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Abstract

The propagation of Love waves in layered structures is investigated for two cases: a piezomagnetic (PM) layer on a

piezoelectric (PE) half-space and the reverse configuration. The dispersion relations are obtained in explicit form. The

numerical examples are provided to illustrate the variations of the phase and group velocities versus the wavenumber for

the combinations of different materials. The results show that: (1) the phase and group velocities initiate at the bulk shear

wave velocity of the half-space medium and approach the bulk shear wave velocity of the layer with increasing

wavenumber; (2) the influence of the magnetic permeabilities of PE materials on the phase velocity can be neglected; (3) for

the layered medium consisting of a PM layer and a PE half-space, the properties of PE materials have a great influence on

the phase and group velocities at lower wavenumber for the lowest mode. These findings are useful for PE/PM composite

media or structures in the microwave technology.

r 2008 Elsevier Ltd. All rights reserved.
1. Introduction

Composite materials or structures consisting of piezoelectric (PE) and piezomagnetic (PM) phases are able
to facilitate the conversion of energy between electric and magnetic fields. Such a phenomenon is called
magnetoelectric (ME) effect. This ME effect of the composites is a new product property, and results from the
interaction between different material properties of the two phases in composites. Neither PE phase nor PM
phase has the ME effect, but the composites of these two phases possess a remarkable ME effect. The ME
effect of PE/PM composites was first reported by van Suchtelen [1] and was then studied by van den
Boomgaard [2], van Run et al. [3] and van den Boomgaard et al. [4] for BaTiO3/CoFe2O4 composites. Since
their pioneering works, many efforts have been devoted to the prediction and determination of the ME effect
of the PE/PM composites [5–15] both theoretically and experimentally. An overall and detailed review of this
research topic can be found in a recent paper of Fiebig [16]. Due to the capability of conversion between
electric and magnetic energy, PE/PM composites are potential candidates for use as ME memory elements,
sensors, actuators, acoustic wave and microwave devices as well as other electric products [16]. These possible
applications call for a better understanding of the static and dynamic behaviors of PE/PM composites or
ee front matter r 2008 Elsevier Ltd. All rights reserved.
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structures, such as magneto-electro-elastic Green’s functions [17,18], static deformations, vibrations and wave
propagations, etc. Recently, there were several investigations that analyzed the bending deformations and free
vibrations of PE/PM multilayered plates and shells [19–25]. Alshits et al. [26] conducted a qualitative
investigation into the existence of surface-waves in half-infinite anisotropic elastic media with PE, PM and ME
effects. Soh and Liu [27] gave the existence conditions of interfacial shear horizontal (SH) waves in a PE/PM
bi-material. Chen et al. [28] investigated the propagation behaviors of harmonic waves in multilayered
magneto-electro-elastic plates. Zhou et al. [29,30] investigated the scattering of the SH waves by two collinear
interfacial mode III cracks between two different PE/PM materials.

In this paper, we consider the propagation of Love waves in PE/PM layered half-spaces. The main concerns
are the dispersion characteristic and the influences of material properties on phase and group velocities. The
basic equations of materials that possess simultaneously the coupling effects between mechanical, electric and
magnetic fields are summarized in Section 2. The basic equations of PE and PM media are also given as two
special cases. The problem to be considered is described in Section 3. The explicit dispersion relations are
obtained in Section 4. The phase and group velocities are plotted for different combinations of materials and
dispersion behaviors are discussed in Section 5. Finally, several conclusions are drawn in Section 6.
2. Basic equations

For anisotropic elastic materials that possess simultaneously PE, PM and ME effects, the constitutive
equations in a fixed rectangular coordinate system xi (i ¼ 1, 2, 3) are described as

sij ¼ cijkl�kl � ekijEk � hkijHk;

Di ¼ eikl�kl þ kikEk þ aikHk;

Bi ¼ hikl�kl þ aikEk þ mikHk;

(1)

where sij, Di and Bi are the stress, electric displacement and magnetic induction (i.e., magnetic flux),
respectively; eij, Ei and Hi are the strain, electric field and magnetic field, respectively; cijkl, kij and mij are the
elastic, dielectric and magnetic permeability coefficients, respectively; ekij, hkij and aij are the PE, PM and ME
coefficients, respectively. The repeated indices imply usual summation convention. The comma denotes
coordinate differentiation with respect to xi. The strain, electric field and magnetic field are related to the
elastic displacement ui, the electric potential j and magnetic potential c by

�ij ¼ ðui;j þ uj;iÞ=2; Ei ¼ �j;i; Hi ¼ �c;i. (2)

In the usual quasi-static approximation, the equations of motion, electrostatics and magnetostatics are
given by

sij;i ¼ r €ui; Di;i ¼ 0; Bi;i ¼ 0 (3)

in which a superimposed dot stands for differentiation with respect to time t.
Most magneto-electro-elastic media, especially composite materials consisting of a PE phase and a PM

phase, possess transversely isotropic property. If the x1x2-plane is taken as the isotropic plane of materials,
then the constitutive equations can be written in the Voigt form as [8,9]
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(6)

where c66 ¼ 0:5� ðc11 � c12Þ.
If interested it is only the coupled problem in the isotropic plane, then the non-zero field quantities are: (u3,

e3b, s3b), (j, Eb, Db) and (c, Hb, Bb), b ¼ 1, 2, which is called anti-plane magneto-electro-elastcity. For this
situation, the basic equations reduce to

s3b ¼ 2c44�3b � e15Eb � h15Hb,

Db ¼ 2e15�3b þ k11Eb þ a11Hb,

Bb ¼ 2h15�3b þ a11Eb þ m11Hb, (7)

�3b ¼ u3;b=2; Eb ¼ �j;b; Hb ¼ �c;b, (8)

s3b;b ¼ r €u3; Db;b ¼ 0; Bb;b ¼ 0. (9)

Substituting Eq. (7) with Eq. (8) into Eq. (9), one obtains

c44r
2u3 þ e15r

2jþ h15r
2c ¼ r €u3,

e15r
2u3 � k11r2j� a11r2c ¼ 0,

h15r
2u3 � a11r2j� m11r

2c ¼ 0 (10)

which is a set of the governing differential equations for u3, j and c, and r2 ¼ q2=qx2
1 þ q2=qx2

2 is the two-
dimensional Laplacian operator.

By setting to zero the coefficients h15 and a11 in Eqs. (7) and (10), the constitutive relations and
governing equations of transversely isotropic PE materials under anti-plane deformation are obtained as
follows:

se
3b ¼ ce

44ue
3;b þ e15je

;b,

De
b ¼ e15ue

3;b � ke
11j

e
;b,

Be
b ¼ � me

11c
e
;b, (11)

ce
44r

2ue
3 þ e15r

2je ¼ re €ue
3,

e15r
2ue

3 � ke
11r

2je ¼ 0,

r2ce
¼ 0. (12)
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Similarly, the constitutive relations and governing equations of transversely isotropic PM materials under
anti-plane deformation are:

sm
3b ¼ cm

44um
3;b þ h15c

m
;b,

Dm
b ¼ � km

11j
m
;b,

Bm
b ¼ h15um

3;b � mm
11c

m
;b, (13)

cm
44r

2um
3 þ h15r

2cm
¼ rm €um

3 ,

h15r
2um

3 � mm
11r

2cm
¼ 0,

r2jm ¼ 0. (14)

In Eqs. (11)–(14), the superscripts ‘‘e’’ and ‘‘m’’ in the field quantities and the material constants indicate
that they correspond to PE and PM media, respectively.
3. Statement of the problem

The layered structure and the coordinate system are illustrated in Fig. 1. Two kinds of combinations
will be considered: one is a PE half-space carrying a PM layer and the other is a PM half-space covered
by a PE layer. Both materials are hexagonal (6mm) crystals (transversely isotropic materials). The x1x2-plane
is an isotropic plane of both materials. The SH wave propagating in the structure along the x1-axis
possesses only one component of mechanical displacement u3 accompanied by the electric potential j and the
magnetic potential c. They are governed respectively by Eq. (12) for the PE medium and Eq. (14) for the PM
medium.

The solution of the SH wave propagation must satisfy the boundary conditions on the layer
surface and the continuity conditions along the interface between the layer and the half-space.
At the interface x2 ¼ 0, the mechanical displacements, electric potentials and magnetic potentials as
well as the normal components of the stress, electric displacement and magnetic induction are conti-
nuous, i.e.

ue
3 ¼ um

3 ; je ¼ jm; ce
¼ cm; se

32 ¼ sm
32; De

2 ¼ Dm
2 ; Be

2 ¼ Bm
2 . (15)

The surface of the layer is traction free, electrically open and magnetic closed. This requires

sm
32ðx1;�hÞ ¼ 0; Dm

2 ðx1;�hÞ ¼ 0; Bm
2 ðx1;�hÞ ¼ 0 (16)

when the layer is PE and

se
32ðx1;�hÞ ¼ 0; De

2ðx1;�hÞ ¼ 0; Be
2ðx1;�hÞ ¼ 0 (17)

when the layer is PE.
x1

x2

hLayer

Half space

Fig. 1. A schematic of layered piezoelectric–piezomagnetic structure.
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4. Dispersion relations

First of all, we consider the propagation of the SH wave in the structure consisting of the PM layer and PE
half-space. The solution of Eqs. (12) and (14) can be expressed by the following form:

u
b
3ðx1;x2; tÞ ¼ ~ub

3ðx2Þ cos kðx1 � ctÞ;

jbðx1; x2; tÞ ¼ ~jbðx2Þ cos kðx1 � ctÞ;

cb
ðx1; x2; tÞ ¼ ~c

b
ðx2Þ cos kðx1 � ctÞ;

ðb ¼ e;mÞ; (18)

where k is the wavenumber, c stands for the phase velocity of the SH wave, ~ub
3ðx2Þ; ~jbðx2Þ and ~c

b
ðx2Þ are

undetermined functions. Substitution of Eq. (18) into Eqs. (12) and (14) results in

d2 ~ue
3

dx2
2

� k½1� ðc=ce
shÞ

2
� ~ue

3 ¼ 0,

d2 ~je

dx2
2

� k2 ~je ¼
e15

ke
11

d2 ~ue
3

dx2
2

� k2 ~ue
3

� �
,

d2 ~c
e

dx2
2

� k2 ~c
e
¼ 0 (19)

and

d2 ~um
3

dx2
2

� k2
½1� ðc=cm

shÞ
2
� ~um

3 ¼ 0,

d2 ~jm

dx2
2

� k2 ~jm ¼ 0,

d2 ~c
m

dx2
2

� k2 ~c
m
¼

h15

mm
11

d2 ~um
3

dx2
2

� k2 ~um
3

� �
(20)

with c
b
sh ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
c̄
b
44=rb

q
, b ¼ e;m. ce

sh and cm
sh are the velocities of the bulk shear wave in the PE and PM media,

respectively; c̄e
44 ¼ ce

44 þ e215=k
e
11 and c̄m

44 ¼ cm
44 þ h2

15=m
m
11 are the elastic constants with the PE and PM effects

accounted for, respectively.
For the Love wave considered in this case, there exists the fact that cm

shococe
sh. So, the solutions of Eqs. (19)

and (20) are:

~ue
3ðx2Þ ¼ A1e

�kex2 ,

~jeðx2Þ ¼ A2e
�kx2 þ

e15

ke
11

~ue
3,

ce
ðx2Þ ¼ A3e

�kx2 , (21)

~um
3 ðx2Þ ¼ A4 cosðkmx2Þ þ A7 sinðkmx2Þ,

~jmðx2Þ ¼ A5 coshðkx2Þ þ A8 sinhðkx2Þ,

cm
ðx2Þ ¼ A6 coshðkx2Þ þ A9 sinhðkx2Þ þ

h15

mm
11

~um
3 , (22)

where kb
¼ klb, le

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ðc=ce

shÞ
2

q
, lm

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðc=cm

shÞ
2
� 1

q
, Ai (i ¼ 1–9) are undetermined constants.

For the solution of the PE half-space, we have used the conditions that the mechanical displace-
ment u3, electrical potential j and magnetic potential c vanish for x2 ¼ þ1. From Eqs. (18), (21) and (22),
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we have

ue
3ðx1;x2; tÞ ¼ A1e

�kex2 cos kðx1 � ctÞ,

jeðx1;x2; tÞ ¼ A2e
�kx2 cos kðx1 � ctÞ þ

e15

ke
11

ue
3,

ce
ðx1;x2; tÞ ¼ A3e

�kx2 cos kðx1 � ctÞ, (23)

um
3 ðx1;x2; tÞ ¼ ½A4 cosðkmx2Þ þ A7 sinðkmx2Þ� cos kðx1 � ctÞ,

jmðx1;x2; tÞ ¼ ½A5 coshðkx2Þ þ A8 sinhðkx2Þ� cos kðx1 � ctÞ,

cm
ðx1;x2; tÞ ¼ ½A6 coshðkx2Þ þ A9 sinhðkx2Þ� cos kðx1 � ctÞ þ

h15

mm
11

um
3 . (24)

Substituting Eqs. (21) and (22) into Eqs. (11) and (13), respectively, one obtains

se
32 ¼ � ðc̄

e
44keA1e

�kex2 þ e15kA2e
�kx2 Þ cos kðx1 � ctÞ,

De
2 ¼ ke

11kA2e
�kx2 cos kðx1 � ctÞ,

Be
2 ¼ me

11kA3e
�kx2 cos kðx1 � ctÞ, (25)

sm
32 ¼ fc̄

m
44km
½�A4 sinðkmx2Þ þ A7 cosðkmx2Þ�

þ h15k½A6 sinhðkmx2Þ þ A9 coshðkmx2Þ�g cos kðx1 � ctÞ,

Dm
2 ¼ � km

11k½A5 sinhðkx2Þ þ A8 coshðkx2Þ� cos kðx1 � ctÞ,

Bm
2 ¼ � mm

11k½A6 sinhðkx2Þ þ A9 coshðkx2Þ� cos kðx1 � ctÞ. (26)

Making using of Eqs. (23)–(26) as well as the interface continuity conditions (15) and the boundary
conditions (16), we get

A4 ¼ A1; A5 ¼ A2 þ A1e15=ke
11; A6 þ A4h15=km

11 ¼ A3,

c̄m
44kmA7 þ h15kA9 ¼ �c̄e

44keA1 � e15kA2,

� km
11A8 ¼ ke

11A2; �mm
11A9 ¼ me

11A3,

c̄m
44km
½A4 sinðkmhÞ þ A7 cosðkmhÞ�

þ h15k½A9 coshðkhÞ � A6 sinhðkhÞ� ¼ 0,

A8 coshðkhÞ � A5 sinhðkhÞ ¼ 0,

A9 coshðkhÞ � A6 sinhðkhÞ ¼ 0, (27)

which is a system of the homogeneous linear algebraic equations for Ai (i ¼ 1–9). For nontrivial solutions of
Ai, the determinate of the coefficient matrix must vanish, which leads to

1þ
mm
11

me
11

tanhðkhÞ

� �
c̄e
44l

e
�

e215
ke
11

tanhðkhÞ

ke
11=k

m
11 þ tanhðkhÞ

� c̄m
44l

m tanðkmhÞ

� �
�

h2
15

mm
11

tanhðkhÞ ¼ 0. (28)

Eq. (28) is the dispersion relation that determines the wave speed c.
When the layered structure is composed of a PE layer and a PM half-space, the dispersion relation can be

obtained in a same procedure as follows:

1þ
ke
11

km
11

tanhðkhÞ

� �
c̄m
44l

m
�

h2
15

mm
11

tanhðkhÞ

mm
11=m

e
11 þ tanhðkhÞ

� c̄e
44l

e tanðkehÞ

� �
�

e215
ke
11

tanhðkhÞ ¼ 0. (29)

It should be mentioned that the wave speed c is less than cm
sh but larger than ce

sh. Eqs. (28) and (29) are the
transcendental equations with respect to c and k. The relation between c and k is only determined by using
numerical methods.
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From Eq. (28), we can obtain the results of two special cases reported in the literature straightforwardly.

For example, when h2
15 vanishes and km

11 approaches infinity, Eq. (28) reduces to

cH
44 þ

e215
kH
11

� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�

c

cH
sh

� �2
s

� cL
44

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c

cL
sh

� �2

� 1

s
tan kh

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c

cL
sh

� �2

� 1

s0
@

1
A ¼ e215

kH
11

, (30)

where cH
sh ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðcH

44 þ e215=k
H
11Þ=rH

q
and cL

sh ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cL
44=rL

p
. The superscripts ‘‘L’’ and ‘‘H’’ denotes the material

constants and the bulk shear wave velocity corresponding to the layer and the half-space medium, respectively.
Eq. (30) is the dispersion relation for quasi-static PE Love waves in a PE half-space carrying an elastic metal

layer given in Ref. [31]. When e215 ¼ 0, Eq. (30) degenerates into

cH
44

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�

c

cH
sh

� �2
s

� cL
44

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c

cL
sh

� �2

� 1

s
tan kh

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c

cL
sh

� �2

� 1

s0
@

1
A ¼ 0, (31)

which is the well-known dispersion equation for a purely elastic layered half-space [32].
5. Numerical examples and discussions

For the propagation of waves in the layered structures, the important thing is to know phase and group
velocities for some applications in acoustic devices, such as filters, delay lines and sensors [33,34]. According to
work by Zakharenko [34], the group velocity can be calculated by the following formula:

cg ¼
do
dk
¼ cþ kh

dc

dðkhÞ
, (32)

where o is the circular frequency.
Based on the dispersion equations (28) and (29) as well as formula (32), numerical examples are provided to

illustrate the dispersion behaviors of Love waves. The material properties used in numerical calculation are
listed in Table 1, where Terfenol-D and CoFe2O4 are PM and the others are PE. Also, the electromechanical

coupling coefficient Ke ¼ e15=
ffiffiffiffiffiffiffiffiffiffiffiffi
c̄e
44k

e
11

p
for the PE materials and magnetomechanical coupling coefficient Km ¼

h15=
ffiffiffiffiffiffiffiffiffiffiffiffi
c̄m
44m

m
11

p
for the PM materials are given in Table 1. We assume that magnetic permeabilities of PZT-4 and

PZT-7 to be the same as BaTiO3. Our numerical results have shown that this assumption is reasonable. In
addition, magnetic permeability m11 of CoFe2O4 is taken to be the same as m33, which is different from Ref.
[23]. In Ref. [23], the negative value of the magnetic permeability m11 for CoFe2O4 is used. Pan [18] and Liu
and Chue [33] have explained why the negative m11 is unreasonable, respectively.
Table 1

The properties of piezoelectric and piezomagnetic materials

Material constants BaTiO3 [35] PZT-4 [35] PZT-7 [35] CoFe2O4 [23] Terfenol-D [36]

c44 (10
9N/m2) 44 25.6 25 45.3 5.99

r (103 kg/m3) 5.7 7.5 7.8 5.3 9.23a

k11 (10
�9 C2/Nm) 9.82 6.46 17.1 0.08 15.04� 107

m11 (10
�6Ns2/C2) 5b 5 5 157 3.97

e15 (C/m
2) 11.4 12.7 13.5 0 0

h15 (N/Am) 0 0 0 550 167.66

c̄44 (109N/m2) 57.17 50.55 35.57 48.33 13.06

csh (103m/s) 3.167 2.596 2.138 3.02 1.189

Ke 0.4809 0.7027 0.5467 – –

Km – – – 0.2020 0.7360

aCited from Ref. [15].
bMagnetic permeability m11(5� 10�6Ns2/C2) of BaTiO3 is used in all the literature available.
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The dimensionless wave is taken as ~k ¼ kh=2p. The dimensionless phase velocity and phase velocity are
~c ¼ c=c

b
sh and ~cg ¼ cg=c

b
sh, where c

b
sh is the bulk shear wave velocity of the layer medium. The dispersive curves

for the structure consisting of the BaTiO3 half-space covered by the Terfenol-D layer are plotted in Fig. 2. It
can be seen that the dimensionless phase and group velocities initiate at the ratio of the shear wave velocity ce

sh

of BaTiO3 to the shear wave velocity of Terfenol-D, namely ce
sh=cm

sh ¼ 2:589, and approach unit with the
increase of the wavenumber. This means that the phase and group velocities start from the bulk shear wave
velocity in BaTiO3 and tend to the bulk shear wave velocity in Terfenol-D. In addition, it is found from Fig. 2
that the phase velocity for each mode monotonously decreases with the increase of the wavenumber. However,
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the group velocity for each mode decreases from the bulk shear wave velocity of BaTiO3 to its minimum value,
and then increases toward the bulk shear wave velocity of Terfenol-D.

Next, we examine the influence of the magnetic permeability of PE materials on the dispersion behaviors.
This is very significant because the magnetic permeability of all PE materials is unknown except BaTiO3. The
variations of ~c with ~k are plotted in Fig. 3 for the lowest mode when the magnetic permeabilities of BaTiO3 are
taken as different values. It is clearly shown in Fig. 3 that the influence of the magnetic permeability of BaTiO3

on the dispersion characteristic is rather slight. This influence can be neglected. Accordingly, the magnetic
permeability of PZT-4 and PZT-7 are also taken as 5.0� 10�6NS2/C2 in the following numerical calculation.

It is anticipated that the material properties of the PE half-spaces would affect the phase and group
velocities. In Fig. 4(a) and (b), the phase and group velocities for the lowest mode are plotted,
respectively, when three different types of PE half-spaces, namely BaTiO3, PZT-4 and PZT-7, are covered
by a Terfenol-D layer. Fig. 4(a) shows that the phase velocities for three different combinations have the
relation: cTerfenol-D=BaTiO3

4cTerfenol-D=PZT�44cTerfenol-D=PZT�7 when the wavenumber is smaller. This results
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from the difference between the bulk shear wave velocities of PE materials (see Table 1). It is seen from
Fig. 4(b) that the group velocities for three different combinations have the same relation as the phase
velocities, namely cgðTerfenol-D=BaTiO3Þ4cgðTerfenol-D=PZT�4Þ4cgðTerfenol-D=PZT�7Þ when ~ko0:1094. However, when
~ko0:1094, the group velocity for Terfenol-D/BaTiO3 combination is smaller than the group velocities for
Terfenol-D/PZT-4 and Terfenol-D/PZT-7 combinations.

For the case where a CoFe2O4 half-space is covered by a PZT-4 layer, the phase and group velocities are
calculated by using Eqs. (29) and(32). The variations of the dimensionless phase and group velocities with
dimensionless wavenumbers are plotted in Fig. 5 for the first four modes. The dispersive characteristic of this
case is similar to that of a BaTiO3 half-space carrying a Terfenol-D layer.

6. Conclusions

The propagation of Love waves in the layered PE/PM structures is investigated in this paper. The explicit
dispersion equations are derived and the numerical simulations are carried out. From the obtained numerical
results, the following conclusions can be drawn.
(1)
 The magnetic permeabilities of PE materials have a very slight influence. This influence is neglectable when
investigating dynamic behavior of wave propagation in PE/PM materials.
(2)
 The phase and group velocities start from the bulk shear wave velocity of a half-space medium and tend to
the bulk shear wave velocity of a layer material as the wavenumber increases.
(3)
 For the structure consisting of a PM layer and a PE half-space, the properties of the PE have a significant
influence on the phase and group velocities at lower wavenumber. The larger the bulk shear wave velocity
of the PE material, the higher the phase and group velocities of the wave propagation in the corresponding
composite structure at lower wavenumber.
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