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Abstract

In this paper, transversal nonlinear vibration of an axially moving viscoelastic string supported by a partial viscoelastic
guide is analytically investigated. The string is traveling under time-variant velocity, which includes a mean velocity along
with small harmonic fluctuations. The model of the viscoelastic guide is also a parallel combination of springs and viscous
dampers. The governing partial-differential equation is derived from Hamilton’s principle and geometrical relations. The
method of multiple scales is applied to the governing partial-differential equation to obtain solvability conditions for both
non-resonance and principal parametric resonance cases. Additionally, in the case of principal parametric resonance, the
stability and bifurcation of trivial and non-trivial steady-state responses are analyzed through the Routh—Hurwitz
criterion. Eventually, numerical simulations are presented to highlight the effects of mean velocity, guide length, stiffness
and damping coefficient of the guide and viscosity coefficient of the string on the natural frequencies, stability, frequency-
response curves and bifurcation points of the system.
© 2008 Elsevier Ltd. All rights reserved.

1. Introduction

Axially moving systems can be simple models of many engineering devices, such as paper sheets, power
transition chains, fiber textiles, band saw blades, magnetic tapes and conveyor belts.

A significant amount of research has been carried out on axially moving systems in various pieces of
literatures. Wickert [1] considered nonlinear vibration of an axially moving beam in sub- and supercritical
traveling velocity. Stylianou and Tabarrok [2] obtained numerical solutions of an axially moving beam
through the finite element method (FEM). They have also investigated the effects of tip mass and high
frequency of axial motion fluctuations on transverse vibrations of the system. Stylianou and Tabarrok [3] used
FEM to examine the effects of wall flexibility, damping and tip support on the stability of the system.
Furthermore, Oz et al. [4] investigated the transition behavior between a string and a beam using the
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perturbation method. Pakdemirli et al. [5] investigated the transverse vibration of an axially moving string
through the Galerkin method and by discretizing the equations. Pakdemirli and Ozkay [6] used the method of
multiple scales and obtained a boundary layer solution for an axially moving beam under constant speed.
Pellicano and Zirilli [7] analyzed the oscillation of an axially moving beam under an assumption of weak
nonlinearities. Parker [8] examined the stability of an axially moving string supported by a discrete elastic
guide. Chakraborty et al. [9] studied free and forced responses of a nonlinear traveling slender beam. Oz and
Pakdemirli [10] investigated the vibrations of an axially moving beam under time-variant velocity. They used
the multiple-scales methods to investigate principal parametric resonances in detail. Oz et al. [11] investigated
the nonlinear vibration and stability of an axially moving beam with time-variant velocity. They used the
multiple-scales method to obtain solvability conditions for three cases. Chen et al. [12] obtained a bifurcation
diagram versus dynamic viscosity, transport speed and periodic perturbation for a string. Shin et al. [13]
investigated the vibrations of a membrane using the Galerkin method to discretize the equations of motion
and investigate the effects of system parameters on the natural frequencies, mode shapes and stability of a
system. Zhang and Chen [14] investigated the nonlinear behavior of an axially moving viscoelastic string.
Chen and Zhao [15] investigated the transverse vibration of an axially moving beam under a low axial speed.
Chen et al. [16] solved the transverse vibration equations of an axially moving string through the modified
finite difference method. Chen and Yang [17] considered an axially moving viscoelastic beam under time-
variant velocity. Kartik and Wickert [18] investigated the forced vibration of an axially moving strip, which is
guided by a partial elastic foundation and edge imperfection. Chen and Yang [19] considered two models of
nonlinear vibration of an axially moving beam, and then they compared the results of the two models.
Marynowski and Kapitaniak [20] considered an axially moving beam as a three-parameter Zener element.
They then used the Galerkin method to discretize the equations of motion. Ha et al. [21] investigated chaos
and bifurcation of a three-dimensional moving viscoelastic string. Ghayesh [22] compared nonlinear vibration
and stability conditions of two dynamic models of axially moving Timoshenko beams. Ghayesh and Khadem
[23] investigated rotary inertia and temperature effects on nonlinear vibration of an axially moving beam.

From all the above-mentioned researches, it can be concluded that the vast majority of researches were
devoted to the beam model of axially moving materials [1-4,6,7,9—11,15,17,19,20,22,23], and the others
considered the string model [5,8,12,14,16,18,21]. Axially moving materials can also be modeled as a plate, shell
and membrane [13].

In the classical models of axially moving systems, the traveling speed is assumed to be constant with respect
to time [1,7,8], whereas some other recent researches state that the speed is assumed to be time variant
[10,11,17,19,22,23]. In such cases, the speed is comprised of a mean velocity along with small harmonic
fluctuations.

Axially moving materials can also be modeled as linear [4,8,10,18] or nonlinear [1,7,9,11] systems. Although
the nonlinear systems are difficult to deal with analytically, they can explain the model behavior with more
precision than linear ones.

Since, considering that the energy-dissipative mechanisms in axially moving materials make models more
close to reality, viscoelascity, as an effective approach to model the energy-dissipative mechanisms, was
considered in Refs. [14,17].

In the following, the transversal nonlinear vibration and stability of an axially moving viscoelastic string
supported by a partial viscoelastic guide are investigated analytically. After deriving the governing partial-
differential equation of motion, the multiple-scales method is applied and stability conditions are obtained
through the Ruth—Hurwitz criterion. Finally, the numerical simulations are presented to show the effects of
system parameters on the natural frequencies, stability and bifurcation points of the system.

2. Equations of motion

A viscoelastic string, which is supported by a viscoelastic guide is depicted in Fig. 1. This string, with an
axial stiffness of EA, is under applied pretension of T and a time-variant transport speed of v(¢™).

To derive the equations of motion through the energy method, three segments of the string will be
considered. The first segment is the span where 0 < x* <a, the second is the span where a<x* <(a + b) and the
third is the span where (a + b)) <x* <(a + b + ¢).
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Fig. 1. An axially moving viscoelastic string on a partial viscoelastic guide.
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The equations of motion will further be obtained for each segment in the upcoming sections.
Considering only transversal displacement, the kinetic energy in the span 0 <x*<a, is given by

1 4 (ou* o\
T,==pA dx* 1
« =3P /0 (at*+”ax*> x O
in which x* and u*(x*, r*) are the spatial variable and transversal displacement of the string, respectively. Also,
the nonlinear disturbed strain of an infinitesimal element of the string, as well as the potential energy of the

whole system, are found by
1 (our\?
vk = — | —— 2
‘OX 2 <ax*) 5 ( )

a1 aw\? 1 ou\ *
.= ~T(=— —EA(— *,
v /0 (2 (Eﬁx*) + 8 (@x*) ) dx ®)

In the Kelvin—Voigt model for viscoelastic materials, the constitution relation is

U:ESX*—I—i’]?, 4)

where o, ¢ and 7 are the distributed stress, distributed strain and viscosity coefficient of the string,
respectively.
The variation of work of the non-conservative force due to the viscosity of the string can be written

as [12,14,17]
< 0 O+ Ou*
5ncv1scoz ~ X 5*d*
(OVne)s Aw@me“x
‘. OPur (our\® _o%urdut Our . 1o
- ”Alax*zat* () 20 e o o ©

Then the governing equation of the span 0 <x*<a can be derived through Hamilton’s principal:

n ,
/ (0T, — dUq + (Swne)y ] dr* = 0. (6)
o

1

Substitution of Egs. (1), (2) and (5) into Eq. (6) will lead to
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Introducing dimensionless quantities

u=u"/(a+b+c),
x=x"/(a+ b+ o),

t= t*\/T/pA(a +b+0),

c(t) = v/pA]T ®)

and simplifying Eq. (7), one has

2 A N 2n oA AN 2 A2 A 3A AN 2 2aAn A
au+acvau+2%au+(Cﬁ_l)%zguz<a_u) gﬂ[au <6u) 50 u@u@u] o)

o " ot ox axot ox) ox ' '|ox2ar \ox 92 dx 0x0t
in which
n=/EA/T,
n=\/i4/Tpla+b+c). (10)
Using transformation @ = /eu'® (¢<1) and substituting it into Eq. (9) one has
0%u@  de, ou@ 0%ul@ o*u®
o7 ooy T e TG D

3, (U’ %@
=~ le 11
2+ g( Ox o T (b
Eq. (11) is the governing equation of motion of the span 0 <x*<a or (0<x<a/(a + b + ¢)). The governing
equation of the span (a+b)<x*<(a@a+b+c)or(a+b/(a+b+ c)<x<l1) can be derived using a similar
procedure of Egs. (1)—(11). Then the equation of motion of the span (¢ + b)<x*<(a + b + ¢) is of the form

Ox20t \ Ox Ox2 Ox 0xOt

3@ (auw)) 2 24D 3@ aZum)]

o*ul N ¢, 0u'® N ol (@1 ou'®)

o2 "o ox | Cavar T Van
3, (uO\ oPu© U (3u\’ 262u(6) ou'9 0?ul .
_§“8<ax) 2 T 6x261<6x) T2 ox owdt | (12

For the span a<x* <(a + b), which is subjected to the viscoelastic guide, i.e. a parallel combination of the
springs and viscous dampers, the kinetic and potential energy will be in the form

1 b/ ou* our\ 2 .
Tb:EpAl (at*+1)ax*> dx . (13)

“tb (1 cour\? 1 feu\*\ ., 1t
Ub:L <2T<ax*> +8EA(ax*> dx +§/a ku dx (14)

in which k is the stiffness coefficient per unit length of the guide.
The variation of the work of the non-conservative force due to the viscosity of the guide can be illustrated as

atb * *
' =[2G 05 o ()

where { is the damping coefficient per unit length of the guide.
The variation of the work due to the viscosity of the string can be illustrated by the form of Eq. (5), i.e.

) a+b 0 O Ou* a+b a3u* du* 2 a2u* du* aZu*
n visco __ ~ X * * AA - 2_7_ * *' 1
(OWwnc); / ox (’7 or ax*>5” dx / T ovor (ax*> 2o o oo |04 X (16)
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Then using Eqgs. (13)—(16), Hamilton’s principle will lead to

s .
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Using dimensionless quantities of Egs. (8), Eq. (18) can be rewritten as
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Transformation of & = /eu® (¢< 1) makes Eq. (19) in the form

o*u®  oc, ou® ot R ou®  ou®
96 _ ®) o
57 T ox T oo TG Daa S H( Ty )

3, (ou® 2 0%u® o*u® (ou® 0% u® du® % u®
=-wel—=—1| =5 tne
2 < ox > 0x2 ( )

3A AN 2 2h A~ A2A
o’u (6u> O nuou o (19)

T ox20t \ox o2 Ox 001

in which
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As mentioned above, the string is moving with a time-variant velocity, which is comprised of a harmonic
velocity about a constant mean velocity, i.e.

cy(t) = ¢ + ecy sin(at) (22)

in which o is the frequency of varying speed, ¢ is the mean velocity and ecy is amplitude of the speed.
Substitution of Eq. (22) into Eq. (11), for the span 0 <x*<a, into Eq. (21) for the span a<x*<a + b, and
into Eq. (12), for the span a + b<x*<a + b + ¢, respectively, will lead to
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3. Direct multiple-scales method

The straightforward expansion techniques fail to correctly represent a proper solution for problems, which
have secular terms. This deficiency is overcome by permitting the solution to be a function of multiple
independent time variables, or scales [24].

In the method of multiple scales, one assumes the expansion in the form [25-27]

ul(x, t;6) = ul (x, To, T1) + el (x, To, T\) + -+, j=a,b,c (26)

in which Ty =t and T, = ¢&t.
Substitution of Eq. (26) into Egs. (23) and (25) yields
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where Dy = d/dTy and D, = d/dT;.
For the span a<x* <a + b, which is supported by the distributed viscoelastic guide, Egs. (24) and (26) will
lead to
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4. Mode shapes of the system

One supposes that the solution of Eq. (27) is in the form [10,11,17,19,22,23]
oo
) (x, To, T1) = > _[An(TDE U (x) + A(T1)e T D)), j=a,b,c, (1)
n=1
where A,, is the nth amplitude, u,({)(x) the nth complex mode shape and w,, the nth natural frequency.
To obtain the nth complex mode shape, #(x), for the span which is not subjected to the viscoelastic guide,
substituting Eq. (31) into Eq. (27), one has

20y , _
(1- d—; + cof,u,({) =0, j=ac. (32)
Assuming the solution of Eq. (32) of the exponential form
u(x) = e, j=a,c. (33)
Eq. (32) will lead to
—y Wy
=— =—. 4
Hin E-’-l’ Uop 1—¢ (3)

Then using Eqgs. (33) and (34), the nth complex mode shape for the spans 0<x*<a and a4+ b<x*<a +
b + ¢ will be obtained as
uf(x) = c(’)e"”“ + c(’) X = a,c (35)

in which c(l’,), and cg’,), are constants.
For the span where a <x* <a + b, which is subjected to the viscoelastic guide, substitution of Eq. (31) into
Eq. (29) leads to

2,.(b) u®
a —zz)dd” —(21a)n+C)cd

One assumes that the mode shape, 1), is of the form u?)(x) = exp(ip,x); then Eq. (36) leads to

+ (02 — liw, — PP = 0. (36)

ie — 22w, + \/4;@(32 — 1)+ 42 — diwnl — (2

= 37
goln,Zn 2(?2 _ 1) ( )

Through Eq. (37), the nth complex mode shape for the span a<x*<a + b becomes
uP(x) = c(b)e“”‘" + c(b) 92 ¢ (38)

in which c(llil) and c(zl;l) are constants.

Replacing the mean velocity by minus one in Eq. (37), will lead to uﬁf,?, which will be used in the following
sections. To determine the constants of the above equations, the boundary and compatibility conditions of the

system at x* = a,a + b,a+ b + ¢ must be satisfied, i.e.

49 4 4 g, (39)

C(t’)emm(a+b+c*) + C(L) ipgn(a+b+c) _ =0, (40)

At g et = Pleiont 4 {Pleioe (41)
C(b)elwl,, (at+b) 4 c(b)e“”l" (a+b) _ C(")elﬂln(u+b> + C(C) it a+b) (42)
clnlu gitnd +c(”)1u glhnd —c(b)lqo gioma —l—c(b)l(p elfma, (43)

C(I[;)i(plnei(/"“(”b) + C(zf;)i(pzneiwzn(wb) — c(lil)i Hlneimn(wb) + C(2¢2i ,ttz"ei"z"(ﬁb). (44)
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Assuming cg‘n) is equal to unity, other coefficients can be obtained through the process of elimination in
Egs. (39)-(44); then one has

P = (‘“_"’2) exp [ ((tan — )@+ b + ) + (11 — @1)(@ + b))]
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Substituting Eqgs. (45)—(49) into Egs. (35) and (38), mode shapes of the system can be easily obtained.

5. Solvability conditions

This section is devoted to obtain solvability conditions for the non-resonance and principal parametric
resonance cases.

To investigate the solvability conditions, the generality of ug’), ugb) and ugc)
mode of vibration is considered [10,11,17,19,22,23]:

will not be lost if only the nth

ul(x, To, T1) = AT T0uP(x) + A (T )e "7 (x), j=a,b,c. (50)
Substitution of Eq. (50) into Egs. (28) and (30) will lead to
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—1(j) //(/)

2 2

_ _ . . . . N 2
x Ay exp(i(e — ) To) + nA2 A i, [2u”§,’)u/§{)ﬁ’3) + ' (u?) } exp(ion To) + cc + NST, j=a,c,
(51)
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n
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+ A2 4o, [2u”(b) /®) '(b) + ﬂ”,(jb) (u’ilb)) } exp(iw, To) + cc + NST (52)

in which the prime and the dot denote, respectively, derivation with respect to spatial variable x and slow time

variable T}.
The solvability condition demands that every solution of the homogeneous part of Egs. (51) and (52) must

be orthogonal to its right-hand side [27]. Then, from Egs. (51) and (52), the solvability condition for the non-
resonance case will be

in which

A2 + Log) — Ay Ay (3pPon + niwyo3) = 0 (53)
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(a+b)/(a+b+c)
oy = / uPa® dx. (57)
a/(a+b+c)

In the case of principal parametric resonance, using Eqs. (51) and (52) and assuming « = 2w, + &¢ in which
o is the detuning parameter, one has

A0y + {og) — A2 A, (310 + niw,os) — coasA, exp(ioTy) = 0, (58)
where
1 a/(a+b+c) (a+b)/(a+b+c) 1 ’
os = (a) - 505) { / 7\u dx + / 7 Pal) dx + / 7\ dx
0 a/(a+b+c) (a+b)/(a+b+c)
a/(a+b+c) (a+b)/(a+b+c) 1
+ic / 7% dx + / 'O dx + / "% dx
0 o af(a+btc) nem (@+b)/a+bre
1 [larh)/@rbto
+ia / 7O dx. (59)
2 a/(a+b+c)

6. Stability

In this section, stability conditions of the principal parametric resonance case will be discussed. After
constructing the Jacobian matrix and evaluating the eigenvalues, the Routh—Hurwitz criterion will be used to
obtain the local stability conditions.

To cover the goals mentioned above, Eq. (58) can be rewritten in the form of the following equation:

A, — Aizn(;f,u“ +nn,) — cocy A, exp(icT) = 0, (60)
where
30(]
=, 61
He = Gy + Cag) D
10,003
= 62
"= (o + Ca) (©
as
¢y = ) 63
(202 + og) (©3)
Assuming A, of the polar form
A(T) = Ja,(T)e T (64)
and substituting it into Eq. (60) will lead to the modulation equations
a;: = %aft(luzﬂar + MMyy) + Coan(Cor €OS ), — €y SIN Y,,), (65)
V;zaﬂ =o0dy — %a?z(.uzﬂai + 11y — 2¢0a,(Cyr SIN Yy, + 4 COS 7)), (66)
where
My = Hop + i:uoci
Ny = Nor + inai
Cy = Cyp +1Cy; (67)
o — Loar ol
Tn = aTl - zﬁn

Stationary responses of the system will be one of its equilibrium points, and so when all derivatives
with respect to the slow time variable is equal to zero, Egs. (65) and (66) result in the first detuning parameter,
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o1, and the second detuning parameter, o5,

2
g1 2= 7“ (/,t Maz + 77’711) + 2\/C%(C§r + Ci[) - |: aZ(‘u :uar + 7]’71;)] . (68)

The Jacobian matrix of the system can also be constructed as

j _ %aﬁ(:uzluo:r + 77’7w) + CO(CW COS ¥y — Cui sin Vn) _coan(cw‘ sin Tn + €4 COS yn)] (69)

- _an(:uzluo:i + nnai) _ZCO(CCX}' COS Y, — Cyi sin ’yn)
Using the modulation equations, evaluating eigenvalues of the Jacobian matrix results in
22— @y g+ 1,) 2 3 4 0+ 3 1+ 1)
— 0 s+ 11,) = 0. (70)

Then for the first and the second detuning parameters o1 and o,, the eigenvalue equations become

— a1 oy + M)A Ly (P e+ 11)

1 2
+ an (1 + %;)\/ cj(c2, +c2) — {Z a1y, + nnw)} =0, (71)

— dy (1 oy + M)A + 14 (P e+ 1)

2
- ai(ﬂ2,u1i + ’7’10’1) \/C%(Cir + Cgi) - |:Z aizz(:u oy + Mgy ):| =0. (72)

From Egs. (71) and (72), through the Routh—Hurwitz criterion, the stability conditions for the first and the
second detuning parameters, respectively, become

4L0|Cac| 4eolcyl
<,Ll Moy =+ MMy < @2
” oy 73
(11 + 11,) <0 (73)
(.uz.uai + 17’73(1) > 0
460|C | 4eoley]
E U A MMy <
n n
74
(K2 1y + 11,,) <O (74)
(12t + 11,) <O

7. Numerical simulations

In this section, the numerical simulations are presented to show the effectiveness of analytic solutions. The
objectives of this section are to investigate the mean velocity, stiffness and damping coefficients of the guide,
guide length, nonlinearity and the viscosity coefficients of the string on the natural frequencies, stability,
frequency-response curves and bifurcation points of the system.

Using Egs. (39)—(44) and applying the solvability conditions for non-trivial solutions of ¢V ¢y and c j =a,b,
¢ one can obtain the natural frequencies of the system.

In Table 1, the first natural frequency of the system is depicted in terms of the guide stiffness and the mean
velocity variations for the case, in which { =4.32, a = 0.2, b = 0.7, ¢ = 0.1. Table 1 shows that the increasing
mean velocity will decrease the first natural frequency while the increasing stiffness factor of the guide



768 M.H. Ghayesh | Journal of Sound and Vibration 314 (2008) 757774

increases the first natural frequency of the system. Table 2 shows the effects of the guide stiffness and mean
velocity on the second natural frequency of the system. As can be concluded from Table 3, the natural
frequencies of the system decrease when the guide length decreases. In Tables 4 and 5, the effects of damping
coefficient of the guide on the first and the second natural frequencies of the system are shown. Tables 4 and 5
demonstrate that increasing not only the mean velocity but also the damping coefficient factor of the guide will
lead to a reduction in the first and the second natural frequencies of the system.

Frequency-response curves of the system in the principal parametric resonance case are shown in Fig. 2 for
the various stiffness factors of the guide (k). There are two bifurcation points in the system: the first
bifurcation point is located at ¢ = ¢4, in which a stable non-trivial solution bifurcates from the trivial solution,
and the second one is located at ¢ = g5, where an unstable non-trivial solution bifurcates from an unstable
trivial solution. In Fig. 2, the curves which correspond to x =1, 2.3, 3.1, the slope of curves and
instability areas of trivial solutions are, respectively, 1/59.65, 1/34.61, 1/20.27 and 4.98, 3.9, 2.9. Therefore,
numerical simulations show that the increasing stiffness factor of the guide makes the first bifurcation point

Table 1
The first natural frequency, w;, versus the mean velocity and stiffness factor of the guide ({ =4.32, a =0.2, b=0.7, ¢ =0.1)

¢ K =3.26 K =4.38 k=49 k=063
0.00 3.995896 4.903906 5.351239 6.593561
0.04 3.975585 4.893549 5.340749 6.582296
0.08 3.954800 4.872178 5.318837 6.558345
0.12 3.923669 4.839797 5.285503 6.521711
0.16 3.882199 4.796401 5.240737 6.472381
0.20 3.830396 4.741976 5.184515 6.410334
0.24 3.768264 4.676499 5.116804 6.335543
0.28 3.695805 4.599938 5.037559 6.247987
0.32 3.613020 4.512256 4.946731 6.147668
0.36 3.519911 4413411 4.844265 6.034638
0.40 3.416481 4.303359 4.730112 5.909053
0.44 3.302743 4.182065 4.604242 5.771274
0.48 3.178719 4.049512 4.466668 5.622075
0.52 3.044452 3.905732 4.317498 5.463109
0.56 2.900030 3.750850 4.157019 5.298154
0.60 2.745608 3.585177 4.143289 5.137255
Table 2

The second natural frequency, w,, versus the mean velocity and stiffness factor of the guide (( =4.32, a=0.2, b=0.7, ¢ =0.1)
c K =3.26 K =4.38 k=49 K=26.3
0.00 6.768561 7.272739 7.537504 8.312787
0.04 6.750871 7.254746 7.519262 8.293423
0.08 6.713211 7.216663 7.480811 8.253204
0.12 6.655587 7.158484 7.422133 8.192055
0.16 6.578005 7.080202 7.343208 8.109882
0.20 6.480477 6.981811 7.244014 8.006563
0.24 6.363014 6.863303 7.124522 7.881935
0.28 6.225637 6.724668 6.984695 7.735779
0.32 6.068367 6.565897 6.824485 7.567793
0.36 5.891233 6.386972 6.643828 7.377553
0.40 5.694275 6.187870 6.442633 7.164433
0.44 5.477539 5.968559 6.220770 6.927484
0.48 5.241089 5.728984 5.978045 6.665170
0.52 4.985009 5.469063 5.714159 6.374822
0.56 4.709412 5.188656 5.428627 6.051239

0.60 4.414457 4.887533 5.120621 5.682246
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Table 3
The first and the second natural frequencies, w; and w,, versus the a ({ = 3.5, k =3.26, ¢ = 0.2, b = 0.6)

a (O] (0))

0.00 4.067299430 6.239204336
0.04 4.065443427 6.235469899
0.08 4.056664201 6.222854966
0.12 4.036614811 6.203965510
0.16 4.002692449 6.185640109
0.20 3.954979439 6.171814256
0.24 3.895616021 6.159362007
0.28 3.827000720 6.142122461
0.32 3.750414007 6.118589673
0.36 3.665841315 6.094450115
0.40 3.572713654 6.077373174
0.44 3.470970105 6.070659388
0.48 3.361797643 6.070955508
0.52 3.247601645 6.070097507
0.56 3.131357135 6.059162252
0.60 3.015928948 6.031857895
Table 4

The first natural frequency, w;, versus the mean velocity and damping coefficient of the guide (x = 3.9, a = 0.2, b = 0.6, ¢ = 0.2)

c (=0 (=35 (=5 (=8

0.00 3.998336830 3.692713939 3.32888994 1.662013030
0.04 3.993156458 3.687573575 3.32373484 1.655101895
0.08 3.977612972 3.672150891 3.30826800 1.634289688
0.12 3.951699153 3.646441049 3.28248470 1.599329785
0.16 3.915402658 3.610435836 3.24637702 1.549774293
0.20 3.868705506 3.564123422 3.19993370 1.484907131
0.24 3.811583322 3.507488016 3.14313999 1.403620323
0.28 3.744004255 3.440509425 3.07597757 1.304180887
0.32 3.665927483 3.363162494 2.99842441 1.183759554
0.36 3.577301159 3.275416478 2.91045490 1.037358055
0.40 3.478059598 3.177234361 2.81204029 0.854850405
0.44 3.368119365 3.068572291 2.70314979 0.609347447
0.48 3.247373807 2.949379402 2.58375299 0.606347407
0.52 3.115685220 2.819598688 2.45382467 0.580634747
0.56 2.972873430 2.679170354 2.31335413 0.560301680
0.60 2.818698690 2.528040753 2.16236299 0.540809810

appear later and the second one appear sooner. Also, the bend of curves will decrease when the stiffness
factor increases.

The frequency-response curves of the system are shown in Fig. 3 for several values of the viscosity
coefficient of the string. It can be concluded from Fig. 3 that the locations of bifurcation points are not
affected by the viscosity coefficient of the string. In Fig. 3, the curves, which correspond to
n =20, 0.5, 0.9 and 1.06, have slopes of 1/60.9, 1/57.89, 1/56.12 and 1/55.41. Then the increasing viscosity
coefficient of the string will lead to smaller slopes in curves.

In Fig. 4, the effects of the guide length on frequency-response curves are depicted. The slopes of curves and
the instability area of trivial solution for systems corresponding to » =0, 0.1, 0.3 are 1/153.32,
25em1/138.89, 1/101.18 and 6.00, 4.918, 2.66, respectively. Hence, as shown, both the slopes of curves and
the stability area of the trivial solution will increase when the guide length increases. In addition, since the
guide length does not affect the stability conditions of the system, then the curve corresponding to the first
detuning parameter is stable and the second one is unstable.
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Table 5
The second natural frequency, w,, versus the mean velocity and damping coefficient of the guide (x = 3.9, a =0.2, b = 0.6, ¢ = 0.2)
c (=0 (=35 (=5 (=8
0.00 6.644114921 6.587626857 6.51963420 6.241738070
0.04 6.634038940 6.577661562 6.50973709 6.231798411
0.08 6.603810580 6.547767132 6.48004751 6.201976534
0.12 6.553428557 6.497947961 6.43057068 6.152263463
0.16 6.482890672 6.428211544 6.36131536 6.082643361
0.20 6.392193695 6.338568724 6.27229380 5.993092122
0.24 6.281333212 6.229034065 6.16352180 5.883575281
0.28 6.150303384 6.099626330 6.03501846 5.754045046
0.32 5.999096622 5.950369096 5.88680588 5.604436280
0.36 5.827703120 5.781291467 5.71890838 5.434661122
0.40 5.636110212 5.592428866 5.53135092 5.244601900
0.44 5.424301431 5.383823723 5.32415639 5.034101778
0.48 5.192255170 5.155525798 5.09734081 4.802952244
0.52 4.939942678 4.907591342 4.85090533 4.550875595
0.56 4.667325012 4.640079522 4.58482350 4.277497965
0.60 4.374348263 4.353042527 4.29902289 4.102149995
0.2
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0.15
0.125
0.1
©
0.075 |
0.05 |
(o3 1 P1
0.025
0
1 1 1 1 1 1 1 1 1 1 1 1

6 5 4 3 -2 -1 0 1 2 3 4 5 6 7

Fig. 2. Frequency-response curve, stability and bifurcation point variations under the guide stiffness factor, &, variations
(=05, 0=225a=02,b=0.6,c=0.2,1=0.1, u=2), (o,: stable, o,: unstable).

In Fig. 5, when the nonlinearity coefficient is equal to zero, the system is linear. Increasing the nonlinear
coefficient does not affect the instability area of trivial solutions, i.e. the locations of bifurcation points are
independent of the nonlinearity terms, while the slope of curves will be increased by increasing nonlinearity
term of the system.

The effects of speed fluctuation’s amplitude on the frequency-response curves of the system are depicted in
Fig. 6. With the increasing speed fluctuation’s amplitude, the first bifurcation point will occur earlier, while the
second will arise later. The stability of curves, which corresponds to the first and the second detuning
parameters, will not be affected by the variations of the speed fluctuation’s amplitude.

Fig. 7 shows the effects of the damping coefficient of the guide on the frequency-response curve of the
system. The increasing damping coefficient will change the locations of bifurcation points slightly; in other
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Fig. 3. Frequency-response curve, stability and bifurcation point variations under the string viscosity coefficient, #, variations (¢ =
05, (=225 Kx=1,a=02,b=0.6, c=0.2, p=2) (solid line: stable, dashed-line: unstable).
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Fig. 4. Frequency-response curve, stability and bifurcation point variations under the guide length, b, variations
(©=05(=225k=1,a=02, u=2,n=0.1).

words, the instability area of the trivial solution will be increased, but the slopes of the curves will be decreased
by the increasing damping coefficient.
8. Summary and conclusions

In this paper, transversal nonlinear vibration and stability of a viscoelastic string supported by a partial
viscoelastic guide were investigated. The equations of motion were derived using Hamilton’s principle,
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Fig. 5. Frequency-response curve, stability and bifurcation point variations under the nonlinearity coefficient, p, variations (¢ = 0.5, { =

225, k=1,a=0.2,b5=0.6, c=0.2, n =0.1) (solid line: stable, dashed-line: unstable).
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Fig. 6. Frequency-response curve, stability and bifurcation point variations under the speed fluctuation’s amplitude, ¢, variations
(©=05,(=225a=02,b=0.6, c=0.2, n=0.65 p=2).

and solvability conditions were analyzed using the multiple-scales method. The stability conditions were
obtained through the Routh—Hurwitz criterion for the principal parametric resonance case. Eventually,
numerical simulations were carried out to show the effects of the system parameters on the natural
frequencies, stability, frequency-response curves and bifurcation points of the system. The more the mean
velocity the system experiences, the less the natural frequencies will arise, while the increasing stiffness factor
of the guide increases the natural frequencies of the system. The increasing stiffness factor of the guide also
makes the first bifurcation point appear later and the second one appear sooner. In addition, the bend of
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Fig. 7. Frequency-response curve, stability and bifurcation point variations under the damping coefficient of the guide, {, variations
(=05 1k=326,a=0,b=1,¢c=0, n=0.1, u =4) (g;: stable, g,: unstable).

curves will decrease when the stiffness factor increases. The natural frequencies of the system decrease when
the guide length decreases. Both the slopes of curves and the stability area of the trivial solution will increase
when the guide length increases. Also, the guide length will not affect the stability conditions of the system;
then the curve corresponding to the first detuning parameter remains stable and the second one is unstable.

The increasing damping coefficient of the guide will lead to a reduction in the natural frequencies of the
system. It also changes the locations of bifurcation points slightly; in other words, the instability area of the
trivial solution will be increased, but the slopes of the curves will be decreased by the increasing damping
coefficient. With increasing speed fluctuation’s amplitude, the first bifurcation point will occur earlier, while
the second will arise later. The stability of curves corresponding to the first and the second detuning
parameters will not be affected by the variations of the speed fluctuation’s amplitude. The viscosity coefficient
variations of the string do not affect the locations of bifurcation points, while increasing the viscosity
coefficient of the string will lead to smaller slopes in curves. The locations of bifurcation points are
independent of nonlinearity terms, while the slope of curves will be increased by the increasing nonlinearity
term of the system.
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