z Hy(spiq11. e P )]

deA,
=° Z Z Hy(51:0) H (Sp1:p+g) Ho(Sptg1:0) A p.en(X), (106)
pgr=1 (b,eD)eA,xAyx Ay
pHqt+r=n

where

Oe Oe de
Hoenlx) = (/ 0 (. %9 (1) dx ) 0
= — (THOD)) (Frqw) 1))ty (X)- (107)
Now, from definitions Egs. (41) and (42), it follows that

=y (108)

pgr=1 (be,D)eA, xAyx Ay achAy,
prq+r=n

with b= aj, ¢ = az, D = a3, p = n(ay), ¢ = n(az), r = n(a3).
Finally, from Eqgs. (31) and (106)—(108), Eq. (43) is satisfied considering the definition Eq. (45) for H,.
This concludes the proof.

A.4. State-space representation and digital implementation

Consider a mode ¢; with k € N* and the associated transfer function Q%(s) defined by Eq. (34) with input f
and output y. It corresponds to a so-called second-order AR-filter, which admits the following state-space
representation:

(31—):(1) = AX(1) + Bf (?) (109)
(1) = CX(0), (110)
with

0 1

0
_k2n2 —(O(+ﬂk27'52) , B= |:1:| and C= [1,0]

X
X=|dx| A=
ds

(it can be checked that the transfer function of this system yields C(sI, — A)~'B = Q%I(s)). The solution X is
given by

X(7) = /0 r eAIBf (1) dt + eMX(0),

so that, for all i € N and t; = iT,

T
X(ti41) = AT X(1) + / eATIBf(1; + 1) dr. (111)
0
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Note that for a free regime, i.e. when f(¢) = 0, Eq. (111) gives an exact resolution in the discrete-time domain:
eigenfrequencies and dampings are exactly preserved, Here, to obtain a numerical simulation, we choose to
approximate the input f by a piecewise-linear model f(¢) ~ f(¢;) + [(t — #;)/ Tf (¢t;+1) — f(t;)] so that Eq. (111)
becomes

X(ti11) = e*TX(1) + Bif (1) + Bof (1i11), (112)
with By = T7'A7[I, — (I — TA)eA”|B and By = T~ 'A~?[—(I, + TA) 4 ¢*”|B. Now, from Eq. (112),

Wtir2) = C* AT X(1) + Bif (1) + Bof (1141))

+ Bif (ti41) + Bof (ti4+2)), (113)
y(tiv1) CeAT CB, CB,
e | = c X(z,-)+[ 0 :|f(ti)+|: 0 ]f(li+1)~ (114)
N’

K (invertible)
Then, isolating X(¢;) in Eq. (114) and substituting this solution Eq. (113) yields the recursive (scalar) equation
Wtiz2) = ary(tivr) + axy(t) + bof (tiv2) + bif (tis1) + baof (1), (115)

with computable coefficients (a1, az, by, b1, by). This equation is used for the simulation: it requires N ;F = 4 sums
and N; =5 products, at each step.
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