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Abstract

This paper presents the extension of a novel superposition method, put forth for static analysis earlier, for carrying out

free vibration and bifurcation buckling studies of orthotropic rectangular plates with any combination of classical

boundary conditions viz. clamped, simply supported and free edges. It is shown that use of infinite series counterparts of

conventional Levy-type closed-form expressions result in a tremendous simplification of the problem without any

compromise on accuracy. The complicating effects of an elastic foundation and initial stresses are also shown to be easily

accounted for. Results, useful as benchmarks in future, are presented for a chosen set of cases.

r 2008 Elsevier Ltd. All rights reserved.
1. Introduction

While rectangular plates with at least two opposite edges simply supported are amenable to exact analysis,
those with other boundary conditions are difficult to handle and are often analysed approximately using the
direct methods of variational calculus. However, it has been shown [1] that superposition of appropriate Levy-
type solutions provides a powerful approach for such problems since the governing differential equation is
satisfied rigorously at every stage and the boundary conditions can be satisfied in a series sense to any desired
degree of accuracy; the methodology has to be termed exact since the convergence of the Fourier series
employed for edge forces/moments in the different building blocks is guaranteed. The only disadvantage with
this approach is the need to derive the Levy-type solutions for each building block, which are not only lengthy
and tedious, but also of different forms depending on the nature of the characteristic roots of the associated
ordinary differential equation; further, the hyperbolic functions employed in the Levy-type solutions give rise
to numerical difficulties when their arguments are large. Both these difficulties prove to be serious handicaps
when the material is anisotropic or when the problem is governed by a high-order system of governing
equations, which arise when one tries to account for bending–stretching coupling or non-classical shear
deformation effects. The aforementioned difficulties have been elaborately discussed earlier and alternative
approximate building block solutions have been suggested as a way out [2,3].
ee front matter r 2008 Elsevier Ltd. All rights reserved.
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In this context, a novel superposition approach has been expounded recently for problems of static flexure
[4,5], the distinguishing feature being the use of untruncated series counterparts of the conventional lengthy
Levy-type expressions without any loss of rigour or accuracy. These counterpart solutions are easy to derive,
are of the same form irrespective of the nature of the roots of the characteristic equation, and lead to no
further numerical difficulties. The ease and utility of this method, referred to as Untruncated Infinite Series

Superposition Method (UISSM), have also been illustrated for unsymmetric laminates [6,7] and for shear-
deformable plates [8,9]. The objective of this paper is to extend this method for free vibration and buckling
studies and to demonstrate its superiority with respect to conventional analysis, with attention confined to thin
homogeneous specially orthotropic plates or symmetric cross-ply plates with the complicating effects of initial
stresses and an elastic foundation.

2. Methodology

2.1. Plates with clamped/simply supported edges

The problem of the rectangular plate (0px, ypa, b) with any combination of simply supported and clamped
edges is looked upon as that of superposition of some or all of the building blocks shown in Fig. 1, each of them
with only simply supported edges; the edge moments are assumed, without loss of generality, to be of the form

ðM top;MbottomÞ ¼
X

m

ðMtm;MbmÞ sin
mpx

a

� �
eiot,

ðM left;MrightÞ ¼
X

n

ðMln;MrnÞ sin
npy

b

� �
eiot. (1)

If the problem involves an elastic foundation and/or initial stresses due to uniform edge forces Nx, Ny (taken
to be positive when tensile), they are applicable to each building block. The plate is assumed to be orthotropic
with the principal material directions coinciding with the x and y axes, and has a mass per unit area r. The
foundation is of the Winkler type with stiffness kF.

Considering the conventional Levy-type solution first, let us focus attention on the second building block.
The governing equation of the classical plate theory is

D11w;xxxx þ 2ðD12 þ 2D66Þw;xxyy þD22w;yyyy þ kF wþ rw;tt ¼ Nxw;xx þNyw;yy, (2)
y

x
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Fig. 1. Building blocks for clamped/simply supported plates.
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where a subscript comma denotes differentiation, and the Dij’s are the bending stiffness coefficients occurring
in the moment curvature relations

Mx

My

Mxy

8><
>:

9>=
>; ¼

D11 D12 0

D22 0

sym: D66

2
64

3
75
�w;xx

�w;yy

�2w;xy

8><
>:

9>=
>;. (3)

The Levy-type solution is sought as

w ¼
X

m

W mðyÞ sin
mpx

a

� �
eiot, (4)

which identically satisfies the simple support conditions at x ¼ 0, a. One can immediately see that the
governing equation is reduced to a fourth-order ordinary differential equation in Wm, and enforcement of
boundary conditions at the top and bottom edges yields Wm. However, the general solution of the fourth-
order equation is of different forms depending on the nature of roots of the characteristic equation, which in
turn depend on the frequency o and the in-plane loads. These different forms have been discussed earlier with
reference to isotropic [10] and orthotropic plates [11] without any complicating effects, and are as presented in
Table 1.

Thus, even for the simplest case of the isotropic plate without any complicating effects, there exist two
solutions for building block 2, as given by

W m ¼
Mtm

2o
ffiffiffiffiffiffiffi
rD
p � cos

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2
� a2

p
yþ cosh

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2
þ a2

p
yþ cot

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2
� a2

p
b sin

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2
� a2

p
y

h
� coth

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2
þ a2

p
b sinh

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2
þ a2

p
y
i
for k24a2, (5a)

Mtm

2o
ffiffiffiffiffiffiffi
rD
p � cosh

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � k2

p
yþ cosh

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2
þ a2

p
yþ coth

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � k2

p
b sinh

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � k2

p
y

h
� coth

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2
þ a2

p
b sinh

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2
þ a2

p
y
i
for k2oa2, (5b)

where k4
¼ ro2/D, a ¼ mp/a. Such alternative solution forms would exist for each building block and all such

possible forms need to be explicitly written down before the appropriate ones are superposed.
The above difficulty becomes very serious when one or more complicating effects are accounted for. For

example, it has been pointed out [10] that the presence of in-plane forces would necessitate the consideration of
a greater number of solution forms even for a thin isotropic plate than those shown in Table 1. Further, when
unsymmetric lay-ups or shear deformation effects are considered, the order of the system of governing
equations increases and so does the number of possible solution forms associated with various root
combinations. This difficulty has been pointed out as the major handicap, besides the possibility of numerical
errors due to hyperbolic functions with large arguments, when the conventional superposition method is
employed for complicated plate problems [2,3].

All the aforementioned disadvantages are overcome in the UISSM employed here; the basic idea is to seek a
solution not in the form of a single series as in Eq. (3), but in the form of a double series. For the second
building block, it is sought as

w ¼
X

m

X1
n¼1

W mn sin
npy

b

� �
sin

mpx

a

� �
eiot. (6)

Corresponding to any particular harmonic Mtm of the applied moment, the deflection function is obtained
using the principle of virtual work as given byZZ

ð�Mxdw;xx �Mydw;yy � 2Mxydw;xyÞdxdy ¼

Z a

x¼0

Mtm sin
mpx

a
eiotðdw;yÞ

��
y¼0

dx

�

ZZ
ðrw;ttdwÞdxdy�

ZZ
ðNxw;xdw;xÞdxdy�

ZZ
ðNyw;ydw;yÞdxdy�

ZZ
ðkF wdwÞdxdy: (7)
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Table 1

Different forms for Wm(y) in the conventional Levy-type solution

Case Wm

Isotropic

W m ¼ Am sinhðl2yÞ þ Bm coshðl2yÞ þ Cm sinðl1yÞ þDm cosðl1yÞ

ð1Þ For
mp
a

� �2
o

ro2

D

� �1=2

where l1 ¼
ro2

D

� �1=2

�
mp
a

� �2" #1=2
; l2 ¼

ro2

D

� �1=2

þ
mp
a

� �2" #1=2

W m ¼ Am sinhðl2yÞ þ Bm coshðl2yÞ þ Cm sinhðl1yÞ þDm coshðl1yÞ

ð2Þ For
mp
a

� �2
4

ro2

D

� �1=2

where l1 ¼
mp
a

� �2
�

ro2

D

� �1=2
" #1=2

; l2 ¼
mp
a

� �2
þ

ro2

D

� �1=2
" #1=2

Orthotropic

ð1Þ For
D12 þ 2D66

D22

� �2

�
D11

D22
þ

ro2

a4D22

� �" #
40

D12 þ 2D66

D22

� �2

�
D11

D22
þ

ro2

a4D22

� �" #1=2

4
ðD12 þ 2D66Þ

D22

W m ¼ Am sinhðfyÞ þ Bm coshðfyÞ þ Cm sinðcyÞ þDm cosðcyÞ

f ¼ a
D12 þ 2D66

D22

� �2

�
D11

D22
þ

ro2

a4D22

� �" #1=2
þ
ðD12 þ 2D66Þ

D22

8<
:

9=
;

1=2

c ¼ a
D12 þ 2D66

D22

� �2

�
D11

D22
þ

ro2

a4D22

� �" #1=2
�
ðD12 þ 2D66Þ

D22

8<
:

9=
;

1=2

where a ¼
mp
a

� �

ð2Þ For
D12 þ 2D66

D22

� �2

�
D11

D22
þ

ro2

a4D22

� �" #
40

D12 þ 2D66

D22

� �2

�
D11

D22
þ

ro2

a4D22

� �" #1=2

o
ðD12 þ 2D66Þ

D22

W m ¼ Am sinhðfyÞ þ Bm coshðfyÞ þCm sinhðcyÞ þDm coshðcyÞ

f ¼ a
D12 þ 2D66

D22

� �2

�
D11

D22
þ

ro2

a4D22

� �" #1=2
þ

D12 þ 2D66

D22

� �8<
:

9=
;

1=2

c ¼ a
D12 þ 2D66

D22

� �
�

D12 þ 2D66

D22

� �2

�
D11

D22
þ

ro2

a4D22

� �" #1=28<
:

9=
;

1=2

ð3Þ For
D12 þ 2D66

D22

� �2

�
D11

D22
þ

ro2

a4D22

� �" #
o0

W m ¼ Am sinðy2yÞ sinhðy1yÞ þ Bm sinðy2yÞ coshðy1yÞ

þCm cosðy2yÞ sinhðy1yÞ þDm cosðy2yÞ coshðy1yÞ

where y1 ¼ a
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2 þ d24

p
cos

tan�1ðc=dÞ

2

� 	
; y2 ¼ a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2 þ d24

p
sin

tan�1ðc=dÞ

2

� 	

c ¼
D12 þ 2D66

D22

� �2

�
D11

D22
þ

ro2

a4D22

� �" #1=2
; d ¼

ðD12 þ 2D66Þ

D22
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Substitution for w from Eq. (6) and use of the orthogonality relations of the trigonometric functions
given by Z l

s¼0

sin
aps

l
sin

bps

l
ds ¼

Z l

s¼0

cos
aps

l
cos

bps

l
ds ¼ l=2 for a ¼ b; 0 for aab (8)

yields Wmn as

W mn ¼
2Mtmnp

b2Gða; bÞ
, (9)
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where the function G(a, b) is given by

Gða; bÞ ¼ D11
mp
a

� �4
þ 2ðD12 þD66Þ

mp
a

� �2 np
b

� �2
þD22

np
b

� �4
þ kF � ro2 þNx

mp
a

� �2
þNy

np
b

� �2
. (10)

Thus, the solution for the second building block is now given by

w ¼
X

m

Mtm sin
mpx

a
eiot

X1
n¼1

2np

b2Gða; bÞ
sin

npy

b
(11)

with the untruncated infinite series (with index n) replacing the closed-form Wm(y) of the type shown in Eqs.
(5a) and (5b).

It can be proved that there is no approximation involved in the above methodology and that the series
solution is also an exact solution. This can be done by expanding either of the closed-form expressions of Eq.
(5a) or (5b) in a half-range sine series in the interval (0, b); the resulting Fourier coefficients are

2Mtmnp

b2D mp=a

 �2

þ np=b

 �2h i2

� ro2=D

� 
 . (12)

These can be seen to be identical as those of Eq. (9) when specialized for this isotropic case.
Thus, the use of the principle of virtual work generates an exact series counterpart of the Levy-type solution and

this series counterpart is unique in the sense it can be used in place of all the different closed-form expressions that

need to be explicitly written down for various root combinations in the conventional superposition approach. This

advantage cannot be overemphasized because, as mentioned earlier, the number of possible root combinations is

quite large for complicated plate problems, and further, each of the different closed-form expressions is often quite

tedious and lengthy; the new approach completely obviates the need to identify the different root combinations and

the derivation of the tedious Levy-type expressions.
The exact series solutions for the other building blocks of Fig. 1 are obtained in the same manner as above;

the solution for the fourth building block is also of the form of Eq. (6), while for the first and the third, the
solutions are of the form

w ¼
X

n

X1
m¼1

W mn sin
mpx

a

� �
sin

npy

b

� �
eiot. (13)

The corresponding Wmn is given by

W mn ¼
�2Mrnmp cos mp

a2Gða; bÞ
or
�2Mbmnp cos np

b2Gða; bÞ
or

2Mlnmp
a2Gða; bÞ

(14)

as the case may be.
The final step involves superposition of the appropriate building blocks based on the number of clamped

edges (block 1 if the left edge is clamped, and so on) and setting up the eigenvalue problem by writing down
the zero slope condition at each clamped edge. To illustrate this, plates with two opposite simply supported
edges (x ¼ 0, a) are considered first; the conventional Levy-type solution for such plates leads to complete
uncoupling of the different harmonics (m) in the x-direction and yields a transcendental equation, similar to
that for one-dimensional problems, for each m. For plates without in-plane forces or the elastic foundation,
such frequency equations are as presented in Table 2 where the different alternative solution forms of Table 1
are duly considered. The plates are designated as SCSS, etc. where S denotes a simply supported edge, C a
clamped edge and the boundary conditions are specified in a clockwise sense starting from the left edge x ¼ 0.
When these plates are analyzed using the untruncated infinite series approach, the SCSS plate requires
building block 2 alone while the SCSC plate requires building blocks 2 and 4. The zero slope conditions (at the
top edge, or top and bottom edges as the case may be) yield homogeneous equations in terms of the moment
coefficients (Mtm or Mtm and Mbm) and the frequency equation is obtained by seeking a non-trivial solution for
these unknowns; since the coefficients occurring in these homogeneous equations are untruncated infinite sums
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Table 2

Different forms of the frequency equation for the cases of Table 1

Material Edge conditions Frequency equation

Isotropic SCSS Case 1: l1 sinhðl2bÞ cosðl1bÞ � l2 coshðl2bÞ sinðl1bÞ ¼ 0a

Case 2: l1 sinhðl2bÞ coshðl1bÞ � l2 coshðl2bÞ sinhðl1bÞ ¼ 0

Isotropic SCSC Case 1: 2l1l2½cosðl1bÞ coshðl2bÞ � 1� þ ðl21 � l22Þ sinhðl2bÞ sinðl1bÞ ¼ 0

Case 2: 2l1l2½coshðl1bÞ coshðl2bÞ � 1� � ðl21 þ l22Þ sinhðl2bÞ sinhðl1bÞ ¼ 0

Orthotropic SCSS Case 1: c sinhðfbÞ cosðcbÞ � f coshðfbÞ sinðcbÞ ¼ 0

Case 2: c sinhðfbÞ coshðcbÞ � f coshðfbÞ sinhðcbÞ ¼ 0

Case 3: sinð2y2bÞy1 � sinhð2y1bÞy2 ¼ 0

Orthotropic SCSC
Case 1: a2

D12 þ 2D66

D22

� �
sinhðfbÞ sinðcbÞ þ fc 1� coshðfbÞ cosðcbÞ½ � ¼ 0

Case 2: a2
D12 þ 2D66

D22

� �
sinhðfbÞ sinhðcbÞ þ fc½1� coshðfbÞ coshðcbÞ� ¼ 0

Case 3: y21 sin
2
ðy2bÞ � y22 sinh

2
ðy1bÞ ¼ 0

aAll parameters as defined in Table 1 for the appropriate case.

Table 3

Frequency equations of UISSM applicable for isotropic/orthotropic plates over the entire frequency range

Plate Frequency equation

SCSS P1
n¼1

ðnpÞ2

Gða; bÞ
¼ 0

SCSC

Det

P1
n¼1

ðnpÞ2

Gða; bÞ
P1
n¼1

ðnpÞ2 cos np
Gða; bÞ

P1
n¼1

ðnpÞ2 cos np
Gða; bÞ

P1
n¼1

ðnpÞ2

Gða; bÞ

����������

����������
¼ 0

Note: G is defined in Eq. (10).
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(see Eq. (6)), the frequency equation is also in terms of untruncated infinite sums, as given in Table 3. Such a
frequency equation is now unique over the entire frequency range and is the counterpart of all the different
variants of Table 2; further, the incorporation of the complicating effects of in-plane forces or an elastic
foundation in this series approach requires no procedural changes or complexities, but only that such terms be
considered in the definition of G (Eq. (10)).

To illustrate the application of UISSM for plates without two opposite edges simply supported, let us
consider the doubly symmetric modes of a clamped plate, for which all the four building blocks of Fig. 1 are
required. However, the fixed edge moments are the same at top and bottom edges and at left and right edges,
and terms with even m or n vanish in all the equations. The net deflection is given by

wðx; y; tÞ ¼
X

m¼1;3;...

2Mtm

b2D
sin

mpx

a

� � X1
n¼1;3;...

2np
Gða; bÞ

sin
npy

b

� �
eiot

þ
X

n¼1;3;...

2Mln

a2D
sin

npy

b

� � X1
m¼1;3;...

2mp
Gða; bÞ

sin
mpx

a

� �
eiot. (15)

The zero slope conditions at the edges x ¼ 0 and y ¼ 0 yield

Xmmax

m¼1;3

Mtmmn

b2Gða; bÞ
þ

Mln

a2

X1
m¼1;3

m2

Gða; bÞ
¼ 0 for each of n ¼ 1; 3; . . . ; nmax, (16a)
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Mtm

b2

X1
n¼1;3;...

n2

Gða; bÞ
þ
Xnmax

n¼1;3;::

Mlnmn

a2Gða; bÞ
¼ 0 for each of m ¼ 1; 3; . . . ;mmax, (16b)

where mmax and nmax are the upper limits at which the moment series are truncated (see Eq. (1)). Thus, some
elements of the characteristic determinant are infinite sums; it is very important to note that these infinite sums
are the counterparts of the derivatives of the closed-form Levy-type expressions of the type shown in Eqs. (5a)
and (5b) and have to be evaluated without truncation in order to avoid any loss of accuracy. The number of
unknown moment coefficients Mtm and Mln is chosen, as in the conventional superposition method, so as to
obtain the desired convergence of the natural frequencies or buckling loads.
2.2. Plates with free edges

The building blocks required in UISSM for plates with free edges depend on the number of free edges. The
methodology is explained with respect to the simple case of SSSF plate with the building blocks as shown in
Fig. 2. As can be seen, they correspond to a plate either simply supported all around or with one guided edge
(i.e. one that is free to translate but with the normal slope completely restrained), and subjected to edge
moment or edge shear force expressed without loss of generality in the following form:

Block 1 : Mbottom ¼
X

m

Mbm sin
mpx

a

� �
eiot,

Block 2 : Vbottom ¼
X

m

V bm sin
mpx

a

� �
eiot. (17)

The building block with the edge moment can be analyzed as discussed earlier. For block 2, the deflection
function is assumed as

w ¼
X

m

X1
n¼1

W mn sin
mpx

a

� �
sin

npy

2b

� �
eiot (18)

and Wmn is obtained by employing the principle of virtual work asZZ
ð�Mxdw;xx �Mydw;yy � 2Mxydw;xyÞdxdy ¼

Z a

x¼0

V b sin
mpx

a
eiotðdwÞ

��
y¼b

dx

�

ZZ
ðrw;ttdwÞdxdy�

ZZ
ðNxw;xdw;xÞdxdy�

ZZ
ðNyw;ydw;yÞdxdy�

ZZ
ðkF wdwÞdxdy, (19)

which yields

W mn ¼
2V bm sinðnp=2Þ

bGða; 2bÞ
. (20)
x

y

Block 1

S

S

S

Block 2

S S

G

S

Fig. 2. Building blocks for the SSSF plate.
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To determine the unknowns Mbm and Vbm, one has to impose the free edge conditions

My ¼ 0; V y �Nyw;y ¼ Qy þMxy;x �Nyw;y ¼My;y þ 2Mxy;x �Nyw;y ¼ 0 at y ¼ b, (21)

where the contributions from each building block are to be calculated using the corresponding infinite series
solution for w along with the moment–curvature relations, while the edge loads Mbottom and Vbottom are taken
directly for the first and second building blocks, respectively. At this stage, it is very important to note that the
double sine series solution (Eq. (6)) for the first building block does not yield the correct non-zero value for
w;yy at the loaded edge y ¼ b because a simple differentiation of the series gives a zero value at this edge; thus,
the series cannot be further differentiated term by term to obtain w,yyy which occurs in the expression for Vy;
this difficulty is overcome by using Stokes’ transformation [12] as explained in the Appendix.

Plates with more than one free edge can be analysed in a similar manner as above, with additional
appropriately chosen building blocks as explained earlier [5] with reference to static flexure.

3. Numerical results and discussion

The main aim of the present work is to present a more convenient but equally accurate alternative to the
conventional superposition method and from this viewpoint, the validation of the new approach is of primary
concern. Of fundamental importance in ensuring the accuracy of UISSM is the evaluation of the infinite sums
without truncation—this is possible by the use of mathematical packages like MATLAB or MATHEMATICA

wherein the upper limit of summation is specified as Infinity and the evaluation is done by decomposing the
summand into simpler partial fractions and expressing their infinite sums in terms of special functions like the
gamma function.

All calculations for the present work have been carried out using MATHEMATICA; the accuracy of the
infinite summation is first verified by comparison of the exact solutions based on the closed-form Levy-type
frequency equations (Table 2) and the infinite series counterparts (Table 3) for SCSS and SCSC isotropic
plates. This comparison is shown in Table 4 for square plates; the table also includes the frequencies obtained
by using the equations of Table 3 with truncated summation, i.e. with the upper limit of summation taken as a
finite number. From these results, it is clear that the infinite sum command of MATHEMATICA does ensure
correct replication of the exact frequencies without any error, and further that one can also employ
conventional summation with a large number of terms to obtain fairly accurate results. (It is appropriate to
point out here that untruncated infinite summation takes much less time than truncated summation with a
large number of terms when both are tried out using MATHEMATICA, presumably because the latter
requires actual summation while the former is like using a look-up table of special functions. It should also be
noted that the roots of the closed-form frequency equations as presented in Table 4 differ slightly—starting
Table 4

Validation of UISSM for isotropic square plates with two opposite SS edges

Plate Frequency parameter l ¼ oa2
ffiffiffiffiffiffiffiffiffi
r=D

p
Mode No. of terms taken in the infinite series (see Table 3) Levy-type solution

100 200 500 Infinity

SCSS 1 23.707 23.677 23.659 23.646 23.646

2 51.729 51.702 51.685 51.674 51.674

3 58.851 58.748 58.687 58.646 58.646

4 86.336 86.234 86.174 86.134 86.134

5 100.32 100.29 100.28 100.27 100.27

SCSC 1 29.128 29.039 28.981 28.951 28.951

2 54.892 54.817 54.772 54.743 54.743

3 69.832 69.578 69.427 69.327 69.327

4 95.076 94.828 94.682 94.585 94.585

5 102.34 102.28 102.24 102.22 102.22
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from the fourth significant digit—from those documented in Ref. [10]; it can be easily verified that the present
results are correct. The discrepancy is probably due to the inadequate representation of the value of p in the
earlier calculations, carried out, as reported in Ref. [10], in 1938.)

Some more validation studies for plates with two opposite simply supported edges are presented in Tables 5
and 6. Table 5 pertains to buckling of orthotropic plates under equal biaxial compression. Table 6 is for
buckling of isotropic plates with an elastic foundation under uniaxial or equal biaxial compression, with
results included for zero foundation modulus also as a special case. In both these tables, the comparison is
with respect to the exact results based on conventional Levy-type equations [11,13].

Before presenting some validation studies for plates without two opposite simply supported edges, it is
necessary to examine the convergence of the superposition method with reference to the number of moment
coefficients considered in the series of Eq. (1) because the different edge moment coefficients are now coupled
(see Eq. (16)). This convergence is as shown in Table 7 for a typical case—such rapid convergence is found for
all the problems studied here and all the results tabulated here are accurate up to the last significant digit
presented. It has to be pointed out that no numerical difficulties (due to overflow or underflow or ill-
conditioned equations) are encountered in UISSM even when a large number of terms are considered, unlike
Table 5

Validation of UISSM for buckling of orthotropic square plates under equal biaxial compression (Nx ¼ Ny ¼ �N)

Material constants Plate Critical load ða2N=ðD12 þ 2D66ÞÞ

UISSM Ref. [11]

D11

ðD12 þ 2D66Þ
¼ 4:341

D22

ðD12 þ 2D66Þ
¼ 1:6136

m21 ¼ 5=27

CSSS 65.9798 65.9798

CSCS 115.2372 115.2372

SSFS 41. 8642 41.8643

CSFS 67.5526 67.5527

D11

ðD12 þ 2D66Þ
¼ 2:432

D22

ðD12 þ 2D66Þ
¼ 0:2842

m21 ¼ 0:36

CSSS 38.8838 38.8851

CSCS 66.7625 66.7658

SSFS 25.1914 25.1923

CSFS 40.0076 40.0024

Table 6

Validation of UISSM for buckling of isotropic square plates resting on a foundation (m ¼ 0.3)

Plate kF a4=D Critical load ða2N=p2DÞ

Nx ¼ �N; Ny ¼ 0 Nx ¼ �N ;Ny ¼ �N

UISSM Ref. [13] UISSM Ref. [13]

SSSC 0 5.740 5.740 2.663 2.663

100 6.767 6.767 3.132 3.132

SCSC 0 7.691 7.691 3.830 3.830

100 7.948 7.948 4.280 4.280

SSSF 0 1.402 1.402 1.055 1.055

100 2.428 2.428 1.745 1.745

SCSF 0 1.653 1.653 1.144 1.144

100 2.679 2.679 2.206 2.206

SFSF 0 0.952 0.952 0.932 0.932

100 1.979 1.979 1.626 1.626
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Table 7

Convergence study for free vibration of square CCSS isotropic plate

Mode Frequency parameter ðl ¼ oa2
ffiffiffiffiffiffiffiffiffi
r=D

p
Þ

Three terms Five terms Seven terms Ten terms Twenty terms

1 27.0500 27.0539 27.0540 27.0540 27.0540

2 60.5378 60.5385 60.5385 60.5385 60.5385

3 60.7392 60.7822 60.7855 60.7860 60.7860

4 92.7294 92.8261 92.8344 92.8360 92.8360

5 114.496 114.556 114.556 114.556 114.556

Table 8

Validation of UISSM for vibrations of a CCCC isotropic plate

Mode Frequency parameter ðoa2
ffiffiffiffiffiffiffiffiffi
r=D

p
Þ

a/b ¼ 1 a/b ¼ 0.5

UISSM Ref. [14] UISSM Ref. [14]

1 35.9852 35.9852 24.5777 24.5777

2 73.3938 73.3938 31.8260 31.8260

3 108.2165 108.2165 44.7696 44.7696

4 131.5808 131.5808 71.0763 71.0763

5 132.2048 132.2048 87.2526 87.2526
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in the conventional Levy-type methodology wherein hyperbolic functions with large arguments (directly
proportional to m and n) pose problems.

Five baseline solutions are chosen for further validation studies; four of these pertain to a plate clamped all
around, while the fifth is for a CFCF plate. The first is the well-known solution of Classen and Thorne [14], with
results tabulated in Leissa’s monograph [10], for free vibrations of an isotropic plate. This is based on a double
Fourier-series representation for the deflection function along with Stokes’ transformation as suggested by
Green [15] to account for the fact that the zero slope conditions are violated by the assumed Fourier series and
hence term-by-term differentiation is not valid. This is an analytically rigorous strong-form solution of the
governing equation wherein convergence of the frequencies by appropriate truncation of the infinite
characteristic determinant has been carefully ensured. The comparison of the results of UISSM with those of
this baseline solution as in Table 8 shows that they agree exactly up to the last significant digit presented.

Table 9 presents the validation of UISSM for free vibration analysis of an orthotropic CCCC plate with
respect to the baseline solution of Gorman [16] by the conventional superposition approach employing closed-
form Levy-type solutions; a similar solution [17] for orthotropic plates with initial stresses is used in Table 10.
Table 11 presents the validation study for buckling of a clamped isotropic plate with respect to the results of a
multiterm extended Kantorovich solution [18], believed to be the best available so far for this particular
problem. A final validation study, for the frequencies of a square isotropic CFCF plate, is presented in
Table 12 with respect to the results based on Green’s approach [10]. All these validation studies clearly
establish the legitimacy of the untruncated series used for the individual building blocks and the accuracy of
the final results based on their superposition.

Finally, for the sake of future comparisons, converged results of UISSM are tabulated for free vibrations
and buckling of square orthotropic plates with different edge conditions (Tables 13 and 14), with the effect of
an elastic foundation also considered for the buckling problem. The orthotropic properties correspond to a
(01) unidirectionally reinforced fibre composite with the following elastic constants:

EL=ET ¼ 25; GLT=ET ¼ 0:5; mLT ¼ 0:25,
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Table 10

Validation of UISSM for CCCC orthotropic square plate with initial stresses (Nx ¼ Ny ¼ N)

Na2

p2ðD12 þ 2D66Þ
Fundamental frequency parameter oa2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r

ðD12 þ 2D66Þ

r� �

Isotropic D11

ðD12 þ 2D66Þ
¼

D22

ðD12 þ 2D66Þ
¼ 2

UISSM Ref. [17] UISSM Ref. [17]

�2 28.573 28.573 42.641 42.641

0 35.985 35.985 47.959 47.959

10 59.925 59.925 68.165 68.165

20 76.171 76.171 83.206 83.206

Table 11

Validation of UISSM for buckling of CCCC isotropic square plate

Method Critical load ða2N=p2DÞ

Nx ¼ �N ; Ny ¼ 0 Nx ¼ �N; Ny ¼ �N

UISSM 10.0739 5.30362

Ref. [18] 10.0739 5.30363

Table 12

Validation of UISSM for vibrations of a square CFCF isotropic plate (m ¼ 0.3)

Method Frequency parameter ðoa2
ffiffiffiffiffiffiffiffiffi
r=D

p
Þ

Mode 1 Mode 2 Mode 3 Mode 4 Mode 5

UISSM 22.17 26.40 43.60 61.20 67.20

Ref. [10] 22.17 26.40 43.60 61.20 67.20

Table 9

Validation of UISSM for vibrations of a CCCC orthotropic platea

Mode Frequency parameter ðoa2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
r=D11

p
Þ

a/b ¼ 1 a/b ¼ 0.5

UISSM Ref. [16] UISSM Ref. [16]

1 41.10 41.12 25.60 25.60

2 78.58 78.56 52.42 52.44

3 125.0 125.0 65.11 65.12

4 137.0 137.0 75.32 75.32

5 160.6 160.6 92.14 92.12

aD12+2D66 ¼ D22 ¼ 1.5D11.
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where L and T refer to the directions parallel and transverse, respectively, to the fibres. For the sake of
completeness, results of a plate simply supported all around are also included in these tables, though this case
admits of a straightforward Navier-type solution. In Table 13, the nodal lines parallel to the x and y axes,
respectively, corresponding to each mode shape are indicated in parentheses.
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Table 13

Converged results for free vibration of orthotropic square plates

Plate
Frequency parameter oa2

ffiffiffiffiffiffiffiffiffiffiffi
r

ET h3

r !

Mode 1 Mode 2 Mode 3 Mode 4 Mode 5

FCFC 6.463 (0,0) 8.126 (0,1) 17.81 (1,0) 20.22 (1,1) 34.50 (0,2)

CCFC 8.745 (0,0) 19.38 (1,0) 33.56 (0,1) 36.24 (2,0) 40.00 (1,1)

SSSS 15.23 (0,0) 20.37 (1,0) 32.33 (2,0) 51.10 (3,0) 57.83 (0,1)

SCSS 15.70 (0,0) 22.36 (1,0) 36.12 (2,0) 56.55 (3,0) 58.01 (0,1)

SCSC 16.44 (0,0) 24.81 (1,0) 40.35 (2,0) 58.26 (0,1) 62.40 (3,0)

CSSS 22.98 (0,0) 26.85 (1,0) 36.98 (2,0) 54.35 (3 0) 72.87 (0,1)

SSCC 23.31 (0,0) 28.41 (1,0) 40.35 (2,0) 59.52 (3,0) 73.02 (0,1)

SCCC 23.82 (0,0) 30.39 (1,0) 44.19 (2,0) 65.11 (3,0) 73.22 (0,1)

CFCF 32.33 (0,0) 32.70 (1,0) 34.53 (2,0) 40.06 (3,0) 51.90 (4,0)

CCCF 32.46 (0,0) 33.99 (1,0) 39.29 (2,0) 51.05 (3,0) 70.22 (4,0)

CSCS 32.85 (0,0) 35.73 (1,0) 43.95 (2,0) 59.41 (3,0) 82.19 (4,0)

CSCC 33.08 (0,0) 36.92 (1,0) 46.83 (2,0) 64.18 (3,0) 88.73 (4,0)

CCCC 33.44 (0,0) 38.47 (1,0) 50.18 (2,0) 69.41 (3,0) 89.99 (0,1)

Table 14

Converged results for buckling of orthotropic square plates

Plate
Critical load

a2N

ET h3

� �

Nx ¼ �N; Ny ¼ 0 Nx ¼ Ny ¼ �N

Without foundation % Increase due to

foundationa
Without foundation % Increase due to

foundationa

FCFC 5.460 12.1 2.726 12.1

CCFC 13.63 7.8 4.399 10.0

SSSS 23.49 87.8 8.407 49.0

SCSS 24.98 82.5 9.057 39.0

SCSC 27.38 75.3 10.78 31.0

CSSS 44.90 36.7 13.64 14.9

SSCC 46.16 35.7 13.89 16.4

SCCC 48.13 34.1 15.41 19.1

CFCF 82.42 18.6 10.69 100.8

CCCF 83.12 18.4 10.75 99.7

CSCS 85.13 17.9 19.11 10.5

CSCC 86.30 17.7 19.70 9.0

CCCC 88.14 17.3 21.57 7.9

akF ¼ p4D11=a4

 �

.
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In both Tables 13 and 14, plates with different boundary conditions are listed out in the order of increasing
fundamental frequency or uniaxial buckling load corresponding to compression in the x-direction; it is very
interesting to see that this order is the same when these two parameters are considered. However, as can be
seen from Table 13, while the fundamental frequency increases from top to bottom for the listed order of
boundary conditions, the higher frequencies do not follow the same trend. Similarly, the critical load
corresponding to equal biaxial compression also does not show the same trend (see Table 14) in that the CFCF
and CCCF plates behave differently. This is because the biaxial critical loads for the CFCF and CCCF plates
are significantly lower than their uniaxial counterparts corresponding to compression in the x-direction alone;
such a significant decrease is understandable because the free edges are now subjected to compressive load and
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this load is in the weaker direction of orthotropy. Another observation worth noting is that the effect of the
elastic foundation on the critical load, for the chosen fixed value of the foundation parameter kF, varies
significantly depending on the edge conditions and depending on whether the plate is subjected to uniaxial or
equal biaxial compression.

4. Conclusion

A new superposition approach, based on the use of Navier-type double Fourier-series solutions for the
individual building blocks derived using the principle of virtual work, has been presented here. These solutions
are shown to be exact counterparts of conventional Levy-type closed-form expressions and hence lead to no
loss of accuracy when untruncated summation is employed. Thus, this new UISSM is as accurate and rigorous
as the conventional superposition method and is much more elegant and simpler because it yields frequency
and buckling equations which are of just a single compact form over the entire range; thus, the need for
identifying the different possible root combinations and rewriting these equations in corresponding different
forms as in the conventional superposition method is completely obviated.

It is possible to extend this method for more complicated problems involving unsymmetric laminates, off-
axis layers, functionally graded materials and elastic edge supports. Some such extensions will be reported
in future.

Appendix

For the first building block of Fig. 2, the deflection w is obtained as

w ¼
X

m

X1
n¼1

W mn sin
mpx

a

� �
sin

npy

b

� �
eiot with W mn ¼

�2npMbm cos np

b2Gða; bÞ
. (A.1)

This series can be differentiated term by term to obtain w,y and w,yy, but not the higher derivatives with
respect to y. This is because the second derivative given by

w;yy ¼ �
X

m

X1
n¼1

np
b

� �2
W mn sin

npy

b
sin

mpx

a
(A.2)

violates the non-zero moment condition at the loaded edge y ¼ b; the series yields zero while the correct value
is given by

My

��
y¼b
¼ ½�D12w;xx �D22w;yy�y¼b ¼ �D22w;yy

��
y¼b

i:e: w;yy

��
y¼b
¼ �

X
m

Mbm

D22
sin

mpx

a
. (A.3)

Because of this violation of the end condition, further derivatives have to be obtained using Stokes’
transformation [12]. The basic idea is to assume

w;yyy ¼
X

m

Am0 þ
X1
n¼1

Amn cos
npy

b

 !
sin

mpx

a
. (A.4)

Integration of both sides of the above equation with respect to y between the limits 0 and b yields

w;yy

��b
0
¼
X

m

Am0b sin
mpx

a
and hence Am0 ¼ �Mbm=bD22. (A.5)

Similarly, multiplying both sides of Eq. (A.4) by cos(npy/b) and integrating with respect to y, one gets

w;yy cos
npy

b

���b
0
þ

Z b

0

w;yy

np
b

� �
sin

npy

b
dy ¼

X
m

Amn

b

2

� �
sin

mpx

a
. (A.6)



ARTICLE IN PRESS
S. Kshirsagar, K. Bhaskar / Journal of Sound and Vibration 314 (2008) 837–850850
Use of Eqs. (A.2) and (A.3) in the above equation yields

Amn ¼ �
2Mbm cos np

bD22
�

np
b

� �3
W mn (A.7)

and hence,

w;yyy ¼
X

m

�
Mbm

bD22
�
X1
n¼1

2Mbm cos np
bD22

þ
np
b

� �3
W mn

� 

cos

npy

b

" #
sin

mpx

a
. (A.8)
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