
ARTICLE IN PRESS
JOURNAL OF
SOUND AND
VIBRATION
0022-460X/$ - s

doi:10.1016/j.js

�Correspond
E-mail addr
Journal of Sound and Vibration 314 (2008) 275–306

www.elsevier.com/locate/jsvi
Sound synthesis of a nonlinear string using Volterra series
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Abstract

This paper proposes to solve and simulate various Kirchhoff models of nonlinear strings using Volterra series. Two

nonlinearities are studied: the string tension is supposed to depend either on the global elongation of the string (first

model), or on the local strain located at x (second, and more precise, model). The boundary conditions are simple Dirichlet

homogeneous ones or general dynamic conditions (allowing the string to be connected to any system; typically a bridge).

For each model, a Volterra series is used to represent the displacement as a functional of excitation forces. The Volterra

kernels are solved using a modal decomposition: the first kernel of the series yields the standard modes of the linearized

problem while the next kernels introduce the nonlinear dynamics. As a last step, systematic identification of the kernels

lead to a structure composed of linear filters, sums, and products which are well-suited to the sound synthesis, using

standard signal processing techniques. The nonlinear dynamic introduced through this simulation is significant and

perceptible in sound results for sufficiently large excitations.

r 2008 Published by Elsevier Ltd.

1. Introduction

In musical acoustics, sound synthesis aims to produce a more and more realistic result for complex systems
such as musical instruments. Usually, these instruments involve nonlinear propagation phenomena as soon as
vibrations are sufficiently large in instruments such as gongs, dynamics of bowed strings, piano soundboards,
etc. Thus, physical models which include nonlinear phenomena have been derived and usually solved using
numerical methods, as in Ref. [1]. For sinusoidal type excitations, methods such as nonlinear modes [2,3] or
the harmonic balance [4,5] are interesting alternatives.

In this article, nonlinear models of damped strings are solved using Volterra series (see Ref. [6,7]). This
method allows both analytic and numerical solutions to be performed without requiring sinusoidal-type
excitations. More precisely, once the analytic kernels of the series are derived, straightforward identifications
lead to structures composed of linear filters, sums, and products. This yields efficient simulations from
standard signal processing techniques, which are well-adapted to real-time synthesis. Moreover, decomposing
the kernels on the modal basis yields original but natural interpretations: it exhibits precisely the nonlinear
dynamics of each spatial mode.
ee front matter r 2008 Published by Elsevier Ltd.
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Physical models of strings are numerous. Historically, the first information on the equations of the motion of
a string appeared in the 18th century with the works of d’Alembert [8] and Euler [9] who, respectively, wrote the
two linear partial differential equations for small vibrations of a string and transverse vibrations of a bar
(see also Ref. [10]). During the 19th century, Kirchhoff derived a model of a one-dimensional perfectly flexible
string, including a nonlinearity due to the variation of tension [11]. This model has been re-investigated by
Carrier in Ref. [12] from which new string models of musical instruments have been elaborated. For instance, in
Ref. [13], Anand focused on the non-planar transverse vibrations (with celerity cl) and neglected the longitudinal
ones (with celerity cl), assuming that c2l bc2t . On the other hand, in Ref. [14], Narasimha states that the
longitudinal motion cannot be neglected even for small amplitudes. Both these works (and others) have been
unified by Watzky in Ref. [15] with a three-dimensional model of a nonlinear stiff string. This generalization
includes a torsion coupling and allows the introduction of inharmonicity using the hypothesis of a linear elastic
behaviour. Advanced models and experimental results on strings can also be found in Ref. [16].

This work focuses on three mono-dimensional nonlinear models (M1,M2,M3) of perfectly flexible strings
with large transverse waves: the nonlinearity can be globally integrated (M1,M2) or locally distributed (M3) in
space; the boundary conditions can be homogeneous (M1,M3) or it is possible to connect the string to another
system, typically, a bridge (M2).

The paper is organized as follows: Section 2 presents the three models; Section 3 introduces the Volterra
series; Sections 4–6, detail the calculation of the Volterra kernels for (M1)–(M3), from which simulable
structures are deduced. Section 7 presents results and comparisons in both the time and time–frequency
domains. Section 8 develops conclusions and perspectives.

2. Physical models of strings

2.1. Geometry, physical constants, and excitation

Consider the displacement uðx; tÞ of a perfectly flexible string (Fig. 1) with a length L (m), an initial tension
T0 ðNÞ, and a small circular section with radius R ðmÞ. The material is characterized by a density r ðkgm�3Þ, a
Young’s modulus E ðPaÞ, a standard fluid damping d ðs�1Þ introduced by the transverse mass force �dðqu=qtÞ,
and a structural damping k ðm2 s�1Þ introduced by þkðq3u=qtqx2Þ. These dampings model thermoelastic losses
and viscoelasticity [17].

The string is supposed to be motionless before t ¼ 0 and the transverse displacement is denoted uðx; tÞ for all
ðx; tÞ 2 O� Rþ with O ¼�0;L½ and O ¼ ½0;L�. It is excited by a transverse mass force f fðx; tÞ ¼ fðxÞf ðtÞ where
f is positive and spatially distributes the total force f ðtÞ, so that

rA

Z
O
fðxÞdx ¼ 1 with A ¼ pR2. (1)

Two simplified models of the nonlinear propagation (NL1,NL2) and two kinds of boundary conditions
(B1,B2) are described below for transverse vibrations.

2.2. Nonlinear models of propagation, boundary and initial conditions

2.2.1. Model with a global variation of tension (NL1)

The Kirchhoff equation models the transverse vibrations of a string [11]. If the fluid and structural damping
forces are included, it is given by

8ðx; tÞ 2 O� R%

þ;
q2u
qt2
þ d

qu

qt
� k

q3u

qtqx2
¼ c2 þ b

Z L

0

qu

qx

� �2

dx

" #
q2u

qx2
þ f f, (2)
Fig. 1. Characteristics of the string.
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where c ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T0=rA

p
is the wave celerity ðms�1Þ and b ¼ E=2rL is the coefficient of the nonlinearity ðms�2Þ

which takes into account the variation of tension. This model holds under three hypotheses [18]: (H1) the
transverse vibrations are confined to a plane; (H2) the string is perfectly flexible (second-order equation); (H3)
the nonlinear effects are due to the global variation of length.

2.2.2. Model with a local variation of tension (NL2)

The Kirchhoff–Carrier equations model both the longitudinal (v) and the transverse (u) vibrations which are
coupled through the variation of tension. For an undamped string [12], they are given by, 8ðx; tÞ 2 O� R%

þ,

rA
q2u
qt2
¼

q
qx

Tðqu=qxÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðqu=qxÞ2 þ ð1þ ðqv=qxÞÞ2

q
264

375 and rA
q2v
qt2
¼

q
qx

Tð1þ ðqv=qxÞÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðqu=qxÞ2 þ ð1þ ðqv=qxÞÞ2

q
264

375, (3)

where T � T0 ¼ EAð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðqu=qxÞ2 þ ð1þ ðqv=qxÞÞ2

q
� 1Þ. Neglecting qv=qx in Eq. (3a) and including the fluid

and structural damping forces define the model (NL2) which governs a damped wave u decoupled from v:

rA
q2u

qt2
þ rAd

qu

qt
� rAk

q3u
qtqx2

¼
q
qx

ðT0 þ EAð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðqu=qxÞ2

q
� 1ÞÞqu=qxffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ ðqu=qxÞ2
q

264
375. (4)

Note that this model involves a nonlinearity (local with respect to x) with no integral operator as in (NL1). In
this model, (H3) is relaxed, but only transverse waves are (still) assumed to be significant.

This model (NL2) will illustrate how the solutions and the simulations are modified because of local—rather
than global—nonlinearities. A more realistic model with coupled waves will be solved in a future work.

2.2.3. Boundary conditions (B1,B2) and initial conditions

Boundary conditions (B1) are homogeneous Dirichlet conditions, i.e. the string has no displacement at
extremities:

8ðx; tÞ 2 f0;Lg � Rþ; uðx; tÞ ¼ 0. (5)

Boundary conditions (B2) are defined by

8ðx; tÞ 2 f0;Lg � Rþ; uðx; tÞ ¼ uxðtÞ, (6)

where u0 and uL represent excitations. These excitations are both displacements but could be both forces
(qu=qxðx; tÞ ¼ uxðtÞ for ðx; tÞ 2 f0;Lg � Rþ), or even mixed excitations. These choices do not affect the method
proposed in the following, but only the solutions. The latter conditions (B2) allow the string to be connected to
a bridge or to other mechanical systems, at its extremities.

For all the cases studied here, the string is supposed to be motionless for tp0 so that initial conditions
are zero:

8ðx; tÞ 2 O� f0g; k 2 f0; 1g;
qku

qtk
ðx; tÞ ¼ 0. (7)

2.3. Dimensionless models

The changes of variables and functions given in Table 1 yield the dimensionless models (M1,M2,M3) oneO ¼�0; 1½:
ðM1Þ � ðNL1;B1Þ: Clamped string with a global variation of tension:

8ð ~x; ~tÞ 2 ~O� R%

þ;
q2 ~u

q~t2
þ a

q ~u
q~t
� b

q3 ~u

q~tq ~x2
¼ 1þ �

Z 1

0

q ~u
q ~x

� �2

d ~x

" #
q2 ~u

q ~x2
þ ~f ~f, (8)

8ð ~x; ~tÞ 2 f0; 1g � R%

þ; ~uð ~x; ~tÞ ¼ 0, (9)
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Table 1

Changes of variables, of functions, and of dimensionless coefficients (Eq. (1) translates into
R 1
0
~fð ~xÞd ~x ¼ 1)

Dimensional Dimensionless

Geometry Physical constants Variables/coefficients Functions

L ¼ 1:8m r ¼ 7800kgm�3 ~x ¼
x

L
, ~t ¼

tc

L
~uð ~x; ~tÞ ¼

uð ~xL;
~tL

c
Þ

U%

R ¼ 1:5mm E ¼ 2� 1011 Pa a ¼
dL

c
¼ 5:45� 10�2

~fð ~xÞ ¼ rpR2Lfð ~xLÞ

Reference d ¼ 3 s�1 b ¼
k

cL
¼ 2:81� 10�5

~f ð~tÞ ¼

Lf
~tL

c

� �
rpR2c2U%

displacement: k ¼ 0:01m2 s�1
� ¼

EðU%Þ
2

2rðLcÞ2
¼ 2:27� 10�4

~f ~fð ~x; ~tÞ ¼
~fð ~xÞ ~f ð~tÞ

U% ¼ R T0 ¼ 2161N
Z ¼

U%

L

� �2

¼ 6:94� 10�7

~u ~xð~tÞ ¼
u ~xLð

~tL

c
Þ

U%

The proposed values are used in Section 7: the string is made of steel [19,20]; d, k, and T0 are tuned to have realistic damped sounds and

the fundamental frequency f ¼ c=2L ¼ 55Hz with c ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T0=rA

p
.
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8ð ~x; ~tÞ 2 ~O� f0g; ~uð ~x; ~tÞ ¼ 0 and
q ~u
q~t
ð ~x; ~tÞ ¼ 0. (10)

ðM2Þ � ðNL1;B2Þ: Same string with dynamic boundary conditions:

8ð ~x; ~tÞ 2 ~O� R%

þ;
q2 ~u

q~t2
þ a

q ~u
q~t
� b

q3 ~u

q~tq ~x2
¼ 1þ �

Z 1

0

q ~u
q ~x

� �2

d ~x

" #
q2 ~u

q ~x2
þ ~f ~f, (11)

8ð ~x; ~tÞ 2 f0; 1g � R%

þ; ~uð ~x; ~tÞ ¼ ~u ~xð~tÞ, (12)

8ð ~x; ~tÞ 2 ~O� f0g; ~uð ~x; ~tÞ ¼ 0 and
q ~u
q~t
ð ~x; ~tÞ ¼ 0. (13)

ðM3Þ � ðNL2;B1Þ: Clamped string with local variations of tension:

8ð ~x; ~tÞ 2 ~O� R%

þ;
q2 ~u

q~t2
þ a

q ~u
q~t
� b

q3 ~u

q~tq ~x2
¼

q
q ~x
ð1� ð2�=ZÞÞðq ~u=q ~xÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ Zðq ~u=q ~xÞ2
q þ

2�

Z
q ~u
q ~x

264
375þ ~f ~f, (14)

8ð ~x; ~tÞ 2 f0; 1g � R%

þ; ~uð ~x; ~tÞ ¼ 0, (15)

8ð ~x; ~tÞ 2 ~O� f0g; ~uð ~x; ~tÞ ¼ 0 and
q ~u
q~t
ð ~x; ~tÞ ¼ 0. (16)

For sake of legibility, the tilde symbols will be omitted in the following.
3. Introduction to Volterra series

Volterra series have been mainly used to solve nonlinear electronic circuits and ordinary differential
equations including regular nonlinearities (see Refs. [21–24]). They represent the solution (for ‘‘control
engineers’’, the output of a system) as an infinite sum of multi-convolutions fed by the excitation (the input of
a system). It extends ‘‘linear filtering’’ to the case of ‘‘weakly nonlinear behaviours’’.
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3.1. Definition and properties

A causal system (in the ‘‘control engineers’ meaning’’) with input f, output u (see Fig. 2) is described by a
Volterra series with kernels fhngn2N� if

8t 2 Rþ; uðtÞ ¼
X1
n¼1

Z
ðRþÞn

hnðt1:nÞf ðt� t1Þ . . . f ðt� tnÞdt1:n, (17)

with the notation ðt1:nÞ ¼ ðt1; t2; . . . ; tnÞ and dt1:n ¼ dt1dt2 � � � dtn.
Eq. (17) can be interpreted as follows: for n ¼ 1, the term is a standard linear convolution so that h1 is the

impulse response of the linear contribution. For n ¼ 2, the term introduces a quadratic contribution of f on
the output u. More generally, the nth term is associated with a homogeneous nonlinearity of order n which
takes into account some memory through a ‘‘multi-convolution’’.

Moreover, as in the linear case, generalized transfer functions Hnðs1:nÞ (denoted with capital letters) can be
defined as the Laplace transform of the generalized impulse responses hnðt1:nÞ (ðs1:nÞ ¼ ðs1; . . . ; snÞ denotes the
Laplace variables). For a damped (i.e. stable) causal system, they are defined by

8ðs1:nÞ 2 D � ðC
þ
0 Þ

n; Hnðs1:nÞ ¼

Z
ðRþÞn

hnðt1:nÞe�ðs1t1þ���þsntnÞ dt1:n,

where D is the domain of definition and Cþ0 is the set of complex numbers with a strictly positive real part
(see Refs. [25, (29.1.2); 22] for more details).

Remark 1. Embedded Volterra series are: (a) linear filters (hn ¼ 0 for nX2); (b) instantaneous functions
uðtÞ ¼ hðf ðtÞÞ which admits a series expansion hðf Þ ¼

Pþ1
n¼1anf n; (c) their combinations (sum, product, cascade,

see Section 3.2).

Remark 2. For the case (b), hnðt1:nÞ ¼ andðt1:nÞ in the time domain (d denotes the Dirac distribution), and
Hnðs1:nÞ ¼ an in the Laplace domain.

Remark 3. For inputs f which are zero before t ¼ 0, Eq. (17) becomes uðtÞ ¼
P1

n¼1

R
½0;t�n hnðt1:nÞ

f ðt� t1Þ . . . f ðt� tnÞdt1:n. Such a dynamic is that of a system with null initial conditions. This limitation
can be removed using a more general definition of Volterra series (see Ref. [24]).

Remark 4. From a mathematical point of view, the convergence of the series holds for inputs f such that
jf ðtÞjor where r is the convergence radius of the characteristic function jhðxÞ ¼

Pþ1
n¼1khnk1xn with the L1-

norm khnk1 ¼
R
Rn jhnðt1:nÞjdt1:n (see Ref. [22]). In this case, juðtÞjpfhðsupt2Rjf ðtÞjÞ (see Refs. [24,26,27] for

other results on the convergence). Nevertheless, we will not study the convergence of the Volterra series in this

paper: in practice, low-order truncations of the series yield good approximations, if the nonlinearity is not
activated by ‘‘too large inputs’’, as discussed in Section 7.
3.2. Interconnection laws

The following interconnection laws will be useful to solve (M1)–(M3).
Consider two Volterra series with kernels fangn2N� and fbngn2N� . The systems with input f and output u

defined, respectively, in Figs. 3 and 4 and, if bn ¼ 0 for nX2, in Fig. 5 are still described by a Volterra series.
Their kernels fcngn2N� are given in the Laplace domain, respectively [22, pp. 34,35] by

Cnðs1:nÞ ¼ Anðs1:nÞ þ Bnðs1:nÞ, (18)
Fig. 2. System with input f and output u described by a Volterra series fhngn2N� .
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Fig. 3. Interconnection: sum of outputs.

Fig. 4. Interconnection: product of outputs.

Fig. 5. Interconnection: cascade of a Volterra system with a linear system.

Fig. 6. Volterra system representing the solution uðx; tÞ of (M1).
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Cnðs1:nÞ ¼
Xn�1
p¼1

Apðs1:pÞBn�pðspþ1:nÞ, (19)

Cnðs1:nÞ ¼ Anðs1:nÞB1ðcs1:nÞ, (20)

with the notation cs1:n ¼ s1 þ � � � þ sn.
4. Solution and simulation of (M1) using a Volterra series

In this section, the displacement uðx; tÞ of a string governed by (M1) and driven by a force f starting from
t ¼ 0 is solved. The spatial distribution f is considered as an a priori given data of the problem. In Section 4.1,
the Volterra series which maps f to u is defined. In Section 4.2, the kernels of the series are solved and explicit
expressions are given. In Section 4.3, structures composed for linear filters, sums and products are identified
from which a numerical simulation is derived.
4.1. Derivation of the Volterra kernels for (M1)

4.1.1. Modelling the solution by a Volterra series

Consider the displacement uðx; tÞ as the output of a system (in the ‘‘control engineers’ meaning’’)
with input f ðtÞ. This defines a nonlinear system that depends on the space variable x so that the corres-
ponding Volterra series has kernels parameterized by x, denoted hðxÞn (see Fig. 6). The solution is
represented by

8ðx; tÞ 2 O� Rþ; uðx; tÞ ¼
X1
n¼1

Z
½0;t�n

hðxÞn ðt1:nÞf ðt� t1Þ . . . f ðt� tnÞdt1:n. (21)

Note that, from Remark 3 in Section 3.1, this solution naturally satisfies Eq. (10).
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Fig. 7. Equivalent block-diagrams representing Eq. (8).
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4.1.2. Equation satisfied by the kernels inside the domain O.

Eq. (8) requires that the kernels hðxÞn satisfy an equation inside O. This equation can be derived in the Laplace

domain using the interconnection laws (see Section 3.2), as detailed below.
The block-diagram in Fig. 7(a) translates Eq. (8) into waðx; tÞ þ wbðx; tÞwcðx; tÞ þ wdðx; tÞ ¼ 0, where

wa ¼ ðq
2u=qt2Þ þ aðqu=qtÞ � ð1þ bðq=qtÞÞðq2u=qx2Þ, wb ¼ ��

R 1
0 ðqu=qxÞ2 dx, wc ¼ q2u=qx2, wdðx; tÞ ¼ fðxÞf ðtÞ,

and where u is represented by Eq. (21).
Each system which maps f to wfa;b;c;dg can be represented by a Volterra series (see Fig. 7(b)), the kernels of

which can be deduced from interconnection laws, in the Laplace domain, as follows:

Block (Va): in the Laplace domain (with respect to the time variable), the operator ðq2=qt2Þ þ aðq=qtÞ �

ð1þ bðq=qtÞÞðq2=qx2Þ becomes s2 þ as� ð1þ bsÞq2=qx2. Thus, from Eq. (20), the cascade of fH ðxÞn g and this

linear operator defines the Volterra series fAðxÞn g (see Fig. 7(b)) with, for all n 2 N�,

AðxÞn ðs1:nÞ ¼ ðcs1:nÞ2 þ acs1:n � ð1þ bcs1:nÞ q2qx2

� �
H ðxÞn ðs1:nÞ.

Note that, indeed, the spatial operator q2=qx2 can be applied on hðxÞn (and H ðxÞn ) since it commutes with time
operators (and their Laplace transform)1:

q2uðx; tÞ

qx2
¼

q2

qx2

X1
n¼1

Z
½0;t�n

hðxÞn ðt1:nÞf ðt� t1Þ . . . f ðt� tnÞdt1:n

¼
X1
n¼1

Z
½0;t�n

q2hðxÞn ðt1:nÞ
qx2

f ðt� t1Þ . . . f ðt� tnÞdt1:n.
1This holds under the standard hypotheses of the Lebesgue’s dominated convergence theorem (see e.g. Ref. [28]) and the Leibniz integral

rule (see e.g. Ref. [25, (3.3.7)]).
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Block (Vb): Similarly, the cascade of fH ðxÞn ðs1:ng and the linear spatial operator q=qx defines the kernels

qH ðxÞn ðs1:nÞ=qx. Then, from Eq. (19), the cascade with the square yields
Pn�1

p¼1ðq=qxÞH ðxÞp ðs1:pÞðq=qxÞH ðxÞn�pðspþ1:nÞ.

Finally, the cascade with the spatial integral operator ��
R
O dx defines the Volterra series fBðxÞn g (see Fig. 7(b))

with, for all n 2 N�,

BðxÞn ðs1:nÞ ¼ ��

Z 1

0

Xn�1
p¼1

q
qx

H ðxÞp ðs1:pÞ
q
qx

H ðxÞn�pðspþ1:nÞdx.

Block (Vc): The cascade of H ðxÞn with q2=qx2 leads to the kernels

CðxÞn ðs1:nÞ ¼
q2

qx2
H ðxÞn ðs1:nÞ.

Block (Vd): For this case, wdðx; tÞ ¼ �fðxÞf ðtÞ ¼
R1
�1

d
ðxÞ
1 ðt1Þf ðt� t1Þdt1 with d

ðxÞ
1 ðt1Þ ¼ �fðxÞdðt1Þ where d

denotes the Dirac distribution (with Laplace transform 1). Hence, the corresponding Volterra kernels in the
Laplace domain are given by

DðxÞn ðs1:nÞ ¼ �d1;nfðxÞ,

where d1;n denotes the Kronecker symbol (di;j equals 1 if i ¼ j and equals 0 else).
Using Eqs. (18) and (19), the Volterra kernels of the whole system in Fig. 7(b) are given by, for all n 2 N�,

AðxÞn ðs1:nÞ þ
Pn�1

k¼1B
ðxÞ
k ðs1:kÞC

ðxÞ
n�kðskþ1:nÞ þDðxÞn ðs1:nÞ. Now, this system maps f to 0 so that it defines the zero

system for which all the Volterra kernels are zero. This leads to the equation satisfied by H ðxÞn ðs1:nÞ inside O, for
all n 2 N� : 8ðx; s1:nÞ 2 O� ðCþ0 Þ

n,

½Gðcs1:nÞ�2H ðxÞn ðs1:nÞ �
q2H ðxÞn ðs1:nÞ

qx2
¼

EðxÞn ðs1:nÞ

1þ bcs1:n , (22)

with

E
ðxÞ
1 ðs1Þ ¼ fðxÞ, (23)

EðxÞn ðs1:nÞ ¼ �
X

p;q;rX1
pþqþr¼n

Z 1

0

qH ðxÞp ðs1:pÞ

qx

qH ðxÞq ðspþ1:pþqÞ

qx

" #
dx

q2H ðxÞr ðspþqþ1:nÞ

qx2
if nX2 (24)

and

8s 2 Cþ0 ; GðsÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2 þ as

1þ bs

s
. (25)

For each n 2 N�, Eq. (22) is a linear second-order differential equation on H ðxÞn with respect to x. Indeed,
kernels EðxÞn only involve H ðxÞp;q;r with p; q; rpn� 1.
4.1.3. Equations satisfied by the kernels at the boundaries

The boundary conditions Eq. (9) impose a null displacement at x 2 f0; 1g. This means that kernels hðxÞn are
zero at x 2 f0; 1g (see Fig. 8).

In the Laplace domain, this yields, for all n 2 N�:

8ðx; s1:nÞ 2 f0; 1g � ðC
þ
0 Þ

n; H ðxÞn ðs1:nÞ ¼ 0. (26)



ARTICLE IN PRESS

Fig. 8. Boundary condition on hðxÞn at x ¼ 0 (the same condition holds at x ¼ 1).
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4.2. Solving the Volterra kernels

4.2.1. Analytic solution

For each n 2 N�, Eqs. (22)–(26) define a linear boundary value problem, the solution of which is given by
(see Appendix A.1),

8ðx; s1:nÞ 2 O� ðCþ0 Þ
n; H ðxÞn ðs1:nÞ ¼

Z
O

Gðx; x; cs1:nÞEðxÞn ðs1:nÞdx, (27)

where, for all ðx; x; sÞ 2 O� O� Cþ0 ,

Gðx; x; sÞ ¼
coshðð1þ xþ xÞGðsÞÞ � coshðð1� jx� xjÞGðsÞÞ

2ð1þ bsÞGðsÞ sinhGðsÞ
. (28)

Note that G does not depend on the choice of the square root for G since G7! � G keeps G invariant.
For n ¼ 1, this solution is exactly that of the linearized problem ((M1) with � ¼ 0) where the Green function

G is applied on the spatial distribution E
ðxÞ
1 ðs1Þ ¼ fðxÞ in the Laplace domain. For nX2, EðxÞn involves kernels

H ðxÞp with ppn� 1 (see Eq. (24)) so that Eq. (27) is a recurrence equation which makes the explicit derivation

of analytic expressions possible. Nevertheless, in the following, we choose to use a modal decomposition: it
helps to simplify these recurrent integral equations into recurrent algebraic equations.

4.2.2. Modal decomposition

For each n 2 N�, the linear boundary value problem, Eqs. (22)–(26), admits an orthonormal basis of
eigenfunctions B ¼ fekgk2N� on the Hilbert space L2ðOÞ (see e.g. Ref. [29]). Functions ek which define the
spatial modes are

8ðk; xÞ 2 N� � O; ekðxÞ ¼
ffiffiffi
2
p

sinðkpxÞ. (29)

They satisfy: (i) the Dirichlet boundary conditions; (ii) q2ek=qx2 ¼ �ðkpÞ2ek; (iii) for all ði; jÞ 2 ðN
�Þ

2
hei; eji ¼

di;j (Kronecker symbol) where the scalar product on L2ðOÞ is defined by 8ðf ; gÞ 2 ðL2ðOÞÞ2; hf ; gi ¼R
O f ðxÞgðxÞdx.

Consider the decomposition of H ðxÞn on B, given by, for all n 2 N�,

8ðs1:nÞ 2 ðC
þ
0 Þ

n; H ðxÞn ðs1:nÞ ¼
L2

X
k2N�

H ½k�n ðs1:nÞekðxÞ, (30)

where H ½k�n ¼ hH
ðxÞ
n ; eki denotes the projection of H ðxÞn on ek. The relations satisfied by H ½k�n are obtained by

projecting Eqs. (22)–(24) on B, as detailed in Appendix A.2. This yields the following algebraic equations, for

all ðn; kÞ 2 ðN�Þ2, ðs1:nÞ 2 ðC
þ
0 Þ

n,

H ½k�n ðs1:nÞ ¼ Q½k�ðcs1:nÞE ½k�n ðs1:nÞ, (31)

E
½k�
1 ðs1Þ ¼ hf; eki ¼ fk, (32)

E½k�n ðs1:nÞ ¼ ��k
2p4

X
p;q;rX1

pþqþr¼n

X
‘2N�

‘2H ½‘�p ðs1:pÞH
½‘�
q ðspþ1:pþqÞ

" #
H ½k�r ðspþqþ1:nÞ if nX2, (33)

where Q½k�ðsÞ is the rational function given by

Q½k�ðsÞ ¼ ½s2 þ ðaþ bk2p2Þsþ k2p2��1, (34)
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Fig. 9. Poles of Q½k� for 1pkpK ¼ 100 and ða; bÞ given in Table 1.
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which is analytic in Cþ0 . Indeed, for aX0 and bX0, a straightforward analysis proves the real parts of the poles

of Q½k� are all negative (or zero for the particular case a ¼ b ¼ 0). More precisely, these poles correspond to
damped oscillating modes if 1pkoK% ¼ 22; 690 (complex conjugated pair of poles) and purely evanescent
ones if kXK% (real negative poles). A detailed study of such an analysis can be found in Ref. [30] for the case
of a bar with similar dampings. Fig. 9 represents the poles in the Laplace complex plane, for the typical values
a and b given in Table 1.

Computing the analytic expressions for orders n 2 ½1; 5�N leads to, 8ðk; s1:nÞ 2 N� � ðCþ0 Þ
n,

H
½k�
1 ðs1Þ ¼ fkQ½k�ðs1Þ, (35)

H
½k�
2 ðs1:2Þ ¼ 0, (36)

H
½k�
3 ðs1:3Þ ¼ ��k

2p4Q½k�ðcs1:3Þ X
‘2N�

‘2H ð‘Þ1 ðs1ÞH
ð‘Þ
1 ðs2Þ

" #
H
ðkÞ
1 ðs3Þ. (37)

H
½k�
4 ðs1:4Þ ¼ 0, (38)

H
½k�
5 ðs1:5Þ ¼ � �k

2p4Q½k�ðcs1:5Þ X
‘2N�

‘2H
½‘�
3 ðs1:3ÞH

½‘�
1 ðs4ÞH

½k�
1 ðs5Þ

"

þ
X
‘2N�

‘2H ½‘�1 ðs1ÞH
½‘�
3 ðs2:4ÞH

½k�
1 ðs5Þ þ

X
‘2N�

‘2H
½‘�
1 ðs1ÞH

½‘�
1 ðs2ÞH

½k�
3 ðs3:5Þ

#
. (39)

Remark 5. For n ¼ 2, the sum on p; q; rX1 s.t. pþ qþ r ¼ n is empty so that, from Eq. (33), E ½k�n and H ðxÞn are
zero. More generally, a recurrence proves that for all m 2 N�;H ðxÞ2m ¼ 0 and H

ðxÞ
2mþ1 is proportional to �m.

Remark 6. For n ¼ 1, the solution leads to the standard modal decomposition of the linearized problem. For
orders nX2, Eqs. (31), (33) and (34) show how the dynamics of lower orders (1pp; q; rpn� 1 s.t.
pþ qþ r ¼ n) generate the nonlinear dynamics of order n. Eq. (33) also indicates what spatial modes
contribute to the dynamics of order n of the mode k: all the modes ‘ 2 N� contribute to the elongation
(through the orders p and q) while the dynamics of order r (which contribute to the laplacian) are only those of
the mode k.



ARTICLE IN PRESS
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4.2.3. Combinatorics, trees, and physical interpretations

The combinatorics due to Eqs. (30)–(33) can be reorganized as one summation of elementary terms, the
indexes of summation being naturally described by fullð�Þ ternaryð��Þ trees,2 as detailed below.

Definition 1. Let An be the sets of ternary trees defined by, for n 2 N�,

An ¼ N� if n ¼ 1, (40)

An ¼ ; if n is even, (41)

An ¼
[

p;q;rX1
p;q;r odd
pþqþr¼n

fða1; a2; a3Þ 2 Ap �Aq �Arjkða1Þ ¼ kða2Þg if nX3 is odd, (42)

where kðaÞ is the right-sided leaf of a: for a ¼ k 2 A1, kðaÞ ¼ k; for a ¼ ða1; a2; a3Þ 2 An (with nX3),
kðaÞ ¼ kða3Þ. Moreover, nðaÞ denotes the number of leaves of a so that if a 2 An and if n is odd, nðaÞ ¼ n.

Examples. denotes the tree a 2 A1 such that kðaÞ ¼ 8.

represent ternary trees b, c and d such that: kðbÞ ¼ 9,

nðbÞ ¼ 5, b 2 A5; kðcÞ ¼ 2, nðcÞ ¼ 7, c 2 A7; kðdÞ ¼ 9, nðdÞ ¼ 5 but note that deA5. Indeed, d ¼ ðd1; d2; d3Þ with
d1 ¼ 8, d2 ¼ 3 and d3 ¼ ð4; 2; 9Þ so that, in Eq. (42), the condition kða1Þ ¼ kða2Þ is not satisfied (twice): first,
because kðd1Þ ¼ 8a3 ¼ kðd2Þ; second, because d3eA3 for a similar reason (4a2).

Theorem 1. For all n 2 N�, kernels H ðxÞn are given by, for all ðs1:nÞ 2 ðC
þ
0 Þ

n,

H ðxÞn ðs1:nÞ ¼
X
a2An

Haðs1:nÞekðaÞðxÞ, (43)

where, for all a 2 An (with n odd),

if n ¼ 1; Haðs1Þ ¼ fkðaÞQ
½kðaÞ�ðs1Þ, (44)

if nX3; Haðs1:nÞ ¼ � �½kða1Þkða3Þp2�2Q½kðaÞ�ðcs1:nÞHa1ðs1:nða1ÞÞ

�Ha2ðsnða1Þþ1:nða1Þþnða2ÞÞHa3ðsnða1Þþnða2Þþ1:nÞ with a ¼ ða1; a2; a3Þ. (45)

The proof of this theorem is detailed in Appendix A.3.
Interpretation: The trees memorize and isolate each elementary inheritance that each modal linear kernels

transmit to a nth order kernel. For example, kernel He with e ¼ ð4; 4; 9Þ 2 An and n ¼ 3 models how the
elongation due to the linear dynamics of the mode 4 acts on the linear dynamics of mode 9 and contributes to
its nonlinear dynamics of order n ¼ 3. Kernel Hb (b ¼ ð8; 8; eÞ 2 An with n ¼ 5) models how that of mode 8
acts on the dynamics due to He (order 3, mode 9) and contributes to the dynamics (mode 9) of order n ¼ 5.
More generally, for f ¼ ðf1; f2; f3Þ 2 An (nX3, odd), H f models how the elongation introduced by the couple of
dynamics due to ðH f1 ;H f1 Þ for the same the mode k ¼ kðf1Þ ¼ kðf2Þ acts on the dynamics due to H f3 (order
nðf3Þ, mode kðf3Þ) and contributes to the dynamics of order n of the mode kðfÞ ¼ kðf3Þ.

Remark 7. Note that the condition kða1Þ ¼ kða2Þ in the definition Eq. (42) is due to the integral in Eq. (24) and
the orthogonality of B ¼ fekgk2N� .
2This is linked to the nonlinearity of (M1) which is homogeneousð�Þ of degree 3ð��Þ. Recall that a ternary tree is a tree in which every node

has at most three children. A full ternary tree is a tree in which every node has zero or three children.
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4.3. Identification of realizable structures for the sound synthesis

Computing the string dynamics from Eq. (21) using time-domain versions of Eqs. (43)–(45) leads to an
infinite algorithmic complexity. In practice, infinite sums are truncated. First, only a finite number of modes
are considered using eA1 ¼ ½1;K �N in place of A1 in Definition 1. This yields good approximations in Eq. (43),
if modes higher than K can be dropped due to negligible fk ¼ hf; eki, or even, is exact if fk ¼ 0 for k4K .
Second, only the first kernels H ðxÞn for 1pnpN ¼ 2M þ 1 are kept in Eq. (21). This defines the approximation
�uNðx; tÞ such that uðx; tÞ ¼ �uN ðx; tÞ þ oð�MÞ (see Remark 5).
The realization theory allows to build structures which are well-adapted to the numerical simulation. For

Volterra kernels, realizations can be performed from the regular Volterra kernels (see Ref. [23, Chapter 4] for a
detailed presentation). Here, an alternative identification is proposed in Theorem 2, which does not require to
compute the regular kernels. Then, realizations are deduced and detailed for orders n ¼ 1; 3; 5.

4.3.1. Elementary ternary Volterra systems and identification theorem

Definition 2 (Homogeneous Volterra system). A Volterra system S with kernels fhn0 gn02N� is said to be
‘‘homogeneous’’ of order n 2 N�, if hn is non-zero, and if, for all n0 2 N�nfng, the kernels hn0 are null.

Note that linear filters are homogeneous systems of order 1.

Definition 3 (Elementary ternary Volterra system). A system S with input f and output u is an ‘‘elementary
ternary Volterra system’’ if
	
 it exists three homogeneous Volterra systems Sa, Sb, Sc, of respective order p, q, r, with respective output
ya, yb, yc, and all fed by the same input f,

	
 it exists a linear system Sd ,

such that u is the output of Sd fed by the input wðtÞ ¼ yaðtÞybðtÞycðtÞ (see Fig. 10).
From interconnection laws Eqs. (19) and (20), the system S is proven to be homogeneous of order

n ¼ pþ qþ r: its kernel of order n is given by

Hnðs1:nÞ ¼ Apðs1:pÞBqðspþ1:pþqÞCrðspþqþ1:nÞD1ðcs1:nÞ, (46)

in the Laplace domain, where ap, bq, cr, and d1 denote the non-zero kernels of systems Sa, Sb, Sc, and Sd ,
respectively.

Theorem 2 (Structure composed of filters, sums, and products). The solution uðx; tÞ of ðM1Þ obtained from

Eqs. (21) and (43) to (45) is given by the sum

uðx; tÞ ¼
X
n2N�

X
a2An

uaðtÞekðaÞðxÞ, (47)

where the sub-dynamics signals ua can be realized using linear filters and products, as follows:
	
 if a 2 A1, then ua is the output of the linear filter with transfer function HaðsÞ given by Eq. (44);

	
 if nX3 is odd and if a ¼ ða1; a2; a3Þ 2 An, then ua is the output of the linear filter with transfer function

GaðsÞ ¼ ��½kða1Þkða3Þp2�2Q½kðaÞ�ðsÞ (48)

fed by the input vaðtÞ ¼ ua1 ðtÞua2ðtÞua3ðtÞ (see Fig. 11).
Fig. 10. Elementary ternary Volterra system of homogeneous order n ¼ pþ qþ r.
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Fig. 11. Realization of ua for a ¼ ða1; a2; a3Þ 2 An with odd nX3: ga is the convolution kernel of the filter associated to the transfer

function Ga.

Fig. 12. (a): Realization of u
½k�
1 ; (b): realization of ua with a ¼ ð‘; ‘; kÞ 2 eA3.
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Proof. The identification is straightforward if n ¼ 1 or if n is even. Now, let nX3 be odd. Let
a ¼ ða1; a2; a3Þ 2 An. Then, Ha (see Eq. (45)) has the form Eq. (46) with p ¼ nða1Þ, q ¼ nða2Þ, r ¼ nða3Þ, and
Ap ¼ Ha1 , Bq ¼ Ha2 , Cr ¼ Ha3 , D1 ¼ Ga (see Eq. (48)). The identification of the realizable structure arises
from Definition 3. &

4.3.2. Application: building realizable structures for orders n ¼ 1; 3; 5
In practice, the sound synthesis is performed for a finite number of modes k 2 eA1 ¼ ½1;K �N and a finite

number N of kernels. The solution uðx; tÞ given by Eq. (47) is approximated by

�uNðx; tÞ ¼
XN

n¼1

X
a2eAn

uaðtÞekðaÞðxÞ ¼
XN

n¼1

XK

k¼1

u½k�n ðtÞekðxÞ, (49)

with

u½k�n ðtÞ ¼
X

a2eAnðkÞ

uaðtÞ (50)

and eAnðkÞ ¼ fa 2 eAnjkðaÞ ¼ kg. (51)

In this section, realizations of u½k�n and then of �uNðx; tÞ are derived using Theorem 2.

For n ¼ 1 and a ¼ k 2 eA1 ¼ ½1;K �N, ua ¼ u
½k�
1 is the output of the linear filter with kernel h

½k�
1 ¼ fkq½k� fed by

f ðtÞ (see Theorem 2 and Eq. (44)). The static gain fk (see Fig. 12(a)) measures how much the mode ek is excited
by the spatial distribution f.

For n ¼ 3, a 2 eA3 
 ðeA1Þ
3 has the form a ¼ ð‘; ‘; kÞ. From Theorem 2 and Fig. 11, uaðtÞ is the output of the

linear filter with kernel ga ¼ �‘
2gkq½k� fed by u

½‘�
1 ðtÞu

½‘�
1 ðtÞu

½k�
1 ðtÞ, where gk denotes

gk ¼ �k
2p4. (52)

Separating the factors depending on ‘ from those depending on k leads to the realization in Fig. 12(b).
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Fig. 13. Realization of u
½k�
3 with its associated modal shape u

½k�
3 ðtÞekðxÞ.

Fig. 14. Block-diagram of an oð�Þ-simulation of (M1) with K modes: the dashed arrows isolate the linear dynamics (n ¼ 1) of each mode;

the shaded central part isolates the oð�Þ-dynamics of a mode k; the shaded bottom part isolates the dynamics of the integral term in (M1)

(gains 1, k and K before the square operators are due to q=qx); the shaded left part corresponds to simple gains, controlled by the spatial

distribution of the excitation force.
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The realization of u
½k�
3 (k 2 ½1;K�N) is obtained by summing the outputs uaðtÞ of realizations of Fig. 12(b)

over eA3ðkÞ ¼ fð‘; ‘; kÞj‘ 2 eA1g, following Eqs. (50) and (51). Collecting all these contributions over ‘ and

factorizing by the common linear filter �gkq½k� yield the concise realization given in Fig. 13.
As a consequence, the approximated solution �u3ðx; tÞ in Eq. (49) can be realized as detailed in Fig. 14.

In this structure, kernels q½k� are the impulse responses of second-order AR-filters associated to the transfer

functions Q½k�ðsÞ. If Nþq denotes the number of sums involved in a digital simulation of q½k� (similarly, N�q for

products), the global complexity can be evaluated, as detailed in Table 2.
Digital implementations of linear filters involved in Fig. 14 are very standard (see e.g. Ref. [32]). Here, a

method which preserves the exact eigenfrequencies and the exact dampings is proposed (see details in
Appendix A.4). It leads to the parameters Nþq ¼ 4, N�q ¼ 5.

Nevertheless, the products (in the time domain) of N ¼ 3 signals with a frequency range ½0; f �� yield a signal
with frequency range ½0;Nf %

�. Theoretically, rejecting the aliasing due to sampling with frequency f s requires

that f s=24Nf % (Shannon–Nyquist theorem). Here, the second-order filters with impulse response q½k�
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Fig. 15. Realization of u
½k�
5 with its associated modal shape u

½k�
5 ðtÞekðxÞ.

Table 2

Number of floating point operations to compute uðx; tÞ for (M1) with K modes, at a given time, and at Nx observation points (see Section 7

for typical values): the number of sums ðNþÞ, products ðN�Þ, and flops (Nflops ¼ Nþ þN�) are given for the linear and the third-order

approximations

Linear approx.: N ¼ 1, oð�0Þ Third-order approx.: N ¼ 3, oð�1Þ

Nþ KðNþq þNxÞ �Nx Kð2Nþq þNx þ 2Þ �Nx � 1

N� KðN�q þNxÞ Kð2N�q þNx þ 3Þ � 1

Nflops KðNflops
q þ 2NxÞ �Nx Kð2Nflops

q þ 2Nx þ 5Þ �Nx
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significantly cut-off the spectrum beyond f k½1þ 1=Qk� where the quality factor is Qk ¼ kp=ðaþ bk2p2Þ. As a
consequence,

f s

2
4Nf K 1þ

1

QK

� �
(53)

is sufficient in practice. This condition will be used for the sound synthesis in Section 7.
For n ¼ 5, the identification given by Theorem 2 yields the realization given in Fig. 15. Note that this

structure can be also identified using Eq. (39): the first factor in Eq. (39) accounts for the filter with kernel

�gkq½k� which is factorized in the realization (similarly to Fig. 13 for the case n ¼ 3; in the second factor, the
two first terms describes twice the same sub-system which corresponds to the part involving w4ðtÞ and the gain

2 in Fig. 15; finally, the third term describes the sub-system corresponding to the bottom part involving u
½k�
3 ðtÞ

and w2ðtÞ. The realization given in Fig. 15 allows to complement Fig. 14, yielding a realization of �u5ðx; tÞ.
Numerical simulations of �u3 and �u5 and comparisons are presented in Section 7.
5. Solution and simulation of (M2)

Considering a string and impedance type boundary conditions defines a model which can still be solved
using Volterra series (with the single input f). In this case, the kernels depend on the impedance expressions
(see Ref. [31, Chapter 4]). In this section, a more general case is considered: that of a string governed by (M2)
(see Eqs. (11)–(13)), and driven by three inputs which are a force f inside O, a displacement u0 at x ¼ 0 and a
displacement u1 at x ¼ 1. This problem makes it necessary to define Volterra series for systems with three
inputs, as presented in Section 5.1. The solution is derived in Section 5.2 from which a simulable structure is
identified in Section 5.3.
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5.1. Volterra series with three inputs

For systems with three inputs ðeI; eII; eIIIÞ and one output u, the definition of Volterra series is generalized as
follows:

uðtÞ ¼
X
m2M

Z
Rjmj

hmðt
I
1:mI

; tII1:mII
; tIII1:mIII

ÞeIðt� tI1Þ � � � eIðt� tImI
Þ

�eIIðt� tII1 Þ � � � eIIðt� tIImII
ÞeIIIðt� tIII1 Þ � � � eIIIðt� tIIImIII

Þ

�dtI1:mI
dtII1:mII

dtIII1:mIII
,

where the multi-index m ¼ ðmI;mII;mIIIÞ 2M ¼ N3nfð0; 0; 0g details the nonlinearity orders due to each input,
while jmj ¼ mI þmII þmIII denotes the global nonlinearity order of the kernel hm.

Remark 8. For a linear problem, all the kernels hm are zero if jmjX2 and, possibly non-zero if jmj ¼ 1. In this
case, the three available index m 2 fð1; 0; 0Þ; ð0; 1; 0Þ; ð0; 0; 1Þg define the solution as a superposition of three
linear contributions: it leads to the standard superposition principle.

Interconnection laws Eqs. (18)–(20) become, respectively, for all m 2M,

Cmðs1:mÞ ¼ Amðs1:mÞ þ Bmðs1:mÞ, (54)

Cmðs1:mÞ ¼
X

ðp;qÞ2M2 s:t: pþq¼m

Apðs1:pÞBqðspþ1:mÞ (55)

Cmðs1:mÞ ¼ Amðs1:mÞB1ðds1:mÞ. (56)

with the notations 1 ¼ ð1; 1; 1Þ, pþ q ¼ ðpI þ qI; pII þ qII; pIII þ qIIIÞ for ðp; qÞ 2M2 and, if ppq (that is pIpqI,
pIIpqII, pIIIpqIII),

ðsp:qÞ ¼ ðs
I
pI
; sIpIþ1; . . . ; s

I
qI
; sIIpII ; s

II
pIIþ1

; . . . ; sIIqII ; s
III
pIII
; sIIIpIIIþ1

; . . . ; sIIIqIII
Þ, (57)

csp:q ¼ sIpI þ sIpIþ1 þ � � � þ sIqI þ sIIpII þ sIIpIIþ1 þ � � � þ sIIqII þ sIIIpIII
þ sIIIpIIIþ1

þ � � � þ sIIIqIII
. (58)
Fig. 16. Block-diagram representing Eq. (11).
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T. Hélie, D. Roze / Journal of Sound and Vibration 314 (2008) 275–306 291
5.2. Derivation of the Volterra kernels for (M2)

Modelling the displacement uðx; tÞ using a Volterra series fhðxÞm gm2M with inputs eIðtÞ ¼ f ðtÞ, eIIðtÞ ¼ u0ðtÞ,

eIIIðtÞ ¼ u1ðtÞ and translating Eq. (11) into the block-diagram in Fig. 16 allow to derive the following equation

through Eqs. (54)–(56): for all m 2M and ðx; s1:mÞ 2 O� ðCþ0 Þ
jmj,

½Gðds1:mÞ�
2H ðxÞm ðs1:mÞ �

q2H ðxÞm ðs1:mÞ

qx2
¼

EðxÞm ðs1:mÞ

1þ bds1:m
, (59)

with

EðxÞm ðs
I
1Þ ¼ fðxÞ if m ¼ ð1; 0; 0Þ, (60)

EðxÞm ðs
II
1 Þ ¼ 0 if m ¼ ð0; 1; 0Þ, (61)

EðxÞm ðs
III
1 Þ ¼ 0 if m ¼ ð0; 0; 1Þ, (62)

EðxÞm ðs1:mÞ ¼ �
X

ðp;q;rÞ2M3

pþqþr¼m

Z 1

0

qH ðxÞp ðs1:pÞ

qx

qH ðxÞq ðspþ1:pþqÞ

qx

" #
dx

q2H ðxÞr ðspþqþ1:mÞ

qx2
if jmjX2. (63)

The boundary conditions Eq. (12) translate into, for all m 2M and ðs1:mÞ 2 ðC
þ
0 Þ
jmj,

½H ðx¼0Þm ðsII1 Þ;H
ðx¼1Þ
m ðsII1 Þ� ¼ ½1; 0� if m ¼ ð0; 1; 0Þ, (64)

½H ðx¼0Þm ðsIII1 Þ;H
ðx¼1Þ
m ðsIII1 Þ� ¼ ½0; 1� if m ¼ ð0; 0; 1Þ, (65)

½H ðx¼0Þm ðs1:mÞ;H
ðx¼1Þ
m ðs1:mÞ� ¼ ½0; 0� if m ¼ ð1; 0; 0Þ or jmjX2. (66)

For each m 2M, Eqs. (59)–(66), define a second-order linear boundary value problem which can be solved
analytically, or through a decomposition on a basis, as in Section 4.2. Similarly to (M1), kernels H ðxÞm are zero
for even jmj.

More precisely, exact expressions of H ðxÞm are given by, for all m 2M, ðs1:mÞ 2 ðC
þ
0 Þ
jmj and using the

definitions Eqs. (25) and (28)

Hx
msII1 ¼ sinhðð1� xÞGðsII1 ÞÞ= sinhGðs

II
1 Þ if m ¼ ð0; 1; 0Þ, (67)

H ðxÞm ðs
III
1 Þ ¼ sinhðxGðsIII1 ÞÞ= sinhGðs

III
1 Þ if m ¼ ð0; 0; 1Þ, (68)

H ðxÞm ðs1:mÞ ¼

Z
O

Gðx; x;ds1:mÞE
ðxÞ
m ðs1:mÞdx if m ¼ ð1; 0; 0Þ or jmjX2. (69)

The functions ek 2 B are the eigenfunctions of the problems Eqs. (59)–(66) if m ¼ fð1; 0; 0g or jmjX2. The
cases m 2 fð0; 1; 0Þ; ð0; 0; 1Þg are associated to two distinct bases of eigenfunctions, even if B still defines an L2-
orthogonal basis. A decomposition on a L2-basis ensures the convergence towards the solution for the
quadratic mean but not necessarily at a given location x: this is the so-called Gibbs’ effect. It will be precisely
the case at x ¼ 0 and 1, if we choose B for m 2 fð0; 1; 0Þ; ð0; 0; 1Þg. Nevertheless, this choice simplifies the
derivation of solutions. It yields the following results, using the definition Eq. (34), for all m 2M, k 2 N�,
ðs1:mÞ 2 ðC

þ
0 Þ
jmj,

H ðxÞm ðs1:mÞ ¼
L2

X
k2N�

H ½k�m ðs1:mÞekðxÞ, (70)

H ½k�m ðs
I
1Þ ¼ fkQ½k�ðsI1Þ if m ¼ ð1; 0; 0Þ, (71)

H ½k�m ðs
II
1 Þ ¼

ffiffiffi
2
p

kpð1þ bsII1 ÞQ
½k�ðsII1 Þ if m ¼ ð0; 1; 0Þ, (72)
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H ½k�m ðs
III
1 Þ ¼ ð�1Þ

kþ1
ffiffiffi
2
p

kpð1þ bsIII1 ÞQ
½k�ðsIII1 Þ if m ¼ ð0; 0; 1Þ, (73)

H ½k�m ðs1:mÞ ¼ � �k
2p4Q½k�ðds1:mÞ

X
ðp;q;rÞ2M3

pþqþr¼m

X
‘2N�

‘2H ½‘�p ðs1:pÞH
½‘�
q ðspþ1:pþqÞ

" #

�H ½k�r ðspþqþ1:mÞ if jmjX2. (74)

The combinatorics can be still organized as one sum of elementary terms, as follows.

Theorem 3. Let Bm be the sets of full ternary trees defined by, for m 2M,

Bð1;0;0Þ ¼ N� � fIg;Bð0;1;0Þ ¼ N� � fIIg;Bð0;0;1Þ ¼ N� � fIIIg if jmj ¼ 1, (75)

Bm ¼ ; if jmj is even, (76)

Bm ¼
[

ðp;q;rÞ2M3

jpj;jqj;jrj odd
pþqþr¼m

fðb1; b2; b3Þ 2 Bp � Bq � Brj=kðb1Þ ¼ kðb2Þg if jmjX3 is odd, (77)

where, for all m 2M and b 2 Bm, the definition of kðbÞ is the following: if jmj ¼ 1 so that

b ¼ ðk; iÞ 2 N� � fI; II; IIIg, then kðbÞ ¼ k; if jmjX3 is odd so that b ¼ ðb1; b2; b3Þ, then kðbÞ ¼ kðb3Þ.
Then, for all m 2M, kernels H ðxÞm are given by, for all ðx; s1:mÞ 2 O� ðCþ0 Þ

jmj,

H ðxÞm ðs1:mÞ ¼
X
b2Bm

Hbðs1:mÞekðbÞðxÞ, (78)

where, for all b 2 Bm (with jmj odd and b ¼ ðb1; b2; b3Þ if jmjX3),

if jmj ¼ 1; Hb ¼ H ½kðbÞ�m ; ðsee Eqs. (71)2(73)Þ (79)
Fig. 17. Block-diagram of an oð�Þ-simulation of (M2) with K modes: the shaded arrows carry vectors composed of K signals while the non-

shaded ones carry only 1 signal. The first stage (S1) corresponds to three filter-banks of dimension K. The first filter-bank is fed by the force

f ðtÞ, second one by u0ðtÞ and the third one by u1ðtÞ. The block (Bw) is described in Fig. 18. The stage (S2) corresponds to the

multiplications of a vector signal by a scalar signal in the time domain and (S3) to 3K-filters, each filter being fed by one signal. The stage

(S4) adds six K-dimensional vectors. Then, outside the structure S2, the stage (S5) multiplies (for each coordinate, separately) the

coordinates of two K-dimensional vector, before being added in (S6).
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if jmjX3; Hbðs1:mÞ ¼ � �½kðb1Þkðb3Þp2�2Q½kðbÞ�ðds1:mÞHb1 ðs1:mðb1ÞÞ

�Hb2ðsmðb1Þþ1:mðb1Þþmðb2ÞÞHb3 ðsmðb1Þþmðb2Þþ1:mÞ, (80)

where mðbÞ ¼ ðmI;mII;mIIIÞ ¼ m counts the number of leaves which are labelled by I, II and III, respectively.
5.3. Identification of a simulable structure and connection to a bridge

An identification in Eqs. (70)–(74) for jmjp3 and a finite number of modes (1pkpK) leads to the structure
presented in Fig. 17, which gives an oð�Þ-approximation of the solution.

In this figure, h½k�m are linear filters (see Eqs. (71)–(73)). Their simulation can be performed as for q½k�

(see Appendix A.4) with C ¼ fk½1; 0� for m ¼ ð1; 0; 0Þ, with C ¼
ffiffiffi
2
p

kp½1;b� for m ¼ ð0; 1; 0Þ, and with C ¼

ð�1Þkþ1
ffiffiffi
2
p

kp½1;b� for m ¼ ð0; 0; 1Þ. This is also the case for g½k�m ¼ �gkq½k� (see Eq. (52)) which can be

performed with C ¼ �gk½1; 0� for jmj ¼ 1. Thus, all the filters of this structure have the same complexity,

namely, Nþh ¼ Nþg ¼ 4 and N�h ¼ N�g ¼ 5. The global complexity for a discrete-time realization of this

structure with the optimized version of (Bw) presented in Fig. 18 (right) is detailed in Table 3.

Remark. Choosing DK ¼ fqek=qxðxÞg1pkpK in place of BK ¼ fekðxÞg1pkpK computes the output qu3=qxðx; tÞ.
Thus, at x ¼ 0 or 1, this makes it possible the structure to be connected to other systems at the boundaries,
Fig. 18. Detailed block-diagram of (Bw): the products act on each coordinates separately while sums add all the signals (all coordinates of

all vectors).

Table 3

Number of floating point operations to compute uðx; tÞ for (M2) with K modes, at a given time and at Nx distinct locations for (M2): Nþh

denotes the number of sums involved in the simulation of a filter h
½k�
1 (N�h for products and Nþg ,N

�
g for g

½k�
1 )

Linear approx.: N ¼ 1, oð�0Þ Third-order approx.: N ¼ 3, oð�1Þ

Nþ Kð3Nþh þNx þ 2Þ �Nx Kð3Nþh þ 3Nþg þNx þ 10Þ �Nx � 1

N� Kð3N�h þNxÞ Kð3N�h þ 3N�g þNx þ 12Þ � 2

Nflops
Kð3N

flops
h þ 2Nx þ 2Þ �Nx Kð6N

flops
h þ 2Nx þ 22Þ �Nx � 3
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such as a bridge. Note that qek=qxðxÞ ¼
ffiffiffi
2
p

kpð�1Þkx for x 2 f0; 1g and that the convergence holds at these
points when K !1.

6. Third model

In this section, the string is supposed to be governed by (M3) (see Eqs. (14)–(16)). The resolution is
performed similarly to Section 4.
6.1. Cancelling system

No equation on the Volterra kernels can be straightforwardly derived from Eq. (14) and interconnection
laws Eqs. (18)–(20), because of the square-root in Eq. (14).

Nevertheless, the Volterra kernels fhng of a nonlinear system S and those f ~hng of SN (system S for which
the nonlinearity is approximated by its Taylor expansion until order N) are the same for npN.

Thus, to obtain results valid at order N ¼ 3, a third-order expansion of (M3) is sufficient and corresponds
to the approximation

q
qx

ð1� ð2�=ZÞÞðqu=qxÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ Zðqu=qxÞ2

q þ
2�

Z
qu

qx

264
375 � q

qx

qu

qx
þ z

qu

qx

� �3
" #

,

with z ¼ �� ðZ=2Þ ¼ 2:27� 10�4, from which the cancelling system described in Fig. 19 is derived.
The kernels fH ðxÞn g which correspond to this cancelling system, with the boundary conditions (B1), are

solution of Eqs. (22), (23) and (26). Moreover, if nX2, then, for all ðx; s1:nÞ 2 O� ðCþ0 Þ
n,

EðxÞn ðs1:nÞ ¼ z
q
qx

X
ðp1:3Þ2ðN

�Þ3

p1þp2þp3¼n

qH ðxÞp1
ðs1:p1Þ

qx

qH ðxÞp2
ðsp1þ1:p1þp2Þ

qx

qH ðxÞp3
ðsp1þp2þ1:nÞ

qx

2664
3775, (81)

so that analytical solutions can still be derived using Eqs. (27) and (28).
The modal decomposition yields Eqs. (29)–(32) and, if nX2, for all ðk; s1:nÞ 2 N� � ðCþ0 Þ

n,

E½k�n ðs1:nÞ ¼ �z
X

ðp1:3Þ2ðN
�Þ3

p1þp2þp3¼n

X
ðk1:3Þ2ðN

�Þ3

c½k�k1:3
H ½k1�p1
ðs1:p1ÞH

½k2�
p2
ðsp1þ1:p1þp2 ÞH

½k3�
p3
ðsp1þp2þ1:nÞ, (82)

with

c½k�k1:3
¼ �

q
qx

qek1

qx

qek2

qx

qek3

qx

� �
; ek

� �
¼

k1k2k3kp4

2
l½k�k1:3

, (83)
Fig. 19. Cancelling system for the third-order approximation of (M3).
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and

l½k�k1:3
¼

X
x2:32f�1;1g

2

djk1þx2k2þx3k3j;k, (84)

so that, in Eq. (82), the sum over ðk1:3Þ 2 ðN
�Þ

3 is infinite but sparse.
This combinatorics can be organized as one sum of (non-zero) elementary terms, as follows.

Theorem 4. Let En be the sets of full ternary trees defined by, for n 2 N�,

E1 ¼ N�, (85)

En ¼ ; if n is even, (86)

En ¼
[

ðp1:3Þ2ðN
�Þ3

p1:3 odd
p1þp2þp3¼n

fe ¼ ðe1; e2; e3; x2:3Þ 2 Ep1 � Ep2 � Ep3 � f�1; 1g
2g if nX3 is odd, (87)

where kðeÞ ¼ e if e 2 E1, kðeÞ ¼ jkðe1Þ þ x2kðe2Þ þ x3kðe3Þj if e ¼ ðe1; e2; e3; x2:3Þ 2 En with nX3 and nðeÞ ¼ n counts

the number of leaves.
Then, for all n 2 N�, kernels H ðxÞn are given by, for all ðx; s1:nÞ 2 O� ðCþ0 Þ

n,

H ðxÞn ðs1:nÞ ¼
X
e2En

Heðs1:nÞekðeÞðxÞ, (88)

where, for all e 2 En (with n odd and e ¼ ðe1; e2; e3; x2:3Þ if nX3),

if n ¼ 1; Heðs1Þ ¼ H ½kðeÞ�n ðs1Þ; ðsee Eq. (35)) (89)

if nX3; Heðs1:nÞ ¼ �
zkðe1Þkðe2Þkðe3ÞkðeÞp4

2
Q½kðeÞ�ðcs1:nÞHe1ðs1:nðe1ÞÞ

�He2ðsnðe1Þþ1:nðe1Þþnðe2ÞÞHe3 ðsnðe1Þþnðe2Þþ1:nÞ. (90)

Another non-sparse reorganization of Eq. (82) is given by, if nX2, for all ðk; s1:nÞ 2 N� � ðCþ0 Þ
n,

E½k�n ðs1:nÞ ¼ �wk

X
ðp1:3Þ2ðN

�Þ3

p1þp2þp3¼n

X
ðk1:3Þ2K

3
k

k1k2k3l
½k�
k1:3

H ½k1�p1
ðs1:p1ÞH

½k2�
p2
ðsp1þ1:p1þp2 ÞH

½k3�
p3
ðsp1þp2þ1:nÞ, (91)

where wk ¼ zkp4=2, K3
k ¼ fðk1:3Þ 2 ðN

�Þ
3
j9ðx2; x3Þ 2 f�1;þ1gjjk1 þ x2k2 þ x3k3j ¼ kg is illustrated in Fig. 20,

and the weights l½k�k1:3
are detailed in Table 4.

Thus, for a finite number K of modes (1pkpK), identifying linear and third-order kernels from Eq. (91)
rather than Eq. (33) leads to the structure in Fig. 21 (to be compared to Fig. 14).

In this structure, each output v
½k�
3 ðtÞ of the block (Tw) is given by, for all k 2 N� and t 2 Rþ,

v
½k�
3 ðtÞ ¼

X
ðk1:3Þ2K

3
k
\½1;K �3

N

l½k�k1:3
k1k2k3u

½1�
k1
ðtÞu
½1�
k2
ðtÞu
½1�
k3
ðtÞ (92)

for which the combinatorics can be significantly reduced (about a factor 4) thanks to symmetric

considerations. Indeed, similarly to Fig. 18 for the block (Bw), only the triangular superior part ~K
3

k of K3
k

can be preserved (see Fig. 22), with adapted weights ~l
½k�

k1:3
(see Table 4), as follows:

~K
3

k ¼ K3
k \ fðk1:3Þ 2 ½1;K �

3
Njk1pk2pk3g, (93)

~l
½k�

k1:3
¼ Ck1:3l

½k�
k1:3

(94)
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Table 4

Detailed weights l½k�k1:3
and ~l

½k�

k1:3

Cases l
k
½k�
1:3

Subcases Ck1:3
~l

k
½k�
1:3

: k1 ¼ k2 ¼ k3 ¼ k 3 none 1 3

: k1 ¼ k2ak and k3 ¼ k 2 none 3 6

(and the two permutations)

: Other cases, if ðk1:3Þ 2 K3
k

1 : k1 ¼ k2 ¼ k3ak 1 1

: k1 ¼ k2ak3ak 3 3

(and the two permutat.)

:k1ak2ak3ak1 6 6

: Other cases, if ðk1:3ÞeK3
k

0 � � 0

Fig. 20. The set K3
k is composed of triplets of integers ðk1:3Þ which belong to: a triangle if ðx2:3Þ ¼ ð1; 1Þ (see (1a)); a couple of semi-infinite

parts of parallel planes if ðx2:3Þ ¼ ð1;�1Þ (see (1b,1c)); the cases ðx2:3Þ ¼ ð�1; 1Þ and ðx2:3Þ ¼ ð�1;�1Þ are symmetric versions of the

previous case. All the contributions are gathered in (2b,2c). Parts which are not intersected correspond to a weight l½k�k1 :3
¼ 1, intersections

of 2 planes (blue points) to l½k�k1:3
¼ 2, the intersection of three planes (one red point, k1 ¼ k2 ¼ k3 ¼ k) to l½k�k1:3

¼ 3.
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with

Ck1:3 ¼ cardfðk1; k2; k3Þ; ðk1; k3; k2Þ; ðk2; k1; k3Þ; ðk3; k1; k2Þ; ðk2; k3; k1Þ; ðk3; k2; k1Þg. (95)

The simulation of the structure in Fig. 21 involves exactly the same filters as in Fig. 14. The only difference is
the block (Tw), the simulation of which is performed using Eq. (92), for each mode k and at each time.

7. Sound synthesis

In this section, we propose to simulate models (M1) and (M3) for the following parameters:
	
 the geometry and the physical constants are those given in Table 1.

	
 the excitation fðxÞf ðtÞ is defined by, for x 2�0;L½ and t 2 R%

þ

fðxÞ ¼ fmax cos p
x� x0

‘

	 

1
½x0�

‘
2
;x0þ

‘
2
�
ðxÞ, (96)
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Fig. 22. Views of the set ~K
3

k.

Fig. 21. Block-diagram of a oð�3Þ-simulation of (M3) with K modes. Each output v
½k�
3 ðtÞ of the block (Tw) is a linear combination of

products of triplets ðu
½1�
k1
ðtÞu
½1�
k2
ðtÞu
½1�
k3
ðtÞÞ (see Eq. (92)).
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f ðtÞ ¼ Fmax
t

T
1½0;T �ðtÞ, (97)

where x0 ¼ 0:63m, ‘ ¼ 0:072m ( ~x0 ¼ x0=L ¼ 0:35, ~‘ ¼ ‘=L ¼ 0:04 so that 4% of string is plucked), fmax ¼

p=ð2rA‘Þ ¼ 395:7 kg�1 so that Eq. (1) is satisfied ( ~fmax ¼ p=ð2~‘Þ ¼ 39:27), T ¼ 10ms ( ~T ¼ 1:1). Several

Forces Fmax are used to investigate the nonlinear effects: F1
max ¼ 5N, F2

max ¼ 20N, F 3
max ¼ 40N, and

F4
max ¼ 160N ( ~F

1

max ¼ 2:8, ~F
2

max ¼ 11:1, ~F
3

max ¼ 22:2, ~F
4

max ¼ 88:8).

	
 the sampling frequency is f s ¼ 44; 100Hz ( ~f s ¼ 401), the number of modes is K ¼ 20, the order of

approximation is N ¼ 3 in Section 7.1, and N ¼ 5 in Section 7.2.
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For these data, the resonance frequencies f k ¼ c=L k p � ðaþ bk p Þ =ð2pÞ of the band-pass filters with

kernel q
½k�

(see Eqs. (34) and (35)) grow from f � 55Hz to f � 1100Hz. The aliasing due to the
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 2 2 2 2

q
1 1 K

nonlinearities is rejected since NpNmax ¼ f s=2f K ð1þ
1

QK
Þ
�1
� 20 (see Eq. (53)).

7.1. Third-order approximations (N ¼ 3)

Figs. 23–26 present third-order approximations �u3ðx; tÞ of the (dimensional) displacement observed at
x ¼ 0:57L � 1m.

For the lowest excitation F1
max ¼ 5N (Fig. 23), the nonlinear contribution is negligible for both models (M1)

and (M3): the spectrum of u3 is approximately 50 dB lower than that of the linear displacement u1. In the time
domain, the maximal value of contributions u1 and u3 are maxtju1j � 0:9mm and maxtju3jo0:012mm,
respectively. In this case, considering nonlinear models and using Volterra series are needless. As a matter of
fact, (M1) and (M3) become equivalent since, precisely, their linear kernels h

ðxÞ
1 are the same.

For F 2
max ¼ 20N (Fig. 24), the nonlinear contributions u3 begin to be significantly activated and have

similar shapes for both models ((M1) and (M3)). Nevertheless, this activation is slightly more perceptible for
(M3) than for (M1): while maxtju1j � 3:7mm (for both models), maxtju3j � 0:5mm for (M1) and maxtju3j �

0:8mm for (M3). From a qualitative point of view, it can be observed on the spectra that the eigenfrequencies
are the same for the linear and the nonlinear contributions. This is because the order of the nonlinearity is odd.

For the case F 3
max ¼ 40N (Fig. 25), contributions u1 and u3 have similar magnitudes (in the time domain as

well as the frequency domain): maxtju1j � 7:4mm (for both models), maxtju3j � 3:84mm for (M1) and
maxtju3j � 6:04mm for (M3). In practice, this case can be viewed as the limit of the oð�Þ-approximation
validity, and more generally, of using truncated Volterra series.

Finally, for F4
max ¼ 160N (Fig. 26), the nonlinear contribution u3 are greater than the linear one for both

models: maxtju1j � 29:5mm (for both models), maxtju3j � 245:7mm for (M1) and maxtju3j � 386:6mm for
(M3). The approximation is not valid anymore.
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Fig. 23. Simulation of (M1) (left) and (M3) (right) for the same excitation with magnitude Fmax ¼ 5N. The output u is observed at

x ¼ 0:57L � 1m. From top to bottom: (a) linear response, (b) output of order 3 alone, (c) sum of the linear and of the nonlinear

contributions, and (d) magnitude of the spectrum of (a) and (b).
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Fig. 24. Idem Fig. 23 with F2
max ¼ 20N.
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In practice, such simulations make the estimation of the ‘‘operating range’’ accessible. But, a more rigorous
way would consist of deriving the radius of convergence of the series and a bound of the error due to the
truncature of the series. Such results can be found for ordinary differential equations with a quadratic
nonlinearity [27] but must be generalized to nonlinear partial differential equations.

Estimations of the fundamental frequency [33] make some time-variations appear when the nonlinear
contributions are significant. But more discernible is the transfer of energy from the low frequencies to the
higher modes through the nonlinear contributions: in Fig. 25, the linear and the nonlinear contributions have
similar magnitudes for the first modes (spectrum), while the nonlinear part has more energy than the linear one
in the medium and high-frequency range. This is clearly perceptible in the synthesized sounds which are more
brilliant at the beginning (before becoming significantly damped). All the more, the transfer of energy is
responsible for transients because of its progressive activation (see Figs. 24 and 25 for 0ptp0:2 s).

Thus, on a specific given ‘‘operating range’’, Volterra series can be an interesting alternative to methods
such as nonlinear modes which are limited to particular excitations, or finite difference methods which require
the solving of the model overall the domain O. With no space discretization, Volterra series can give
interesting results at reasonable orders.
7.2. Higher order approximations (N ¼ 5)

Figs. 27 and 28 detail the contributions at order 5 for the model (M1) and complete Figs. 23–26.
These results corroborate the observations given for order n ¼ 3: the contribution at order 5 is negligible for

F1
max ðmaxtju5j � 9:6� 10�5 mmÞ, lower than that of order 3 for F2

max (maxtju5j � 0:01mm), similar to that of

order 3 for F3
max (maxtju5j � 3:1mm), and greater than that of order 3 for F 4

max (maxtju5j � 3226mm).

Figs. 27 and 28 show that the nonlinear contribution at order 5 requires higher excitation force to appear
that at order 3. The transfer of energy from low to high frequencies is more important. In the time domain,
this contribution increases more slowly, thus enhancing the ‘‘brillance’’ effect at the beginning of the sound.
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8. Conclusion and perspectives

This work has presented an application of Volterra series to simulate nonlinear vibrations of a string. The
method proves to be relevant for the (possibly real-time) sound synthesis of some string instruments for which
excitations can be quite large. It has been illustrated with three models with one or several located excitations,
and global or local nonlinearities. Systematic identifications have allowed the building of structures which give
rise to original physical interpretations, and from which efficient algorithms have been deduced. Indeed, these
involve only elementary floating point operations (sums and products without infinite loops), the number of
which can be precisely estimated.

Nevertheless, the convergence of the series and the estimation of a bound of the error due to truncation are
still difficult to tackle. Some future work could focus on this point. Moreover, three-dimensional-string models
which take into account coupled waves can be necessary for the naturalness of the sound synthesis. Hence, the
study of more accurate models of strings and the analysis of the perception of nonlinear effects by the listener
will be part of following works. More generally, using Volterra series could be applied to other physical
models (bi- or tri-dimensional), and some other generalizations could be carried out, e.g. extensions to the
finite elements method.
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Appendix A

A.1. Green function for the linearized problem: (M1) with � ¼ 0

Eq. (22) can be written

8ðx; s1:nÞ 2 O� ðCþ0 Þ
n;

qXðxÞn ðs1:nÞ

qx
¼ Aðcs1:nÞXðxÞn ðs1:nÞ þ Bðcs1:nÞEðxÞn ðs1:nÞ, (98)

where

XðxÞn ðs1:nÞ ¼

H ðxÞn ðs1:nÞ

qH ðxÞn ðs1:nÞ

qx

264
375; 8s 2 Cþ0 ; AðsÞ ¼

0 1

½GðsÞ�2 0

" #
; BðsÞ ¼

0
�1

1þ bs

24 35,
the general solution of which is given by

XðxÞn ðs1:nÞ ¼

Z x

0

eðx�xÞAðcs1:nÞBðcs1:nÞEðxÞn ðs1:nÞdxþ exAðcs1:nÞXð0Þn ðs1:nÞ, (99)

where

exAðsÞ ¼
E11ðx; sÞ E12ðx; sÞ

E21ðx; sÞ E22ðx; sÞ

" #
¼

coshðxGðsÞÞ sinhðxGðsÞÞ=GðsÞ

sinhðxGðsÞÞGðsÞ coshðxGðsÞÞ

" #
.

From the boundary conditions Eq. (26), ½1; 0�XðxÞn ðs1:nÞ ¼ 0 for x 2 f0; 1g which implies, from Eq. (99), that

8ðs1:nÞ 2 ðC
þ
0 Þ

n;
qH ð0Þn ðs1:nÞ

qx
¼

Z 1

0

F ðx; cs1:nÞEðxÞn ðs1:nÞdx,
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with F ðx; sÞ ¼ E12ðx� 1; sÞ=ð1þ bsÞE12ð1; sÞ. Hence, denoting 1IðxÞ ¼ 1 if x 2 I and 1IðxÞ ¼ 0 if xeI, Eq. (27)
is satisfied with, for all ðx; x; sÞ 2 O� O� Cþ0 ,

Gðx; x; sÞ ¼ �1½0;x�ðxÞ
E12ðx� x; sÞ

1þ bs
þ 1½0;1�ðxÞE12ðx; sÞF ðx; sÞ, (100)

which proves to be also defined by Eq. (28).

A.2. Model (M1): projection of the Volterra kernels on the modal basis

Projecting Eq. (22) on the spatial modes ek yields:

½Gðcs1:nÞ�2H ðxÞn ðs1:nÞ �
q2H ðxÞn ðs1:nÞ

qx2
; ek

� �
¼

EðxÞn ðs1:nÞ

1þ bcs1:n ; ek

� �
, (101)

where EðxÞn is defined in Eqs. (23) and (24). Expanding the first member of Eq. (101) and using the linearity of
the scalar product yield

h½Gðcs1:nÞ�2H ðxÞn ðs1:nÞ; eki �
q2H ðxÞn ðs1:nÞ

qx2
; ek

� �
¼ ½Gðcs1:nÞ�2hH ðxÞn ðs1:nÞ; eki � H ðxÞn ðs1:nÞ;

q2ek

qx2

� �
¼ ½Gðcs1:nÞ�2H ½k�n ðs1:nÞ þ ðkpÞ

2
hH ðxÞn ðs1:nÞ; eki

¼ ð½Gðcs1:nÞ�2 þ ðkpÞ2ÞH ½k�n ðs1:nÞ. (102)

Now, the second member of Eq. (101) is ½1þ bcs1:n��1hEðxÞn ðs1:nÞ; eki where E½k�n ðs1:nÞ ¼ hE
ðxÞ
n ðs1:nÞ; eki is given by

E
½k�
1 ðs1Þ ¼ hf; eki if n ¼ 1, (103)

E½k�n ðs1:nÞ ¼

Z 1

0

EðxÞn ðs1:nÞekðxÞdx (104)

¼ �

Z 1

0

X
p;q;rX1

pþqþr¼n

Z 1

0

qH ðxÞp ðs1:pÞ

qx

qH ðxÞq ðspþ1:pþqÞ

qx

" #
dx

q2H ðxÞr ðspþqþ1:nÞ

qx2
ekðxÞ

0BB@
1CCAdx

¼ � �

Z 1

0

X
p;q;rX1

pþqþr¼n

Z 1

0

X
ð‘1;‘2Þ2ðN

�Þ2

2‘1‘2p2 cosð‘1pxÞ cosð‘2pxÞH ½‘1�p ðs1:pÞH
½‘2�
q ðspþ1:pþqÞ

24 35dx
0BB@

�
X

m2N�

2m2p2H ½m�r ðspþqþ1:nÞ sinðmpxÞ sinðkpxÞ

" #1CCAdx

¼ � �k2p4
X

p;q;rX1
pþqþr¼n

X
‘2N�
½‘2H ½‘�p ðs1:pÞH

½‘�
q ðspþ1:pþqÞ�H

½k�
r ðspþqþ1:nÞ if nX2. (105)

Finally, Eqs. (101)–(105) lead to Eqs. (31)–(33) with the definition Eq. (34).

A.3. Proof of Theorem 1

From Remark 5, the kernels H ðxÞn with even orders n are null so that Eq. (43) is naturally satisfied from
Eq. (41) in Definition 1.
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For odd orders, the proof is performed by induction, as follows.
For n ¼ 1, Eq. (44) is straightforwardly deduced by identification on Eq. (35).
For nX3, assume that Eqs. (43)–(45) are satisfied for all orders strictly lower than n. Then, from Eq. (24)

and under the standard hypotheses of the Lebesgue’s dominated convergence theorem (see e.g. Ref. [28]) and
the Leibniz integral rule (see e.g. Ref. [25, (3.3.7)]),

EðxÞn ðs1;nÞ ¼ �
X

p;q;rX1
pþqþr¼n

Z 1

0

X
b2Ap

Hbðs1:pÞ
qekðbÞ

qx
ðxÞ

24 35 X
c2Aq

Hcðspþ1:pþqÞ
qekðcÞ

qx
ðxÞ

24 350@ 1Adx

�
X
d2An

Hdðspþqþ1:nÞ
q2ekðdÞ

qx2
ðxÞ

" #
¼ �

X
p;q;rX1

pþqþr¼n

X
ðb;c;dÞ2Ap�Aq�Ar

Hbðs1:pÞHcðspþ1:pþqÞHdðspþqþ1:nÞKb;c;dðxÞ, (106)

where

Kb;c;dðxÞ ¼

Z 1

0

qekðbÞ

qx
ðxÞ:

qekðbÞ

qx
ðxÞdx

� �
q2ekðdÞ

qx2
ðxÞ

¼ � ðp2kðbÞkðdÞÞ2ðdkðbÞ;kðcÞÞekðdÞðxÞ. (107)

Now, from definitions Eqs. (41) and (42), it follows thatX
p;q;rX1

pþqþr¼n

X
ðb;c;dÞ2Ap�Aq�Ar

�
X
a2An

(108)

with b ¼ a1, c ¼ a2, d ¼ a3, p ¼ nða1Þ, q ¼ nða2Þ, r ¼ nða3Þ.
Finally, from Eqs. (31) and (106)–(108), Eq. (43) is satisfied considering the definition Eq. (45) for Ha.
This concludes the proof.

A.4. State-space representation and digital implementation

Consider a mode ek with k 2 N� and the associated transfer function Q½k�ðsÞ defined by Eq. (34) with input f

and output y. It corresponds to a so-called second-order AR-filter, which admits the following state-space
representation:

dX

dt
ðtÞ ¼ AXðtÞ þ Bf ðtÞ (109)

yðtÞ ¼ CXðtÞ, (110)

with

X ¼

x
dx

dt

24 35 A ¼
0 1

�k2p2 �ðaþ bk2p2Þ

" #
; B ¼

0

1

� �
and C ¼ ½1; 0�

(it can be checked that the transfer function of this system yields CðsI2 � AÞ�1B ¼ Q½k�ðsÞ). The solution X is
given by

XðtÞ ¼

Z t

0

eAðt�tÞBf ðtÞdtþ eAtXð0Þ,

so that, for all i 2 N and ti ¼ iT ,

Xðtiþ1Þ ¼ eATXðtiÞ þ

Z T

0

eAðT�tÞBf ðti þ tÞdt. (111)
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Note that for a free regime, i.e. when f ðtÞ ¼ 0, Eq. (111) gives an exact resolution in the discrete-time domain:
eigenfrequencies and dampings are exactly preserved. Here, to obtain a numerical simulation, we choose to
approximate the input f by a piecewise-linear model f̂ ðtÞ � f ðtiÞ þ ½ðt� tiÞ=T �½f ðtiþ1Þ � f ðtiÞ� so that Eq. (111)
becomes

Xðtiþ1Þ ¼ eATXðtiÞ þ B1f ðtiÞ þ B0f ðtiþ1Þ, (112)

with B1 ¼ T�1A�2½I2 � ðI2 � TAÞeAT �B and B0 ¼ T�1A�2½�ðI2 þ TAÞ þ eAT �B. Now, from Eq. (112),

yðtiþ2Þ ¼ CðeAT ðeATXðtiÞ þ B1f ðtiÞ þ B0f ðtiþ1ÞÞ

þ B1f ðtiþ1Þ þ B0f ðtiþ2ÞÞ, (113)

yðtiþ1Þ

yðtiÞ

" #
¼

CeAT

C

" #
|fflfflfflfflffl{zfflfflfflfflffl}

K (invertible)

XðtiÞ þ
CB1

0

� �
f ðtiÞ þ

CB0

0

� �
f ðtiþ1Þ. (114)

Then, isolating XðtiÞ in Eq. (114) and substituting this solution Eq. (113) yields the recursive (scalar) equation

yðtiþ2Þ ¼ a1yðtiþ1Þ þ a2yðtiÞ þ b0f ðtiþ2Þ þ b1f ðtiþ1Þ þ b2f ðtiÞ, (115)

with computable coefficients ða1; a2; b0; b1; b2Þ. This equation is used for the simulation: it requires Nþq ¼ 4 sums

and N�q ¼ 5 products, at each step.
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