
ARTICLE IN PRESS
JOURNAL OF
SOUND AND
VIBRATION
0022-460X/$ - s

doi:10.1016/j.js

�Correspond
E-mail addr
Journal of Sound and Vibration 315 (2008) 22–33

www.elsevier.com/locate/jsvi
Additive resonances of a controlled
van der Pol–Duffing oscillator

J.C. Ji�, N. Zhang

Faculty of Engineering, University of Technology, Sydney, P.O. Box 123, Broadway, NSW 2007, Australia

Received 2 November 2007; received in revised form 4 January 2008; accepted 19 January 2008

Handling Editor: L.G. Tham

Available online 7 March 2008
Abstract

The trivial equilibrium of a controlled van der Pol–Duffing oscillator with nonlinear feedback control may lose its

stability via a non-resonant interaction of two Hopf bifurcations when two critical time delays corresponding to two Hopf

bifurcations have the same value. Such an interaction results in a non-resonant bifurcation of co-dimension two. In the

vicinity of the non-resonant Hopf bifurcations, the presence of a periodic excitation in the controlled oscillator can induce

three types of additive resonances in the forced response, when the frequency of the external excitation and the frequencies

of the two Hopf bifurcations satisfy a certain relationship.

With the aid of centre manifold theorem and the method of multiple scales, three types of additive resonance responses

of the controlled system are investigated by studying the possible solutions and their stability of the four-dimensional

ordinary differential equations on the centre manifold. The amplitudes of the free-oscillation terms are found to admit

three solutions; two non-trivial solutions and the trivial solution. Of two non-trivial solutions, one is stable and the trivial

solution is unstable. A stable non-trivial solution corresponds to a quasi-periodic motion of the original system. It is also

found that the frequency-response curves for three cases of additive resonances are an isolated closed curve. It is shown

that the forced response of the oscillator may exhibit quasi-periodic motions on a three-dimensional torus consisting of

three frequencies; the frequencies of two bifurcating solutions and the frequency of the excitation. Illustrative examples are

given to show the quasi-periodic motions.

r 2008 Elsevier Ltd. All rights reserved.
1. Introduction

In the absence of external excitation, the equilibrium of a controlled nonlinear system involving time delay
may lose its stability and give rise to periodic solutions via Hopf bifurcations, when the time delay reaches
certain values. In the neighbourhood of the critical point of Hopf bifurcations, an interaction of bifurcating
periodic solutions and an external excitation may induce rich dynamic behaviour. The forced behaviour of the
non-autonomous system may exhibit non-resonant response, primary resonances, sub-harmonic and super-
harmonic resonances, depending on the relationship of the frequency of Hopf bifurcation and the forcing
ee front matter r 2008 Elsevier Ltd. All rights reserved.
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frequency. The effect of time delays on the stability and dynamics of time-delayed systems have received
considerable interest in the literature [1–8]. However, there has been less effort made in studying an interaction
of the external excitation and two bifurcating solutions, which result from non-resonant Hopf bifurcations of
the corresponding autonomous systems. The main purpose of the present paper is to study an interaction of
the forcing and bifurcating periodic solutions in the vicinity of non-resonant bifurcation of co-dimension two,
which appears after the trivial solution of the van der Pol–Duffing oscillator loses its stability via non-resonant
Hopf bifurcations.

An externally forced van der Pol–Duffing oscillator under a linear-plus-nonlinear feedback control
considered in the present paper is of the form

€x� ðm� bx2Þ _xþ o2xþ ax3 ¼ e0 cosðO0tÞ þ pxðt� tÞ þ q _xðt� tÞ þ k1x3ðt� tÞ

þ k2 _x
3ðt� tÞ þ k3 _xðt� tÞx2ðt� tÞ þ k4 _x

2ðt� tÞxðt� tÞ, (1)

where x is the displacement, an overdot indicates the differentiation with respect to time t, o is the natural
frequency, a is the coefficient of the nonlinear term, m and b are the linear and nonlinear damping coefficients
with m40, b40, e0 and O0 represent the amplitude and frequency of the external excitation, p and q are
the proportional and derivative linear feedback gains of a linear-plus-nonlinear feedback control scheme,
ki (i ¼ 1, 2, 3, 4) are the weakly nonlinear feedback gains, and t denotes the time delay occurring in the
feedback path. Only one time delay is considered here for simplicity.

The corresponding autonomous system for which the external excitation is neglected in Eq. (1), which can
be obtained by letting e0 ¼ 0 in Eq. (1), is given by

€x� m _xþ o2x� pxðt� tÞ � q _xðt� tÞ þ bx2 _xþ ax3 � k1x
3ðt� tÞ � k2 _x

3ðt� tÞ

� k3 _xðt� tÞx2ðt� tÞ � k4 _x
2ðt� tÞxðt� tÞ ¼ 0. (2)

It was shown that the trivial equilibrium of the autonomous system (2) may lose its stability via a subcritical
or a supercritical Hopf bifurcation and regain its stability via a reverse subcritical or a supercritical Hopf
bifurcation as the time delay increases [9]. It was found that an interaction of two Hopf bifurcations may occur
when the two critical time delays corresponding to two Hopf bifurcations have the same value. In the vicinity
of non-resonant Hopf bifurcations, the controlled oscillator modelled by Eq. (2) was found to have the
initial equilibrium solution, two periodic solutions and a quasi-periodic solution on a two-dimensional (2D)
torus [10].

The presence of an external periodic excitation can induce complicated dynamic behaviour of the controlled
oscillator given by Eq. (1), which includes two types of primary resonances, two types of sub-harmonic
resonances, two types of super-harmonic resonances, three types of additive resonances, and four types of
difference resonances [11]. These resonances result from an interaction of the external excitation and the
bifurcating periodic solutions that immediately follow the non-resonant Hopf bifurcations of co-dimension
two occurring in the corresponding autonomous system given by Eq. (2).

By following the normal procedure for the reduction of delay differential equations to ordinary differential
equations based on semigroups of transformations and the decomposition theory [12–14]; the dynamic
behaviour of the solutions of Eq. (1) in the neighbourhood of non-resonant Hopf–Hopf interactions can be
interpreted by the solutions and their stability of a set of four ordinary differential equations on the centre
manifolds.

For simplicity, it is assumed that an intersection of non-resonant Hopf bifurcations occurs at the point
(p0, q0, t0), where the corresponding characteristic equation of the autonomous system (2) has two pairs of
purely imaginary roots 7id01, 7id02, and all other roots have negative real parts. In order to study the
dynamics of the controlled oscillator in the neighbourhood of the bifurcation point (p0, q0, t0), three small
perturbation parameters, namely a1, a2, and a3, are introduced in Eq. (1) in terms of p ¼ p0+a1, q ¼ q0+a2,
t ¼ t0+a3. These perturbation parameters can conveniently account for the small variations of the critical
linear feedback gains and the critical time delay.

By treating the external excitation in Eq. (1), as an additional perturbation term and performing similar
algebraic manipulations to those done in Ref. [10], the four-dimensional (4D) ordinary differential equations
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governing the local flow on the centre manifold can be expressed in the component form as

_z1 ¼ l11z1 þ ðd1 þ l12Þz2 þ l13z3 þ l14z4 þ f 10ðz1; z2; z3; z4Þ þ e10 cosðOtÞ,

_z2 ¼ ð�d1 þ l21Þz1 þ l22z2 þ l23z3 þ l24z4 þ f 20ðz1; z2; z3; z4Þ þ e20 cosðOtÞ,

_z3 ¼ l31z1 þ l32z2 þ l33z3 þ ðd2 þ l34Þz4 þ f 30ðz1; z2; z3; z4Þ þ e30 cosðOtÞ,

_z4 ¼ l41z1 þ l42z2 þ ð�d2 þ l43Þz3 þ l44z4 þ f 40ðz1; z2; z3; z4Þ þ e40 cosðOtÞ, (3)

where d1 and d2 are the normalized frequencies of Hopf bifurcations which have been rescaled in the units of
the critical time delay t0, e10 ¼ b12e0, e20 ¼ b22e0, e30 ¼ b32e0, e40 ¼ b42e0, the other coefficients and polynomial
functions of order three fi0(z1, z2, z3, z4) (where i ¼ 1, 2, 3, 4) involved in Eq. (3) are explicitly given in Section 3
of Ref. [10].

Depending on the relationship of the two natural frequencies d1 and d2 with the forcing frequency O, the
nonlinear system given by Eq. (3) may exhibit either non-resonant or resonant response. Primary, sub-
harmonic and super-harmonic resonances, additive and difference resonances may occur in the forced
response. The non-resonant response and primary resonance response of the system have been studied in
Ref. [11] using the method of multiple scales [15]. It was shown that the non-resonant response of the forced
oscillator may exhibit quasi-periodic motions on a 2D or 3D torus. The resonant response may exhibit either
periodic motion or quasi-periodic motions on a 2D torus. The present paper focuses on studying three types of
additive resonances, when the forcing frequency is nearly equal to half the sum of the first and second natural
frequencies (i.e., Offi(d1+d2)/2); or the sum of the first frequency and twice the second frequency
(i.e., Offid1+2d2); or the sum of the second frequency and twice the first frequency (i.e., Offi2d1+d2).

A closed form of solutions to Eq. (3) cannot be found analytically. The approximate solutions to additive
resonance response of Eq. (3) will be obtained using the method of multiple scales. The dynamic behaviour of
the controlled system in the neighbourhood of the point of non-resonant bifurcations of co-dimension two will
be explored by studying the solutions of a set of four averaged equations that determine the amplitudes and
phases of the free-oscillation terms in additive resonance response.

It is assumed that the approximate solutions to Eq. (3) in the neighbourhood of the trivial equilibrium are
represented by an expansion of the form

ziðt; �Þ ¼ �
1=2zi1ðT0;T1; . . .Þ þ �

3=2zi2ðT0;T1; . . .Þ þ � � � ði ¼ 1; 2; 3; 4Þ, (4)

where e is a non-dimensional small parameter, and the new multiple independent variables of time are
introduced according to Tk ¼ ekt, k ¼ 0,1,2,y .

Substituting the approximate solutions (4) into Eq. (3) and then balancing the like powers of e results in the
following ordered perturbation equations:

�1=2 : D0z11 ¼ d1z21 þ e1 cosðOT0Þ,

D0z21 ¼ � d1z11 þ e2 cosðOT0Þ,

D0z31 ¼ d2z41 þ e3 cosðOT0Þ,

D0z41 ¼ � d2z31 þ e4 cosðOT0Þ, (5)

�3=2 : D0z12 ¼ g11ðzj1Þ þ d1z22 �D1z11 þ f 11ðzj1Þ,

D0z22 ¼ g21ðzj1Þ � d1z12 �D1z21 þ f 21ðzj1Þ,

D0z32 ¼ g31ðzj1Þ þ d2z42 �D1z31 þ f 31ðzj1Þ,

D0z42 ¼ g41ðzj1Þ � d2z32 �D1z41 þ f 41ðzj1Þ, (6)

where D0 ¼ q/qT0, D0 ¼ q/qT1, the coefficients of the perturbation linear terms lij in Eq. (3) have been rescaled
in terms of lij ¼ �l̄ ij and the overbars in l̄ ij have been removed for brevity. The gi1(zi1) (i ¼ 1, 2, 3, 4) are linear
functions of (zj1) (j ¼ 1, 2, 3, 4) which are given by

g11ðzj1Þ ¼ l11z11 þ l12z21 þ l13z31 þ l14z41; g21ðzj1Þ ¼ l21z11 þ l22z21 þ l23z31 þ l24z41,

g31ðzj1Þ ¼ l31z11 þ l32z21 þ l33z31 þ l34z41; g41ðzj1Þ ¼ l41z11 þ l42z21 þ l43z31 þ l44z41.



ARTICLE IN PRESS
J.C. Ji, N. Zhang / Journal of Sound and Vibration 315 (2008) 22–33 25
The fi1(zj1) denotes nonlinear functions of zj1 (j ¼ 1, 2, 3, 4) which have been solved from Eq. (5) and the
amplitudes of the excitations in Eq. (3) have been rescaled in terms of e10 ¼ e1/2e1, e20 ¼ e1/2e2, e30 ¼ e1/2e3, ànd
e40 ¼ e1/2e4.

The solutions to Eq. (5) can be written in a general form as

z11 ¼ r1 cosðd1T0 þ f1Þ þ A1 cosðOT0Þ þ A2 sinðOT0Þ,

z21 ¼ �r1 sinðd1T0 þ f1Þ þ B1 cosðOT0Þ þ B2 sinðOT0Þ,

z31 ¼ r2 cosðd2T0 þ f2Þ þ A3 cosðOT0Þ þ A4 sinðOT0Þ,

z41 ¼ �r2 sinðd2T0 þ f2Þ þ B3 cosðOT0Þ þ B4 sinðOT0Þ, (7)

where r1, r2, f1, f2 represent, respectively, the amplitudes and phases of the free-oscillation terms, and the
coefficients of the particular solutions are given by

A1 ¼ d1e2=ðd
2
1 � O2Þ; A2 ¼ �Oe1=ðd

2
1 � O2Þ; B1 ¼ ðOA2 � eÞ=d1; B2 ¼ �OA1=d1,

A3 ¼ d2e4=ðd
2
2 � O2Þ; A4 ¼ �Oe3=ðd

2
2 � O2Þ; B3 ¼ ðOA4 � e3Þ=d2; B4 ¼ �OA3=d2.

Differentiating the first and third equation of Eq. (6) and then substituting the second and fourth equation
into the resultant equations results in

D2
0z12 þ d21z12 ¼ D0g11ðzj1Þ �D0D1z11 þD0f 11ðzj1Þ þ d1g21ðzj1Þ � d1D1z21 þ d1f 21ðzj1Þ,

D2
0z32 þ d22z32 ¼ D0g31ðzj1Þ �D0D1z31 þD0f 31ðzj1Þ þ d2g41ðzj1Þ � d2D1z41 þ d2f 41ðzj1Þ. (8)

Substituting solutions given by Eq. (7) into the right-hand sides of Eq. (8) yields 44 terms involving
trigonometric functions, some of which may produce secular or nearly secular terms in seeking the second-
order solutions; z12 and z32. In addition to four secular terms that are proportional to sin(d1t+f1),
cos(d1t+f1), sin(d2t+f2), and cos(d2t+f2), nearly secular terms for additive resonances may appear when
Offi(d1+d2)/2 or Offi2d1+d2 or Offid1+2d2. These three cases of additive resonances will be referred to here
as Cases I, II, and III, respectively.

The remainder of the present paper proceeds as follows. In the next section, three types of additive
resonance responses of the controlled system are analytically studied using the method of multiple scales. In
Section 3, illustrative examples are given to show the frequency-response curves and time histories of additive
resonance response of the controlled system. Conclusion is given in Section 4.

2. Additive resonances

To account for the nearness of the forcing frequency to the combination of two natural frequencies
for three types of additive resonances, three detuning parameters, namely s1, s2, and s3, are introduced
as follows:

2O ¼ d1 þ d2 þ �s1, (9)

O ¼ d1 þ 2d2 þ �s2, (10)

O ¼ 2d1 þ d2 þ �s3. (11)

The averaged equations of the amplitudes and phases for three types of additive resonances will be
subsequently obtained using the method of multiple scales.

Case I: 2O ¼ d1+d2+es1. In seeking the second-order solutions for additive resonance Case I from
Eq. (8), the secular terms are the terms of trigonometric functions having the arguments (d1t+f1) and
(d2t+f2), and the nearly secular terms are the trigonometric terms with the arguments (2Ot�d2t�f2)
and (2Ot�d1t�f1).
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Elimination of these secular or nearly secular terms gives rise to the following averaged equations that
determine the amplitudes and phases of the free-oscillation terms in Eq. (7):

_r1 ¼ � m1r1 þ s11r31 þ s12r1r
2
2 þ s13r2 cosðg11 þ g12Þ � s33r2 sinðg11 þ g12Þ,

r1 _g11 ¼ ð
1
2
s1 � r1Þr1 � s31r31 � s32r1r22 � s13r2 sinðg11 þ g12Þ � s33r2 cosðg11 þ g12Þ,

_r2 ¼ � m2r2 þ s21r21r2 þ s22r32 þ s23r1 cosðg11 þ g12Þ � s43r1 sinðg11 þ g12Þ,

r2 _g12 ¼ ð
1
2
s1 � r2Þr2 � s41r21r2 � s42r32 � s23r1 sinðg11 þ g12Þ � s43r1 cosðg11 þ g12Þ, (12)

where g11 ¼ 1
2
s1T0�f11, g12 ¼ 1

2
s1T0�f12,

s13 ¼
1

8d1
ð4Oa133A1A3b12 � 2Oa134A2A3b12 þ 6Oa333A2

3b12 þ � � �Þ,

s23 ¼
1

8d2
ð4Oa113A1A3b32 � 2Oa123A2A3b32 þ 2Oa133A2

3b32 þ � � �Þ,

s33 ¼
1

8d1
ð2Oa134A1A2b12 þ 4Oa133A2A3b12 þ 2Oa334A2

3b12 þ � � �Þ,

s43 ¼
1

8d2
ð�2Oa123A1A3b32 � 4Oa113A2A3b32 � 2Oa233A

2
3b32 þ � � �Þ

and the other coefficients, namely m1, r1, s11, s12, s31, s32, m2, r2, s21, s22, s41, s42 have the same expressions as
those obtained for non-resonant response in Section 4 of Ref. [11]. For the sake of brevity, they are not
reproduced in the present paper.

Elimination of the trigonometric terms in Eq. (12) gives rise to the so-called frequency-response equations:

r21ð�m1 þ s11r21 þ s12r22Þ
2
þ r21ð

1
2
s1 � r1 � s31r21 � s32r22Þ

2
� ðs213 þ s233Þr

2
2 ¼ 0,

r22ð�m2 þ s21r21 þ s22r22Þ
2
þ r22ð

1
2
s1 � r2 � s41r21 � s42r22Þ

2
� ðs223 þ s243Þr

2
1 ¼ 0. (13)

The coefficients in Eq. (13) can be numerically obtained for a specific system with a given set of system
parameters. Then Eq. (13) can be numerically solved using the Newton–Raphson procedure. The stability of
the steady-state solutions to Eq. (13) can be examined by computing the eigenvalues of the coefficient matrix
of characteristic equations, which are derived from Eq. (12) in terms of small disturbances to the steady-state
solutions.

As the averaged Eq. (12) involves the coupled terms r1_g11 and r2_g11, the perturbation equations will not
contain the perturbations D_g11 and D_g12 for the trivial solution and hence the stability of the trivial solution
cannot be studied by directly perturbing Eq. (12). To overcome this difficulty, normalization method is
used by introducing the transformation p11 ¼ r1 cos g11, q11 ¼ r1 sin g11, p12 ¼ r2 cos g12, q12 ¼ r2 sin g12, into
Eq. (12). Performing trigonometric manipulations leads to the following modulation equations in the
Cartesian form:

_p11 ¼ � m1p11 þ ðr1 �
1
2
s1Þq11 þ s13p12 � s33q12 þ s11p11ðp

2
11 þ q2

11Þ þ s12p11ðp
2
12 þ q2

12Þ

þ s31q11ðp
2
11 þ q2

11Þ þ s32q11ðp
2
12 þ q2

12Þ,

_q11 ¼ � m1q11 � ðr1 �
1
2
s1Þp11 � s33p12 � s13q12 þ s11q11ðp

2
11 þ q2

11Þ þ s12q11ðp
2
12 þ q2

12Þ

� s31p11ðp
2
11 þ q2

11Þ � s32p11ðp
2
12 þ q2

12Þ,

_p12 ¼ � m2p12 þ ðr2 �
1
2
s1Þq12 þ s23p11 � s43q11 þ s21p12ðp

2
11 þ q2

11Þ þ s22p12ðp
2
12 þ q2

12Þ

þ s41q12ðp
2
11 þ q2

11Þ þ s42q12ðp
2
12 þ q2

12Þ,
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_q12 ¼ � m2q12 � ðr2 �
1
2
s1Þp12 � s43p11 � s23q11 þ s21q12ðp

2
11 þ q2

11Þ þ s22q12ðp
2
12 þ q2

12Þ

� s41p12ðp
2
11 þ q2

11Þ � s42p12ðp
2
12 þ q2

12Þ. (14)

The stability of the steady-state solutions is determined by the eigenvalues of the corresponding Jacobian
matrix of Eq. (14). The resultant characteristic equations for both trivial and non-trivial solutions depend in a
complicated manner on the system and forcing parameters. Specific results are therefore at best obtained
numerically.

Case II: O ¼ d1+2d2+es2. Secular and nearly secular terms for additive resonance Case II are terms that
are proportional to the trigonometric terms with the arguments of (d1t+f1), (d2t+f2), (Ot�2d2t�2f2) and
(Ot�d1t�d2t�f1�f2). Eliminating these secular and nearly secular terms in seeking the second-order
solutions yields the averaged equations for additive resonance Case II:

_r1 ¼ � m1r1 þ s11r31 þ s12r1r22 þ s14r22 cosðg21 þ 2g22Þ � s34r22 sinðg21 þ 2g22Þ,

r1 _g21 ¼ ð
1
3
s2 � r1Þr1 � s31r31 � s32r1r

2
2 � s14r22 sinðg21 þ 2g22Þ � s34r22 cosðg21 þ 2g22Þ,

_r2 ¼ � m2r2 þ s21r21r2 þ s22r32 þ s24r1r2 cosðg21 þ 2g22Þ � s44r1r2 sinðg21 þ 2g22Þ,

r2 _g22 ¼ ð
1
3
s2 � r2Þr2 � s41r21r2 � s42r32 � s24r1r2 sinðg21 þ 2g22Þ � s44r1r2 cosðg21 þ 2g22Þ, (15)

where g21 ¼ 1
3
s2T0�f21, g22 ¼ 1

3
s2T0�f22,

s14 ¼
1

8d1
ð�Oa134A2b12 þ 3Oa333A3b12 � Oa344A3b12 þ � � �Þ,

s24 ¼
1

8d2
ð2Oa133A3b32 � 2Oa114A2b32 � Oa123A2b32 þ � � �Þ,

s34 ¼
1

8d1
ðOa144A2b12 � 2Oa334A3b12 � 3Oa333A4b12 þ � � �Þ,

s44 ¼
1

8d2
ðOa124A2b32 � 2Oa113A2b32 � Oa134A3b32 þ � � �Þ

and the other coefficients have the same expressions as those given in Eq. (12).
The so-called frequency-response equations are given by

r21ð�m1 þ s11r21 þ s12r22Þ
2
þ r21ð

1
3
s2 � r1 � s31r21 � s32r22Þ

2
� ðs214 þ s234Þr

2
2r

2
2 ¼ 0,

r22ð�m2 þ s21r21 þ s22r22Þ
2
þ r22ð

1
3
s2 � r2 � s41r21 � s42r22Þ

2
� ðs224 þ s244Þr

2
1r

2
2 ¼ 0. (16)

Introducing the transformation p21 ¼ r1 cos g21, q21 ¼ r1 sin g21, p22 ¼ r2 cos g22, q22 ¼ r2 sin g22, into
Eq. (15), and performing trigonometric manipulations leads to the following modulation equations in the
Cartesian form

_p21 ¼ � m1p21 þ ðr1 �
1
3
s2Þq21 þ s11p21ðp

2
21 þ q2

21Þ þ s12p21ðp
2
22 þ q2

22Þ þ s31q21ðp
2
21 þ q2

21Þ

þ s32q21ðp
2
22 þ q2

22Þ þ s14ðp
2
22 � q2

22Þ � 2s34p22q22,

_q21 ¼ � m1q21 � ðr1 �
1
3
s2Þp21 þ s11q21ðp

2
21 þ q2

21Þ þ s12q21ðp
2
22 þ q2

22Þ � s31p21ðp
2
21 þ q2

21Þ

� s32p21ðp
2
22 þ q2

22Þ � s34ðp
2
22 � q2

22Þ � 2s14p22q22,

_p22 ¼ � m2p22 þ ðr2 �
1
3
s2Þq22 þ s21p22ðp

2
21 þ q2

21Þ þ s22p22ðp
2
22 þ q2

22Þ þ s41q22ðp
2
21 þ q2

21Þ

þ s42q22ðp
2
22 þ q2

22Þ � s24ðp21q22 � q21q22Þ � s44ðp21q22 þ p22q21Þ,

_q22 ¼ � m2q22 � ðr2 �
1
3
s2Þp22 þ s21q22ðp

2
21 þ q2

21Þ þ s22q22ðp
2
22 þ q2

22Þ � s41p22ðp
2
21 þ q2

21Þ

� s42p22ðp
2
22 þ q2

22Þ � s24ðp22q21 þ p21q22Þ � s44ðp21p22 � q21q22Þ. (17)

The eigenvalues of the corresponding Jacobian matrix of Eq. (17) determine the stability of the steady-state
solutions. The stability of the trivial solution is determined by the eigenvalues of the corresponding Jacobian
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matrix which is obtained by letting p21 ¼ q21 ¼ p22 ¼ q22 ¼ 0. The four eigenvalues for the trivial solutions are
given by �m17ib2 and �m27ib2, where i is the imaginary unit, b2 ¼ |r2�1

3s2|. It is easy to note that the trivial
solution is asymptotically stable if both m140 and m240.

Case III: O ¼ 2d1+d2+es3. In this case, the terms that produce secular or nearly secular terms are the
trigonometric functions with the arguments of (d1t+f1), (d2t+f2), (Ot�d1t�d2t�f1�f2), and
(Ot�2d1t�2f1) in the right-hand sides of the equation, which is obtained by substituting solution (7) in
Eq. (8). Eliminating these terms gives rise to the averaged equations that determine the amplitudes and phases
of the free-oscillation terms for additive resonance Case III:

_r1 ¼ � m1r1 þ s11r31 þ s12r1r22 þ s15r1r2 cosð2g31 þ g32Þ � s35r1r2 sinð2g31 þ g32Þ,

r1_g31 ¼ ð
1
3s3 � r1Þr1 � s31r31 � s32r1r

2
2 � s15r1r2 sinð2g31 þ g32Þ � s35r1r2 cosð2g31 þ g32Þ,

_r2 ¼ � m2r2 þ s21r21r2 þ s22r32 þ s25r21 cosð2g31 þ g32Þ � s45r21 sinð2g31 þ g32Þ,

r2_g32 ¼ ð
1
3
s2 � r2Þr2 � s41r21r2 � s42r32 � s25r21 sinð2g31 þ g22Þ � s45r21 cosð2g31 þ g32Þ, (18)

where g31 ¼ 1
3s3T0�f31, g32 ¼ 1

3s3T0�f32,

s15 ¼
1

8d1
ð2Oa133A3b12 � 2Oa114A2b12 � Oa123A2b12 þ � � �Þ,

s25 ¼
1

8d2
ðOa113A3b32 � 2Oa112A2b32 � Oa223A3b32 þ � � �Þ,

s35 ¼
1

8d1
ðOa124A2b12 � 2Oa113A2b12 � Oa134A3b12 þ � � �Þ,

s45 ¼
1

8d2
ðOa122A2b32 � Oa123A3b32 � Oa113A4b32 þ � � �Þ

and the other coefficients have the same expressions as those given in Eq. (12).
The so-called frequency-response equations are then given by

r21ð�m1 þ s11r21 þ s12r22Þ
2
þ r21ð

1
3
s3 � r1 � s31r21 � s32r22Þ

2
� ðs215 þ s235Þr

2
1r

2
2 ¼ 0,

r22ð�m2 þ s21r21 þ s22r22Þ
2
þ r22ð

1
3
s3 � r2 � s41r21 � s42r22Þ

2
� ðs225 þ s245Þr

2
1r

2
1 ¼ 0. (19)

Introducing the transformation p31 ¼ r1 cos g31, q31 ¼ r1 sin g31, p32 ¼ r2 cos g32, q32 ¼ r2 sin g32, into
Eq. (18), and performing algebraic manipulations leads to the following modulation equations in the
Cartesian form

_p31 ¼ � m1p31 þ ðr1 �
1
3s3Þq31 þ s11p31ðp

2
31 þ q2

31Þ þ s12p31ðp
2
32 þ q2

32Þ þ s31q31ðp
2
31 þ q2

31Þ

þ s32q31ðp
2
32 þ q2

32Þ þ s15ðp31p32 � q31q32Þ � s35ðp31q32 þ p32q31Þ,

_q31 ¼ � m1q31 � ðr1 �
1
3s3Þp31 þ s11q31ðp

2
31 þ q2

31Þ þ s12q31ðp
2
32 þ q2

32Þ � s31p31ðp
2
31 þ q2

31Þ

� s32p31ðp
2
32 þ q2

32Þ � s15ðp31q32 � p32q31Þ � s35ðp31p32 � q31q32Þ,

_p32 ¼ � m2p32 þ ðr2 �
1
3s3Þq32 þ s21p32ðp

2
31 þ q2

31Þ þ s22p32ðp
2
32 þ q2

32Þ þ s41q32ðp
2
31 þ q2

31Þ

þ s42q32ðp
2
32 þ q2

32Þ þ s25ðp
2
31 � q2

31Þ � 2s45p31q31,

_q32 ¼ � m2q32 � ðr2 �
1
3s3Þp32 þ s21q32ðp

2
31 þ q2

31Þ þ s22q32ðp
2
32 þ q2

32Þ � s41p32ðp
2
31 þ q2

31Þ

� s42p32ðp
2
32 þ q2

32Þ � s45ðp
2
31 � q2

31Þ � 2s25p31q31. (20)

It is easy to notice that the stability of the trivial solution is determined by the following eigenvalues:
�m17ib3 and �m27ib3, where i is the imaginary unit, b3 ¼ |r2�1

3
s3|. Therefore, the trivial solution is

asymptotically stable if both m140 and m240.
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The averaged equations for three cases of additive resonances have been obtained analytically. In the next
section, the steady-state solutions and their stability of the averaged equations will be studied by illustrative
examples for a given set of the system parameters.
3. Numerical examples

This section gives numerical results of the dynamic behaviour of additive resonance response of the system.
As an illustrative example, consider a specific system with the system parameters in Eq. (3) given by m ¼ 0.1,
o ¼ 1.0, p ¼ �0.4, q ¼ �0.40219, a ¼ 0.4, b ¼ 0.5, k1 ¼ 0.2, k4 ¼ 0.5, and k2 ¼ k3 ¼ 0.0. It was found that an
interaction of non-resonant Hopf bifurcations occurs when t ¼ 5.46397, where the frequencies of the two
bifurcations are d01 ¼ 1.28038 and d02 ¼ 0.71582. It is easy to find from Eqs. (9) to (11) that for this specific
system, the combinational resonances of the additive type may appear in a certain interval of a small
neighbourhood of the forcing frequencies at O0 ¼ 0.998096 for Case I; O0 ¼ 2.71201 for Case II; and
O0 ¼ 3.27657 for Case III.

When a1 ¼ 0.001, a2 ¼ �0.0053, e0 ¼ 0.12, O0 ¼ 0.998, the averaged equations for additive resonance
Case I, which are obtained by substituting the numerical values of the corresponding coefficients in Eq. (12),
are found to be

_r1 ¼ 0:02102r1 � 0:2335r31 � 0:0478r1r
2
2 � 0:016089r2 cosðg11 þ g12Þ

þ 0:02052r2 sinðg11 þ g12Þ,

r1 _g11 ¼ ð
1
2
s1 � 0:099652Þr1 þ 0:5545r31 þ 1:0091r1r22 þ 0:016089r2 sinðg11 þ g12Þ

þ 0:02052r2 cosðg11 þ g12Þ,

_r2 ¼ � 0:0473715r2 � 1:5127r21r2 � 0:6932r32 þ 0:03968r1 cosðg11 þ g12Þ

þ 0:022477r1 sinðg11 þ g12Þ,

r2 _g12 ¼ ð
1
2
s1 � 0:059653Þr2 þ 1:7226r21r2 þ 0:5886r32 � 0:03968r1 sinðg11 þ g12Þ

þ 0:022477r1 cosðg11 þ g12Þ. (21)

The steady-state solutions can be obtained by setting _r1, r1_g11, _r2, and r2_g12 in Eq. (21) equal to zero, and
numerically solving the resulting algebraic equations. The stability of the solutions can be examined by finding
the corresponding eigenvalues of the Jacobian matrix. Because two frequencies d1 and d2 are incommensur-
able, the steady-state solutions of Eq. (21) correspond to quasi-periodic motions of the nonlinear system (3)
under additive resonance Case I.

Figs. 1(a) and (b) show typical frequency-response curves for additive resonance Case I in the interval
s1A[0.0483, 0.06101]. Stable solutions are represented by solid lines and unstable solutions by dashed lines.
Solid and dashed lines will also be used to denote stable solutions and unstable solutions shown in frequency-
response curves for Cases II and III. The frequency-response curve is an isolated closed curve in Figs. 1(a) and
(b). The non-trivial solutions do not exist outside this closed curve. The closed curve consists of two branches.
The upper branch of r1 is stable with the four eigenvalues having negative real part. The lower branch of r1 is
unstable with the eigenvalues having positive real part. On the contrary, the upper branch of r2 is unstable and
the lower branch of r2 is stable. The isolated two non-trivial solutions coexist with the trivial solution that is
unstable in the interval s1.

As s1 increases from a small value, the amplitude r1 of the free-oscillation term with natural frequency d1
grows, whereas the amplitude r2 of the free-oscillation term having natural frequency d2 decreases. The
amplitude r1 is much higher than amplitude r2, which means the motion corresponding to d1 dominates while
the motion relating to d2 is smaller in amplitude but not negligible. Stable non-trivial solutions indicate that
nonlinear response of the system under additive resonances comprises both the free-oscillation terms and
forced terms as given in Eq. (7). Because the natural frequencies d1 and d2 are incommensurable, the system
response under additive resonance Case I will exhibit quasi-periodic motion. Figs. 1(c) and (d) show the time
history and phase portrait of quasi-periodic motion of the system for O0 ¼ 1.025. A frequency spectral
analysis has confirmed that the motion consists of three harmonic components, which are the natural



ARTICLE IN PRESS

0.048
0.2

0.24

0.28

0.32

0.048
0.064

0.07

0.076

r 2

71800
t

-0.5

-0.3

-0.1

0.1

0.3

0.5

-0.5
x

-0.5

-0.3

-0.1

0.1

0.3

0.5

dx
/d
t

r 1
x

σ1

0.052 0.056 0.06 0.052 0.056 0.06

σ1

-0.3 -0.1 0.1 0.3 0.571600 7200

Fig. 1. Case I: (a) frequency-response curve of r1 for O0 ¼ 0.998; (b) frequency-response curve of r2 for O0 ¼ 0.998; (c) time history of the

quasi-periodic motion at O0 ¼ 1.025; (d) phase portrait of the quasi-periodic motion at O0 ¼ 1.025. Solid lines in (a) and (b) denote stable

steady-state solutions and dashed lines denote unstable solutions.

J.C. Ji, N. Zhang / Journal of Sound and Vibration 315 (2008) 22–3330
frequencies d1 and d2, and the frequency of the excitation O satisfying relationship (9). The numerical result on
the existence of quasi-periodic motion is in good agreement with the analytical prediction.

Numerical simulations have also been performed for additive resonance Cases II and III. The values of
system parameters and dummy parameters remained unchanged as those for Case I except the frequency of
the excitation. Topologically equivalent response curves have been obtained for Case II. Figs. 2(a) and (b)
show frequency-response curves for Case II in the interval s2A[0.04924, 0.0857233]. Figs. 2(c) and (d) show a
quasi-periodic motion at O0 ¼ 2.712. Figs. 2(a) and (b) indicate that the motion relating to d2 dominates while
the motion corresponding to d1 is smaller in amplitude. The quasi-periodic motion shown in Fig. 2(c) is a
quasi-periodic motion on a three-dimensional (3D) torus and contains three individual harmonic components:
d1, d2, and O0. These three frequencies satisfy the additive resonance condition that is given by Eq. (10).

For additive resonance Case III, numerical simulation results are shown in Fig. 3, where Figs. 3(a) and (b)
show frequency-response curves in the interval s3A[0.0758735, 0.095176]. Figs. 3(c) and (d) show a quasi-
periodic motion at O0 ¼ 3.278. It is noted in Figs. 3(a) and (b) that the amplitudes of two motions relating to
d1 and d2 are comparable. The meeting points of stable and unstable branches were found to have saddle-node
bifurcations. As the detuning s3 increases, the amplitude r2 increases until it reaches the maximum and then
decreases, whereas the amplitude r1 increases until it meets the saddle-node point. This indicates that
vibrational energy is transferred between these two motions via additive resonances. The quasi-periodic
motion shown in Fig. 3(c) involves three harmonic components: d1, d2, and O0, which satisfy the resonance
condition given by Eq. (11).
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When the combinational resonances of the additive types are not excited, the nonlinear response of the
system was numerically found to exhibit periodic motion, which consists of the forced terms only and has the
forcing frequency.

4. Conclusion

In a controlled van der Pol–Duffing oscillator without external excitation, periodic or quasi-periodic
solutions may appear after the trivial equilibrium loses its stability via a non-resonant interaction of
Hopf–Hopf bifurcations. Presence of a periodic external excitation in the controlled van der Pol–Duffing
oscillator at non-resonant bifurcations of co-dimension two can induce three types of additive resonances as a
result of interactions of the bifurcating solutions and the periodic excitation. Such interactions between the
bifurcating solutions and the excitation could lead to very interesting phenomena. Particularly, when their
natural frequencies are incommensurable, interactions may produce quasi-periodic motions.

The method of multiple scales has been used to study the steady-state solutions of a system of coupled,
weakly 4D nonlinear differential equations, which represents the local flow on the centre manifold in the
neighbourhood of non-resonant bifurcations of co-dimension two occurring in the controlled oscillator Three
cases are considered for additive resonances: 2O ¼ d1+d2+es1; O ¼ d1+2d2+es2; and O ¼ d1+d2+es3.

If the additive resonances are excited, the amplitudes of the free-oscillation terms admit three solutions; two
non-trivial solutions and the trivial solution. Of two non-trivial solutions one is stable. The trivial solution
is unstable. A stable non-trivial solution corresponds to a quasi-periodic motion of the original system.



ARTICLE IN PRESS

0.0950.075
0.15

0.18

0.21

0.075 0.095
0.11

0.14

0.17

0.2

r 2

6370063400
-0.12

0

0.12

0.120-0.12
-0.15

0

0.15

dx
/d
t

t x

σ3 σ3

r 1
x

Fig. 3. Case III: (a) frequency-response curve of r1 for O0 ¼ 3.27; (b) frequency-response curve of r2 for O0 ¼ 3.27; (c) time history of the

quasi-periodic motion at O0 ¼ 3.278; (d) phase portrait of the quasi-periodic motion at O0 ¼ 3.278. Solid lines in (a) and (b) denote stable

steady-state solutions and dashed lines denote unstable solutions.

J.C. Ji, N. Zhang / Journal of Sound and Vibration 315 (2008) 22–3332
The quasi-periodic motion consists of three components having the frequency of the first Hopf bifurcation, the
frequency of the second Hopf bifurcation, and the frequency of the excitation, respectively. The quasi-periodic
motion is on a 3Dtorus, which can be viewed as a motion by adding a third periodic motion resulting from the
periodic excitation to a quasi-period motion on a 2D torus having frequencies of two Hopf bifurcations. The
three frequencies satisfy the additive resonance conditions.

The nonlinear system given by Eq. (1) is an infinite dimensional system in a mathematical sense. Under
additive resonances, this system has been found to exhibit quasi-periodic motions involving three frequencies.
Except the forcing frequency, the other two frequencies are difficult to identify from the original system (1), as
they do not relate to the natural frequency o, nor to its multiples. They came from two Hopf bifurcations
occurring in the corresponding autonomous system. The observable behaviour of the non-autonomous system
under additive resonances provides useful information for fault diagnosis. Presence of a complicated
behaviour may indicate that the original system has undergone a certain bifurcation and induced certain types
of additive resonances.
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