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Abstract

Based on the Mickens procedure, a new iteration scheme is proposed for nonlinear oscillators. Different from the

existing Mickens procedures, in the proposed procedure, the algebraic equation governing the frequency of oscillation

deduced at each iteration stage is always linear. Taking the Duffing equation as an illustrative example, excellent

approximations can be easily obtained. Furthermore, the proposed procedure is extended to obtain the limit cycle of the

van der Pol equation. Additionally, a computational disadvantage of the Mickens procedure is eliminated.

r 2008 Elsevier Ltd. All rights reserved.
1. Introduction

Firstly, consider a nonlinear conservative oscillator described as

x00 þ f ðxÞ ¼ 0; xð0Þ ¼ A; x0ð0Þ ¼ 0 (1)

where the superscript denotes the differentiation with respect to time t, A is a given constant, f(x) is an odd
function and its derivative near x ¼ 0 is positive. Eq. (1) can be rewritten as

x00 þ o2x ¼ o2x� f ðxÞ :¼ gðo; xÞ (2)

where o is a priori unknown frequency of the periodic solution x(t) being sought. The original Mickens
procedure is given as [1]

x00k þ o2xk ¼ gðo;xk�1Þ; k ¼ 1; 2; . . . (3)

where the input of starting function is

x0ðtÞ ¼ A cosðotÞ (4)

This iteration scheme was used to solve many nonlinear oscillating equations [2–4]. Lim et al. [5] proposed a
modified iteration scheme

x00kþ1 þ o2xkþ1 ¼ gðo;xk�1Þ þ gxðo;xk�1Þðxk � xk�1Þ; k ¼ 0; 1; 2; . . . (5)
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with the inputs of starting functions as

x�1ðtÞ ¼ x0ðtÞ ¼ A cosðotÞ (6)

where gxðo; xÞ ¼ qgðo;xÞ=qx. The modified procedure was also applied to solve many nonlinear oscillators
[6–11]. Later, Marinca et al. [12] proposed a new iteration method by combining Mickens’ and He’s iteration
methods. These iteration procedures have been used to solve both nonlinear conservative and nonconservative
oscillators. For most conservative oscillators, like some other methods for nonlinear oscillators [13–15], the
second-order (even the first-order) approximations can give uniformly accurate solutions.

In all the aforementioned papers about the Mickens procedure, the second-order approximations were
obtained at most. In principle, the approximations can be obtained to any desired order. However, as the
iteration proceeds, more and more complicated nonlinear algebraic equations in o have to be solved. Thus, it
is necessary to propose some techniques to simplify the implementation of the Mickens iteration procedure
(e.g., without solving nonlinear algebraic equation).

2. A new iteration scheme

At the kth iteration stage of Eq. (3), the frequency o (considered as ok�1) is calculated anew by demanding
that the right hand side contains no terms giving rise to secular terms. But, the Fourier components of xk are
considered as functions of ok being determined at the next iteration stage. As a result, the equation in ok

deduced at the (k+1)th iteration stage becomes more and more complicated as k increases. This drawback
also exists in Lim’s modified iteration scheme (5).

In order to simplify the attained equation in ok, we try to make the Fourier components of xk independent
of ok. To this end, a new iteration scheme is proposed as

x00k þ o2
k�1xk ¼ gðok�1;xk�1Þ; k ¼ 1; 2; . . . (7)

subject to initial conditions

xkð0Þ ¼ A; x0kð0Þ ¼ 0 (8)

where the input of starting function is

x0ðtÞ ¼ A cosðo0tÞ (9)

o0 is the zeroth-order approximation for o. It is obvious that as long as the sequences fok; k ¼ 0; 1; 2; . . .g and
fxk; k ¼ 0; 1; 2; . . .g are convergent, they must converge to the exact solutions of Eq. (1). For each iteration
stage, the right-hand side of Eq. (7) can be expanded in the Fourier series

gðok�1;xk�1Þ ¼
XjðkÞ
i¼1

ak�1;iðok�1Þ cosðiok�1tÞ (10)

where the coefficients ak�1,i are functions of ok�1 and j(k) is a positive integer. The (k�1)th-order
approximation ok�1 is obtained by eliminating the so-called secular terms, i.e., letting

ak�1;1ðok�1Þ ¼ 0; k ¼ 1; 2; . . . (11)

Different from the regular Mickens procedure [1–12], no matter what the integer k is, Eq. (11) is always a
linear algebraic equation in ok�1

2 (considered as an independent unknown). It simplifies the Mickens
procedure significantly, as shown later.

3. The Duffing equation

The details as to how to carry out the proposed iteration scheme are illustrated in the following example.
The Duffing equation can be described as

x00 þ xþ �x3 ¼ 0; xð0Þ ¼ A; x0ð0Þ ¼ 0 (12)
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where the coefficient e40 needs not be small. Using iteration procedure (7), we have

x00k þ o2
k�1xk ¼ o2

k�1xk�1 � xk�1 � �x
3
k�1; k ¼ 1; 2; . . . (13)

When k ¼ 1, substituting Eq. (9) into Eq. (13), we obtain

x001 þ o2
0x1 ¼ o2

0 � 1�
3

4
�A2

� �
A cosðo0tÞ �

�A3

4
cosð3o0tÞ (14)

Equating the coefficient of cos(o0t) to zero yields

o2
0 ¼ 1þ

3

4
�A2 (15)

Thus, the equation governing x1 becomes

x001 þ o2
0x1 ¼ �

�A3

4
cosð3o0tÞ (16)

Considering the initial conditions (8), then x1(t) can be obtained as

x1ðtÞ ¼ A�
�A3

32o2
0

� �
cosðo0tÞ þ

�A3

32o2
0

cosð3o0tÞ

:¼ A�
�A3

32o2
0

� �
cosðo1tÞ þ

�A3

32o2
0

cosð3o1tÞ (17)

Write c1;1 ¼ A� ð�A3=32o2
0Þ and c1;3 ¼ �A

3=32o2
0 for simply. Note that c1,1 and c1,3 are independent of o1.

Substituting Eq. (17) into Eq. (13), we obtain

x002 þ o2
1x2 ¼

X9
i¼1

a1;k cosðio1tÞ (18)

where the coefficients are listed as follows:

a1;1 ¼ c1;1ðo2
1 � 1Þ �

3�

4
c31;1 �

3�

4
c21;1c1;3 �

3�

2
c1;1c

2
1;3

a1;3 ¼ �
3�

4
c21;1c1;3 �

�

4
c31;1 �

3�

4
c31;3 þ c1;3ðo2

1 � 1Þ,

c1;5 ¼ �
3�

4
c1;1c1;3ðc1;1 þ c1;3Þ,

c1;7 ¼ �
3�

4
c1;1c

2
1;3; c1;9 ¼ �

�

4
c31;3; and

a1;i ¼ 0; i ¼ 2; 4; 6; 8.

Because c1,1 and c1,3 are independent of o1, the equation a1;1ðo2
1Þ ¼ 0 in o1

2 is linear. Hence, it is easy to
obtain

o2
1 ¼ 1þ

3�

4
c21;1 þ

3�

4
c1;1c1;3 þ

3�

2
c21;3

¼
831�3A6 þ 3408�2A4 þ 4608�A2 þ 2048

128ð3�A2 þ 4Þ2
(19)

In both iteration schemes (3) and (5), the counterparts of c1,1 and c1,3 are updated as c1;1 ¼ A� ð�A3=32o2
1Þ

and c1;3 ¼ �A
3=32o2

1, respectively. As a consequence, the equation in o1
2 is nonlinear. Of the three solutions of

o1
2, the one that is closest to o0

2 is chosen.
The exact frequency of the periodic motion of Eq. (12) is given by [16]

oe ¼
p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ �A2

p
2

Z p=2

0

dyffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�m sin2 y

p
 !�1

; m ¼
�A2

2ð1þ �A2Þ
(20)
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According to Eqs. (15) and (19), we have

lim
�A2!þ1

o0

oe

¼ 1:0222; lim
�A2!þ1

o1

oe

¼ 1:0025 (21)

The relative errors are 2.22% and 0.25%, respectively. Thus, both the zeroth and first-order approximations
are uniformly accurate for all values of eA2.

According to Eq. (18), x2 can be obtained as

x2 ¼
X9
i¼1

c2;i cosðio1tÞ (22)

where c2;i ¼ a1;i=o2
1ð1� i2Þ, i ¼ 2, 3,y,9 and c2;1 ¼ A�

P9
i¼2c2;i. The second-order approximation o2 can be

obtained as (neglecting the trivial coefficients c2;i; i ¼ 2; 4; 6; 8)

o2
2 ¼ 1þ

4�

3c21
ð2c21c25c29 þ 2c21c23c27 þ 2c23c25c27

þ 2c23c27c29 þ c223c25 þ c221c25 þ c225c29 þ c223c29

þ c321 þ 2c21c223 þ 2c21c225 þ 2c21c227 þ 2c21c229Þ (23)

Using symbolic calculation, we can obtain

lim
�A2!þ1

o2

oe

¼ 1:00025 (24)

The relative error is only 0.025%. The accuracy can be improved by an order of magnitude for every
iteration stage, which means the convergence is excellent.

Lim’s first-order approximation for o (counterpart of o1) is [5]

oL
1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
32þ 25�A2 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1024þ 1472�A2 þ 433�2A4

pq
8

(25)

thus

lim
�A2!þ1

oL
1

oe

¼ 0:998596 (26)

The relative error is �0.14%. Lim’s first-order approximation is relatively more accurate than o1 but less
accurate than o2. Importantly, our results can be easily obtained by solving linear algebraic equations. Thus,
the proposed procedure can be carried out to any desired order without any additional difficulty. As shown in
Table 1, the higher-order approximations are extremely accurate.

4. The van der Pol equation

In this section, we extend the proposed procedure to obtain limit cycle of self-excited oscillator exemplified
by the famous van der Pol equation

x00 þ xþ �ðx2 � 1Þx0 ¼ 0 (27)
Table 1

Comparison of the frequency solutions obtained by the proposed procedure with Lim’s first-order approximations and the numerical ones

eA2 o0 o2 o4 o9 oe o1
L

0.1 1.03682207 1.03671691 1.03671691 1.03671691 1.03671691 1.03671659

1 1.32287566 1.31778315 1.31777607 1.31777606 1.31777606 1.31766980

10 2.91547595 2.86703623 2.86664253 2.86664014 2.86664014 2.86408175

100 8.71779789 8.53558685 8.53360297 8.53358619 8.53358619 8.52219663

10,000 86.6083137 84.7486265 84.7274967 84.7274799 84.7274799 84.6088325
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where e is a constant needing not be small or positive. Eq. (27) possesses one stable limit cycle when e40 while
an unstable one when eo0. Denote the frequency of the limit cycle as o, and rewrite Eq. (27) as

x00 þ o2x ¼ o2x� x� �ðx2 � 1Þx0 :¼ hðo; x;x0Þ (28)

Because the limit cycle is independent of initial conditions, we can introduce such simple initial conditions as

xð0Þ ¼ a; x0ð0Þ ¼ 0 (29)

where a is the amplitude of the limit cycle to be determined. Similar to Eq. (7), we construct an iteration
scheme

x00k þ o2
k�1xk ¼ hðok�1;xk�1;x

0
k�1Þ; k ¼ 1; 2; . . . (30)

subject to initial conditions as

xkð0Þ ¼ ak; x0kð0Þ ¼ 0 (31)

where the input of starting function is

x0 ¼ a0 cosðo0tÞ (32)

where ak�1; ok�1; k ¼ 1; 2; . . . are to be determined at the kth iteration stage.
Different from Eqs. (7) and (8), xk�1 contains the unknown ak�1. At each iteration stage, the right-hand side

of Eq. (30) can be expressed as

hðok�1;xk�1; x
0
k�1Þ ¼

XjðkÞ
i¼1

½ck�1;iðok�1; ak�1Þ cosðiok�1tÞ þ sk�1;iðok�1; ak�1Þ sinðiok�1tÞ� (33)

where the coefficients ck�1,i and sk�1,i are functions of ok�1 and ak�1, j(k) is a positive integer. The (k�1)
th-order approximations ok�1 and ak�1 are obtained by solving

ck�1;1ðok�1; ak�1Þ ¼ 0; sk�1;1ðok�1; ak�1Þ ¼ 0; k ¼ 1; 2; . . . (34)

Eq. (30) contains the first-order derivative (i.e., x0k�1), which causes o2
k�1 can no longer be considered as an

independent unknown; thus, Eq. (34) is in general a set of nonlinear algebraic equations. Fortunately, they do
not become more complex as k increases. Several pairs of real roots for ok�1 and ak�1 maybe exist. The pair in
which ok�1 is closest to the corresponding value (i.e., ok�2) attained at the prior iteration stage is chosen. As
Fig. 1 shows, very accurate approximation can be obtained by only five iteration stages. Fig. 2 shows the phase
planes given by the several approximations xk or numerical solution. From it, we can intuitively see the rapid
Fig. 1. Comparison of the fourth-order approximations (o4) for frequency of the limit cycle of the van der Pol equation obtained by

iteration (30) with the numerical solutions, where dots denote o4 and solid line denotes numerical solutions.



ARTICLE IN PRESS

Fig. 2. The convergence of the approximations to the numerical solution of the limit cycle of the van der Pol equation with e ¼ 1. Dots are

given by xk�1 obtained by Eq. (30) with (a) k ¼ 1; (b) k ¼ 3; (c) k ¼ 5; (d) k ¼ 7, and solid lines represent the numerical solution.
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convergence of the approximations to the numerical solution as the iteration proceeds. It is worth noting that
this proposed procedure is also effective for Eq. (27) with negative e. We should also note that when |e|
increases, say more than 1, iteration scheme (30) does not converge. This is probably because the difference
between the input of the starting function and the exact solution is too large.
5. Relationship to the harmonic balance method

In general, the highest harmonic of the kth-order approximation xk(t) increases with k. For many periodic
oscillations, the amplitudes of higher harmonics are just small quantities compared with those of lower
harmonics. Thus, it is often enough to obtain high accurate solutions by retaining only several lower
harmonics. For both the Duffing and the van der Pol equations, there are j(k) ¼ 3k harmonics in
gðok�1;xk�1Þ and hðok�1;xk�1;x0k�1Þ, respectively. Accordingly, the number of harmonics in xk exponentially
increases with k. This causes a big computational disadvantage for seeking higher-order approximations. In
fact, this problem exists in some other Mickens procedures too [1–12]. In this section, a technique is proposed
to eliminate this shortcoming. Further, it reveals the relationship between the presented technique and the
harmonic balance (HB) method.

Without loss of generality, we consider the Duffing equation firstly. Giving a positive integer N, when
j(k)4N, neglecting all the harmonics higher than Nth in gðok�1;xk�1Þ, and we denote summation of the first
N harmonics in gðok�1;xk�1Þ as

gNðok�1;xk�1Þ ¼
XN

n¼1

ak�1;i cosðiok�1tÞ (35)

Substituting Eq. (35) into the right-hand side of Eq. (7), using the same procedures described above, the
approximations with N harmonics can be obtained. Importantly, when k is relatively large, say j(k)4N, the
computational effort for every iteration stage remains the same.

Interestingly, the approximation xk(t) containing N harmonics obtained by the presented technique
converges to HB solution. The proof is given in the following.
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Denote the approximation xk(t) containing N harmonics as yk(t), that

lim
k!þ1

ðyk � yk�1Þ ¼ 0 (36)

According to the definitions of yk and gN ðok�1; yk�1Þ, we have

y00k þ o2
k�1yk ¼ gN ðok�1; yk�1Þ (37)

Let

RN ðok�1; yk�1; ykÞ ¼ y00k þ o2
k�1yk � gðok�1; yk�1Þ :¼

XfðNÞ
i¼1

Ck;i cosðiok�1tÞ (38)

where f(N) is an integer dependent of N. For the Duffing equation, f(N) ¼ 3N. Considering Eq. (37), we have
Ck,i ¼ 0 for 1pipN. Additionally, according to Eq. (2), RN can be rewritten as

RNðok�1; yk�1; ykÞ ¼ y00k þ o2
k�1ðyk � yk�1Þ þ f ðyk�1Þ

¼ ðy00k � y00k�1Þ þ o2
k�1ðyk � yk�1Þ þ y00k�1 þ f ðyk�1Þ (39)

That fyk; k ¼ 0; 1; 2; . . .g converges means limk!1ðyk � yk�1Þ ¼ 0. Letting k-+N, we can obtain

lim
k!þ1

½y
00

k�1 þ f ðyk�1Þ� :¼
XfðNÞ
i¼1

ð lim
k!þ1

Dk;iÞ cosðiok�1tÞ

¼ lim
k!þ1

½RNðok�1; yk�1; ykÞ� � lim
k!1
ðy00k � y00k�1Þ � lim

k!1
ðyk � yk�1Þ

¼
XfðNÞ
i¼1

ð lim
k!þ1

Ck;iÞ cosðiok�1tÞ ¼
XfðNÞ

i¼Nþ1

ð lim
k!þ1

Ck;iÞ cosðiok�1tÞ (40)

According to the HB method, obviously, as long as the sequence {yk(t)} converges it must converge to one
HB solution of Eq. (1).

Table 2 shows the comparison of the approximations obtained by retaining three harmonics (i.e., N ¼ 3)
and the HB3 results. Rapid convergence of the attained approximations to the HB results can be observed.
Additionally, several Fourier components Dk,i in the right-hand side of Eq. (40) are plotted in Fig. 3. We can
see that Dk,i converge to 0 when i ¼ 5, 7 (corresponding to N ¼ 5, 7) while to constants when i ¼ 7, 9
(corresponding to N ¼ 5, 7). Similar to Eq. (35), neglecting the higher harmonics in hðok�1;xk�1;x0k�1Þ,
approximate solution with N harmonics for the limit cycle of the van der Pol equation can also be obtained.
With N ¼ 5 or 7, the Fourier components of the residues of the van der Pol equation are shown in Fig. 4.
Figs. 3 and 4 imply that the convergent solutions obtained by the proposed technique comply with the
harmonic balancing principle.

6. Conclusions

A modified Mickens iteration procedure for certain nonlinear conservative oscillators is proposed. Different
form the existing procedures, in the presented procedure, no nonlinear algebraic needs be solved. This makes
the implementation of the presented procedure rather simple, and hence higher-order approximation can be
Table 2

Comparison of the frequency solutions obtained with N ¼ 3 with the HB3 results

e ¼ 1, A ¼ 10 ok�1 ck�1,1 ck�1,3

k ¼ 1 8.71779788708135 10 0

k ¼ 3 8.54968068501462 9.57718396163524 0.42281603836476

k ¼ 5 8.54961530209536 9.57700454402057 0.42299545597943

k ¼ 10 8.54961528773423 9.57700450461056 0.42299549538944

HB3 solution 8.54961528773423 9.57700450461056 0.42299549538944
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Fig. 3. Fourier components of the residues of the Duffing equation versus k with N ¼ 5 for (a) and N ¼ 7 for (b), where e ¼ 1 and A ¼ 10.

Fig. 4. Fourier components of the residues of the van der Pol equation versus k with N ¼ 5 for (a) and N ¼ 7 for (b), where e ¼ 1.
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obtained to any desired accuracy. Additionally, the present procedure is extended to obtain the limit cycle of
the van der Pol equation.

In the Mickens procedure, a computational disadvantage is that the number of harmonics increases rapidly.
For this issue, a technique by truncating the harmonics in the higher-order approximations is suggested.
Interestingly, the approximations obtained by this technique converge to HB solutions.
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