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Abstract

This work presents a new method for online payload identification of single-link flexible robots. Presented technique

takes as inputs the measurements of the motor position and the coupling torque at the base of the beam measured by

means of a strain gauge. With a simple and effective management of these data, we are able to accurately estimate the tip

mass. Simulation results demonstrate the goodness of this technique. Subsequently, a proportional-derivative (PD)

adaptive control scheme which uses the information from the identification method has been developed and a set of

experiments have been carried out in a real platform.

r 2008 Elsevier Ltd. All rights reserved.
1. Introduction

Flexible robots became one of the most challenging fields in control engineering since they were conceived
and they have attracted a lot of interest, as shown in recent surveys on modeling and control of flexible
manipulators [1,2]. Their benefits when compared with the traditional industrial robots are unquestionable:
less weight which means less amount of material, less energy requirement to be actuated, less damage in case of
impact; while more speed, more ratio payload/weight. However, their inherent vibrational nature convert
them in elements difficult to position accurately, needing then complex control schemes to be driven in rest-to-
rest maneuvers, not to talk about trajectory tracking. Even more, these arms are intrinsically non-minimum
phase systems and, with the most intuitive sensorial configurations, which directly measure the tip position
(e.g. accelerometers), non-collocated systems also.

However, some engineering fields cannot afford the use of heavier robots. The best example is the aerospace
industry. Even if these kinds of manipulators have multiple applications, (e.g. mobile vehicles, disk drive heads
or robotic surgery) none of them has impelled the development of the control schemes for flexible robots as the
aerospace industry. The Space Station Remote Manipulator System (SSRMS) is the best example of the
achievements in this area [3].
ee front matter r 2008 Elsevier Ltd. All rights reserved.
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Nomenclature

A stiffness matrix of the beam model
c beam stiffness
D(s) denominator of the mass estimator
~D (s) denominator of the mass estimator after

applying the low-pass filter
E Young’s modulus
F(s) low-pass filter
Ft external force applied to the payload
gij(s) transfer function of the beam model
gn

j(s) normalized transfer function of the beam
model

G(s) matrix of transfer functions of the beam
model

I cross-section inertia of the beam
Jm motor inertia
K DC motor constant
Kp constant of the proportional part of the

PD motor controller
Kv constant of the derivative part of the PD

motor controller
l beam length
m tip mass
mb beam mass

M mass matrix of the beam model
M(s) motor loop dynamics
n number of masses in the lumped masses

model for the flexible link
nr reduction relation of the gear
N(s) numerator of the mass estimator
~N (s) numerator of the mass estimator after

applying the low-pass filter
r radius of the link of the flexible robot
s Laplace domain variable
T sampling time of the data acquisition

system
V control signal for the DC motor
z discrete domain variable
a motor dynamics parameter
Gc coupling torque between motor and

beam
Gm torque generated by the actuator
yi angle to mass at point i

ym motor angle
yt tip angle
H vector of concentrated masses angles
l relation between beam mass and tip mass
n viscous friction coefficient
of cut-off frequency for the low-pass filter
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Many of the developed controllers depend strongly on the exact modeling of the mechanical system. Any
change in the plant parameters reduces the controller performance, making the system lose the desired
specifications. Actually, the payload, which is one of the most determinant parameters in robot dynamics, may
change very often in a robotic system under normal operation, either for changing the tip tool being used, or
for grasping an object with non-negligible weight. Therefore, the controller needs to be as robust as possible
with respect to this common variation.

A number of different strategies have been applied to overcome this drawback, which can be grouped into
three big categories of control theory. Namely, intelligent control, based on techniques with the ability to learn,
such as neural networks or genetic algorithms, which are usually very demanding computationally due to its
nonlinear intrinsic nature; robust control, e.g. HN control, which provides schemes that perform correctly
under a certain range of parameter uncertainties; and a major effort has been devoted to the development of
adaptive control schemes.

Adaptive control is a nonlinear control strategy that varies the values of the controller parameters,
depending on some criteria based upon the data collected from the previous movements, to achieve an optimal
performance even when the changes in the plant are significant. A classification of the different adaptive
schemes is detailed in Ref. [4], where four types are described: gain scheduling, which adjusts controller
parameters on the basis of the operating conditions which change during the process; model-reference adaptive

systems (MRAS) which compare the actual system output and the model output and modify the controller so
that the error between them is small; self-tuning regulators (STR), which update the system parameters from
the estimation process and obtain the controller constants from the solution of a design problem using the
estimated parameters; and dual control schemes, where nonlinear stochastic control theory is used for
achieving the abstract problem formulation.

Several of these adaptive schemes have been proposed in literature for controlling flexible robots, usually
based in a two-stage process in which the adaptation of the controller is preceded by a system identification
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stage [5,6]. Some of these controllers need to recalculate the whole model, e.g. the MRAS proposed in Ref. [7]
for a single-link flexible arm, or the passivity-based control approach of the MRAS presented in Refs. [8,9] for
the multilink case. Ref. [8] presents a numerical example based on a model of the Shuttle Remote Manipulator
System (SRMS), where all the payload mass properties are identified, while in Ref. [9] the previous adaptive
scheme is extended with an identification stage that also determines the arm mass properties and presents
experimental results on a planar 3-link flexible manipulator. However, this solution may become considerably
inefficient, as most of the parameters do not change its value for long periods of time, and other authors have
proposed different STRs, focusing this identification stage in a specific, representative parameter of the
system, which serves to redesign the set of controller constants to keep the desired system specifications. In
Ref. [10], the identification process focuses in identifying the payload, which as aforementioned, is the most
variable parameter in the usual operation of a robotic arm. The proposed estimator is based on the
measurements from an accelerometer placed at the payload and the control signal. That work has, however,
some inaccuracies because it includes the motor dynamics in the estimation process, which involves the
parameters of the motor, rotor inertia and viscous friction, and the Coulomb friction. While the rotor inertia
remains unchanged, the viscous friction is strongly dependant with temperature, and varies even along a single
maneuver. On the other hand, the Coulomb friction inserts a strong nonlinearity in the identification process,
which is difficult to pre-compensate accurately and may cause an inexact estimation. A different approach is
taken by Trapero et al. [11] for the identification stage. They propose a frequency estimator based on an
algebraic method that has the drawback that it can only be applied to sinusoid-like signals, and hence, it can
only be applied to the identification of the system frequencies while the robot actuator is stopped and the link
is vibrating steadily.

In the present work, a different payload estimator is proposed. This estimator solves abovementioned
drawbacks, needs small computational effort and gives good accuracy, while can be applied during the
robot maneuver. Similarly to the algebraic estimator proposed in Ref. [11], the identification process is
carried out using a continuous-time frame instead of a discrete-time model for a number of reasons
(see Refs. [12,13]): it preserves the a priori knowledge of the system and gives a better understanding of the
physical behavior of the system and the estimation is less sensitive to sampling frequencies and initial
conditions.

The sensorial system used is different from the one used in Ref. [10], and consists of a couple of strain
gauges, which measure the coupling torque at the motor end of the beam due to inertial forces, and an
incremental encoder, which senses the motor angle. The use of these two sensors prevents motor dynamics
from affecting the estimator calculations and, hence, makes the identification process more robust.

The rest of the article is organized as follows. Section 2 describes the general expression of the estimator for
a lumped masses model with n masses system model, which is commonly used for describing a flexible robot,
while Section 3 particularizes the previous estimation for the single mass and two masses models, from where
some interesting conclusions for the sake of simplicity can be inferred. Next, Section 4 simulates the behavior
of an estimator designed for a specific model and also shows the performance of a reduced order estimator
when dealing with higher order models for the beam. The experimental platform is detailed in Section 5, where
a set of experimental results supporting the goodness of the method are also displayed and applied to an
adaptive proportional derivative (PD) controller based on the identification process. Finally, some conclusions
are stated in Section 6.

2. Estimation algorithm

In the first place, an estimator for the tip mass, which is totally independent of the robot model, is
developed. Subsequently, a general lumped masses model for a flexible beam is presented and finally the
estimator is specifically obtained for that model.

2.1. General payload estimator expression

We will assume that our flexible beam is a multiinput multioutput (MIMO) system that can be outlined with
the black box scheme shown in Fig. 1, where our plant will be determined by a matrix of transfer functions
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according to the following expression:

yt

Gc

" #
¼

g11ðsÞ g12ðsÞ

g21ðsÞ g22ðsÞ

" #
|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}

GðsÞ

ym

Ft

" #
(1)

with the additional relation

FtðsÞ ¼ �mls2ytðsÞ (2)

corresponding to the inertial force existent at the tip of the arm as a consequence of accelerating the payload.
This relation reduces the complexity of system (1) to a singleinput multioutput system whose state can be
determined by simply using ym. Notice that parameters of G(s) are independent of the tip payload. They
depend on the link geometry, link elasticity and masses located on the link (with the exception of the tip).

The estimation algorithm will prove to be motor independent, and, therefore, motor dynamics have not
been included in the model.

Let us suppose that ym and Gc are given by our sensorial system. Taking this hypothesis as a premise, and
operating in Eq. (1), we can find expressions for yt and Ft dependant on the measured variables. Concretely,

ytðsÞ

FtðsÞ

" #
¼

1

g22ðsÞ

g11ðsÞg22ðsÞ � g12ðsÞg21ðsÞ g12ðsÞ

�g21ðsÞ 1

" #
ymðsÞ

GcðsÞ

" #
(3)

On the other hand, we can clean up the additional relation (2) yielding a general estimator for the tip mass

m ¼ �
1

l

F tðsÞ

s2ytðsÞ
(4)

Joining the expressions given by Eq. (3) with the estimator obtained in Eq. (4), we can derive a general
expression in terms of the measured variables. That is

m ¼
NðsÞ

DðsÞ
¼

1

ls2
g21ðsÞymðsÞ � GcðsÞ

ðg11ðsÞg22ðsÞ � g12ðsÞg21ðsÞÞymðsÞ þ g12ðsÞGcðsÞ
(5)

This formulation is independent of the particular form of gij transfer functions, i.e. it is valid for any model
that can be expressed in the form presented in Eq. (1).
2.2. General lumped masses model

Now we need to provide a model for the estimator deduced in the previous section. A general lumped
masses model is proposed to obtain a particular expression for Eq. (5). However, this expression is still general
for an arbitrary number of masses, depending on the accuracy we need in our model to describe correctly the
physical setup. The beam model used along the paper, which is outlined in Fig. 2, has been presented in
previous literature (e.g. in Ref. [14]), but it will be briefly introduced for completion sake. A more detailed
description can be found in the reference.
-mls2

System 
Ft

Γc�m

�t

Fig. 1. Black box MIMO for the flexible beam.
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Fig. 2. Scheme of the general lumped masses model.
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Prior to presenting the model, a number of vectors and matrices are presented in following equations for the
sake of simplicity:

Ui ¼

1

1

..

.

1

2
66664

3
77775; Ûi ¼

0

..

.

0

1

2
66664

3
77775; Ui ¼

1

..

.

1

0

2
66664

3
77775 ) Ui ¼ Ûi þUi; Ui; Ûi; Ui 2 <

i�1 (6)

Ii ¼

1 0

. .
.

0 1

2
64

3
75 Îi ¼

1 0

. .
.

0 1

0 � � � 0

2
66664

3
77775 ) Ii ¼ ½ÎijÛi�; Ii 2 <

i�i; Îi 2 <
i�i�1 (7)

Hi ¼

y1
y2

..

.

yi

2
66664

3
77775; Ki ¼

1

n2
½ 1 4 � � � ði � 1Þ2 i2 � ) Hi 2 <

i�1; Ki 2 <
1�i (8)

Along the paper, the subindex of these matrices makes reference to their dimensions and yn will be denoted
as yt, as it represents the tip angle.

The presented model assumes that the mass is concentrated in a finite number of points, n, and that the links
between these points are massless. It also assumes that the rotary inertia of each mass is negligible and, hence,
the number of vibration modes will be equal to the number of masses considered. In addition, we assume that
the payload produces no torque at the tip. All the angles are measured from a fixed reference frame X0�Y0.
With these hypothesis two matrix equations can be obtained that relate the robot dynamics with the inputs of
the system, namely, the motor angle and the tip force. The equations are

Mn
€Hn ¼

EI

l3
An½Unym �Hn� þ

1

l
ÛnFt (9)

Gc ¼ l2KnMn
€Hn � lF t (10)
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Assuming that the total beam mass is a portion of the payload, mb ¼ lm, and that it is equally divided
in the n�1 intermediate points which are equidistant with distance l/n, the mass matrix of the beam can be
expressed as

Mn ¼
lm

n� 1

1 0 � � � 0

0 . .
. . .

. ..
.

..

. . .
.

1 0

0 � � � 0 0

2
666664

3
777775 (11)

and the reduced mass matrix is

Mn�1 ¼
lm

n� 1

1 0

. .
.

0 1

2
64

3
75 (12)

being Mn 2 <n�n and Mn�1 2 <n�1�n�1. On the other hand, An is a dimensionless matrix, which must be
calculated, depending on the geometric properties of the beam (distance between masses, relative mass of each
point and distance from each mass to the motor), by applying the continuity conditions for all the point
masses, as shown in Ref. [14], for example. Finally, l2Kn is the vector of distances measured from the motor.

2.3. Obtaining the gij transfer functions

This subsection presents the calculations necessary to derive the expressions of the transfer functions, which
define our system. Basically, we will divide the system into two parts. The first one is the last row of Eq. (9),
which involves the tip angle and the external force. The second one is the n�1 remaining equations, which
involve only the intermediate masses in which the beam is divided. We operate these two subsystems to obtain
the general equations of the system model presented in (1) and, hence, the gii transfer functions.

Then, if we extract the last row of Eq. (9), that is

0 ¼
EI

l3
Û

T

nAn Unym �Hn½ � þ
1

l
F t (13)

and then we rearrange the equation making use of the definitions given in Eqs. (6), (7) and (8), we obtain the
following expression for the tip angle:

yt ¼ ym þ
Û

T

nAnÎn

Û
T

nAnÛn

ðUn�1ym �Hn�1Þ þ
1

Û
T

nAnÛn

l2

EI
Ft (14)

where UT
n represents the transpose of Un.

Taking into consideration only the first n�1 equations, expression (9) yields

Mn�1
€Hn�1 ¼

EI

l3
Î
T

nAn½Unym �Hn� ¼
EI

l3
Î
T

nAn½Unym � ÎnHn�1 � Ûnyt� (15)

Substituting the value of yt given by Eq. (14) into the previous equation, and rearranging terms, we obtain

€Hn�1 ¼
n� 1

lm

EI

l3
Î
T

nAn In � Ûn

Û
T

nAn

Û
T

nAÛn

 !
ÎnðUnym �HnÞ �

n� 1

lm

Î
T

nAnÛn

Û
T

nAnÛn

Ft (16)

which can be shortened to

€Hn�1 ¼
n� 1

lm

EI

l3
An�1ðUnym �HnÞ �

n� 1

lm
Pn�1Ft (17)
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where

An�1 ¼ Î
T

nAn In �
ÛnÛ

T

nAn

Û
T

nAnÛn

 !
În; An�1 2 <ðn�1Þ�ðn�1Þ; Pn�1 ¼

Î
T

nAnÛn

Û
T

nAnÛn

; Pn�1 2 <ðn�1Þ�1 (18)

Transforming Eq. (17) into the Laplace domain, we have

Ĥn�1ðsÞ ¼ In�1
s2

o2
þ An�1

� ��1
An�1Un�1ymðsÞ �

l2

EI
In�1

s2

o2
þ An�1

� ��1
Pn�1F tðsÞ (19)

where

o2 ¼
n� 1

lm

EI

l3
¼
ðn� 1ÞEI

mbl3
(20)

Finally, substituting Eq. (19) in Eq. (14) and reordering the resultant equation, we achieve an expression,
which relates the tip angle with measured variables, coupling torque and motor angle, i.e. the first equation of
the general model presented

ytðsÞ ¼
Û

T

nAn

Û
T

nAnÛn

Un � În In�1
s2

o2
þ An�1

� ��1
An�1Un�1

" #
ymðsÞ

þ
l2

EI

1

Û
T

nAnÛn

Û
T

nAnÎn In�1
s2

o2
þ An�1

� ��1
Pn�1 þ 1

" #
FtðsÞ (21)

On the other hand, we can rewrite Eq. (10) in the Laplace domain as

GcðsÞ ¼ l2Kn�1Mn�1s2Hn�1ðsÞ � lF tðsÞ (22)

and, substituting Eqs. (12) and (19) in the previous relation, we obtain the expression for Gc(s) in terms of ym(s)
and Ft(s), completing the model proposed in Eq. (1):

GcðsÞ ¼
EI

l

s2

o2
Kn�1 In�1

s2

o2
þ An�1

� ��1
An�1Un�1

" #
ymðsÞ �

s2

o2
Kn�1 In�1

s2

o2
þ An�1

� ��1
Pn�1 þ 1

" #
lF tðsÞ

(23)

Therefore, it is immediate to deduce the values of the transfer functions in G(s), which are

GðsÞ ¼
g11ðsÞ g12ðsÞ

g21ðsÞ g22ðsÞ

" #

¼

Û
T

nAn

Û
T

nAnÛn

Un � În In�1
s2

o2
þ An�1

� ��1
An�1Un�1

" #
l2

EI

1

Û
T

nAnÛn

Û
T

n AnÎn In�1
s2

o2
þ An�1

� ��1
Pn�1 þ 1

" #

EI

l

s2

o2
Kn�1 In�1

s2

o2
þ An�1

� ��1
An�1Un�1 �l

s2

o2
Kn�1 In�1

s2

o2
þ An�1

� ��1
Pn�1 þ 1

" #
2
6666664

3
7777775
(24)
3. Particular cases

To illustrate the previous mathematical results, this section presents two particular cases: a beam whose
mass can be neglected; and a beam with its mass concentrated at its middle point.
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3.1. Beam with negligible mass

In this case, the matrix form of the dynamic model of the system presented in Eqs. (5) and (9) collapses into
the two following scalar equations:

0 ¼
3EI

l3
ðym � ytÞ þ

1

l
F t (25)

Gc ¼ �lF t (26)

The matrices of the system are

Mn ¼ 0;An ¼ 3;Un ¼ 1; Ûn ¼ 1; În ¼+

Mn�1 ¼+;An�1 ¼+Un�1 ¼+; Ūn ¼ 0;Pn�1 ¼+
(27)

which yield the following transfer functions:

GðsÞ ¼
g11ðsÞ g12ðsÞ

g21ðsÞ g22ðsÞ

" #
¼

1
l2

3EI
0 �l

2
4

3
5 (28)

Substituting in Eq. (5), the mass estimator for a very lightweight beam yields

m ¼
1

l2s2

GcðsÞ

ymðsÞ � ðl=3EIÞGcðsÞ
(29)

and, applying the inverse Laplace transformation, we obtain an expression in the time domain

m ¼
1

l2
GcðtÞ

€ymðtÞ � ð €GcðtÞ=cÞ
(30)

where c ¼ 3EI=l is the stiffness of the beam, which is supposed massless.
3.2. Beam with its mass concentrated in a single point

Now we particularize the estimator for a beam model assuming the mass to be concentrated in its middle
point. For this particular case, the matrices of the model are

Mn ¼ lm
1 0

0 0

� �
;An ¼

24
7

32 �20

�5 4

� �
;Un ¼

1

1

� �
; Ûn ¼

0

1

� �
; În ¼

1

0

� �

Mn�1 ¼ lm;An�1 ¼ 24;Un�1 ¼ 1;Un ¼
1

0

� �
;Pn�1 ¼ �5

(31)

Therefore, the transfer functions yield

GðsÞ ¼
g11ðsÞ g12ðsÞ

g21ðsÞ g22ðsÞ

" #
¼

�1
4
s2 þ 24o2

s2 þ 24o2

l2

EI

7
96

s2 þ 8o2

s2 þ 24o2

2cs2

s2 þ 24o2
l
�1

4s
2 þ 24o2

s2 þ 24o2

2
6664

3
7775 (32)

Then, substituting in Eq. (5), we obtain the expression of the mass estimator for this particular beam model,
resulting

m ¼
1

ls2
ð2cs2=s2 þ 24o2ÞymðsÞ � GcðsÞ

�lð1
2
s2 þ 24o2=s2 þ 24o2ÞymðsÞ þ

l2

EI
ð 7
96

s2 þ 8o2=s2 þ 24o2ÞGcðsÞ
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¼
1

l2

GcðsÞ �
2cs2

s2 þ 24o2
ymðsÞ

ð1
2
s2 þ 24o2=s2 þ 24o2Þ€ymðsÞ � ð

7
32

s2 þ 24o2=s2 þ 24o2Þð €GcðsÞ=cÞ
(33)

Comparing Eqs. (30) and (33), it is evident that the use of a more complete model increases the complexity
of the estimator to a large extent, involving more demanding calculations. However, both expressions are
related and it is demonstrable that Eq. (30) is a particular case of Eq. (33), by calculating the limit for this last
expression when mb tends to zero, and therefore o tends to infinity.
3.3. Filtering the estimator

In any of the estimators derived from Eq. (5) we need the second derivative of motor angle and coupling
torque, and it is well known that differentiating noisy signals, as the measurements obtained from a strain
gauge, does not give a good result. Accordingly, it is not advisable to use expressions (30) and (33) in that raw
form, because the gauge signal could lead us to an erroneous identification.

It is convenient to filter that signal in order to obtain correct results. Hence, we modify the general
expression of estimation (5) by multiplying its numerator and denominator by the same transfer function F(s),
corresponding to a low-pass filter, to secure a smoother signal for the mass estimation. The pass-band filter
has been discarded due to the low oscillation frequencies of our mechanical system, as the response would
become very slow.

The filtered signals will be denoted with a tilde. Their transfer functions, transformed into the Laplace
domain, yield

~NðsÞ ¼ F ðsÞNðsÞ ¼
of

sþ of

� �2

ðg21ðsÞymðsÞ � GcðsÞÞ (34)

~DðsÞ ¼ F ðsÞDðsÞ ¼ l2s2
of

sþ of

� �2

½ðg11ðsÞg22ðsÞ � g12ðsÞg21ðsÞÞymðsÞ þ g12ðsÞGcðsÞ� (35)

where of represents the cut-off frequency (in rad/s) of the filter. The of selection will rely on the knowledge of
the physical system, that is, on the range of variation of the system natural frequencies. Specifically, it will be
set to half-decade over the highest of these frequencies. The order of the filter has been inferred from numerical
simulations as a trade-off between attenuation of noise and small interference on the original signals.

In the denominator of Eq. (35), the second derivative has been included into the filter solving the problems
with the noisy signals. Then, we can calculate the equivalent expression in the Z-domain [15] for the
parenthesis in Eq. (34) (first-order filter), and then raise to square, thereby obtaining the following discretized
expression for the second-order filter:

Z
of

sþ of

� �
¼ F 1ðzÞ ¼

X
at poles of GðpÞ

Residues of
of

pþ of

1

1� epT z�1

� �
) F ðzÞ

¼ F 2
1ðzÞ ¼

ð1� e�of T Þ
2

z2 � 2e�of T zþ e�2of T
(36)

where Z½�� represents the Z-transform of an expression.
In the denominator, making use of the properties of the Z-transform, the filter yields

Z½s2F ðsÞ� ffi
1� z�1

T

� �2

F ðzÞ ) Z½s2F ðsÞ� ffi
ð1=T2Þð1� e�of T Þ

2
ðz2 � 2zþ 1Þ

z2 � 2e�of T zþ e�2of T
(37)

This filter also limits the bandwidth of the measured signals used in the estimation of the mass. Therefore, if
we adjust appropriately the cut-off frequency, of, we can attenuate the measurement of the high-frequency
modes so that only the first mode passes the filter, the single mass estimator becoming then valid for any
model. This is a nice property, which is illustrated in the simulations section.
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4. Simulation results

After describing the estimation algorithm, a set of simulations is presented for verification purposes. These
simulations have been carried out with SIMULINKTM, toolboxes of the numerical mathematics package
MATLABTM. In Sections 4.1, 4.2 and 4.3, we assume that there is no noise in the feedback signal so no filter is
provided, while in Section 4.4 a white noise term is added to it in order to simulate the noise of the
measurements and estimate the shape of the control signal in the experimental tests.

4.1. Single mass model

The data used for these simulations, which are displayed in Table 1, correspond to the parameters of an
actual flexible, very lightweight single-link arm existent in our laboratory. This arm consists of a slender
carbon fiber beam with one end attached to the hub of a DC motor-gear set and the other to a payload, which
rests over an air table. This table accomplishes two tasks: keeping the maneuver within the horizontal plane,
then canceling the gravity effects; and minimizing the friction between the tip mass and the resting surface
during the movement. The payload is assumed to be much bigger than the beam mass, thereby being this last
negligible. Moreover we assume that it behaves as a point mass, that is, without inertia, as it is allowed to
rotate freely around its vertical axis. Therefore, the beam is modeled by a simple second-order transfer
function given by

GðsÞ ¼
ð3EI=ml3Þ

s2 þ ð3EI=ml3Þ

which is used in the simulation scheme shown in Fig. 3.
On the other hand, the DC motor rotates the beam to the desired position and it is driven by means of an

amplifier acting as a current controller, whose control signal, V, varies between +3 and �3V. The equation
ruling the motor dynamics is given by

Gm ¼ KV ¼ Jmnr
€ym þ nnr

_ym þ
Gc

nr

(38)

where Coulomb’s friction is assumed to be negligible or counterbalanced.
This dynamics can be reduced to a second order critically damped system using a control loop consisting of

a PD controller and a compensation term for canceling the effect of the coupling torque. The block diagram in
the Laplace domain for this motor control loop is shown in Fig. 4. A detailed derivation for this can be
Table 1

Data of the single mass platform used in simulation

l (m) r (m) I (m4) E (GPa) c (Nm) Jm (kgm2) K (Nm/V) n (Nm/s) nr

0.7 1.40� 10�3 3.02� 10�12 123.0 1.5907 3.70� 10�3 0.226 56.05� 10�3 50:1

M(s) G(s)

c+

_

System plant

Estimation
block

�t     ≡ �m
θm �t

�m

Γc

ref ref

Fig. 3. Block diagram of the open-loop payload estimation.
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Fig. 4. Block diagram of the motor control loop.

Table 2

Identification results for the single mass model with the single mass estimator

Payload (g) Estimated value (g) Absolute error (g) Relative error (%)

21.34 20.66 0.68 3.18

60.82 59.54 1.28 2.10

99.82 98.16 1.66 1.66

150.23 148.16 2.07 1.38

199.92 197.55 2.37 1.19
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consulted in Ref. [16]. Then, the closed-loop motor system is modeled in simulation as

MðsÞ ¼
ymðsÞ

yrefm ðsÞ
¼

1

ð1þ asÞ2
(39)

The parameters of the PD controller in the inner control loop have been calculated to obtain the critically
damped dynamics for the motor given by Eq. (39), with a ¼ 0.02. Then, the PD constants turn out to be
Kpm ¼ 40.91 and Kvm ¼ 1.388.

On the other hand, as the simulation model is assumed to have no noise, the filter is not necessary, so it will
not be included this time in the estimation block.

We must now decide when the mass estimation can be considered stable. To determine this, and hence the
final estimation of mass, we will compute continuously the mean and the standard deviation of the last j

samples, until standard deviation falls below a limit, sm. Then, the estimated value for the tip mass will be the
last calculated mean.

This process has been tested through a wide range of masses, between 20 and 200 g (the exact values are
detailed in Table 2), and the simulation results are displayed in Figs. 5 and 6. The reference is a linear
trajectory with constant velocity _yt ¼

_ym ¼ 1 rad=s. The number of samples used in the computation of
statistical parameters is 40, while the standard deviation limit for accepting the mass value has been
established in sm ¼ 10�3 kg. The initial conditions of the mean and the standard deviation have been set to
�2 kg, which is a non-possible value very different from the real range of tip masses, in order to test the
convergence property in an adverse scenario.

We observe in Fig. 5 that mass estimation steadies very quickly, typically before 0.4 s, and its value is very
near to the actual payload, always below the 4% error. This percentage of error is not significant and is due to
the use of statistical measurements, which introduce some inaccuracies in addition to the criteria for stopping
the identification. The detailed results can be checked in Table 2. In the graphs, it is also noticeable that the
estimation seems not to work properly at some periodical instants. These moments correspond to the zero
crossings of the tip acceleration, which can be observed in Fig. 7 (which is used in the denominator of the mass
estimator in the general expression (4)), as our arm is simulated to maneuver in open-loop mode (only the
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motor position loop is closed). In a tip controlled motion, as it is shown afterwards with the addition of a PD
adaptive controller, these zero crossings rarely take place.

4.2. Concentrated masses model

Once the correctness of the algorithm has been verified for the single mass model, a more detailed model for
the flexible robot is now analyzed. Our purpose here is to study the performance of low-order estimators when
dealing with higher order models. To carry out the simulation tests, the concentrated masses model developed
in Ref. [14] has been adopted.

4.2.1. Single mass estimator

A two masses state-space model has been calculated for the flexible arm. The state-space equations are given
by

_y1
_y2
€y1
€y2

2
666664

3
777775 ¼

0 0 1 0

0 0 0 1

�
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Table 3

Identification results for the concentrated masses model with the single mass estimator

Payload (g) Estimated value (g) Absolute error (g) Relative error (%)

21.34 23.36 2.02 9.47

60.82 62.40 1.58 2.60

99.82 101.85 2.03 2.03

150.23 151.46 1.23 0.82

199.92 200.07 0.15 0.08

Table 4

Identification results for the concentrated masses model with the two masses estimator

Payload (g) Estimated value (g) Absolute error (g) Relative error (%)

21.34 26.41 5.07 23.76

60.82 66.95 6.13 10.08

99.82 104.34 4.52 4.47

150.23 154.45 4.22 2.81

199.92 205.62 5.70 2.85
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Then, the results of the tip mass identification are summarized in Table 3. Obviously, as the ratio between
the tip mass and the beam mass decreases, the tip estimation worsens and the relative error augments because
the beam mass interferes and changes significantly the main natural frequency of the system. However, the
errors are still acceptable and quite good in most of the studied cases. In these estimated values, it has been
taken into account that the inertia seen from the basis of the beam is slightly greater than the actual tip inertia,
due to the addition of the beam mass into the model. Therefore, a correction factor has been applied to the
estimations. Specifically, the estimation of the real payload is given by m ¼ me �

1
4
mb, where me is the

estimation given by Eq. (30) for the payload. Figures containing the standard deviation and the mass
estimation of the identification process are not displayed, as they are very similar to those of Section 4.1.

4.2.2. Two masses estimator

The estimator found in Eq. (33) is here applied to the two masses model detailed in Eq. (40). The results,
including the correction due to the beam inertia, are displayed in Table 4. They are worse than those achieved
with the single mass estimator and the estimation times are higher.

4.3. Distributed masses model

The same analysis performed in previous section is now carried out for a distributed masses model for the
flexible link, which is truncated for two and three natural frequencies, respectively. This model is based on the
pseudo-pinned formulation presented in Ref. [17], which, by solving numerically the characteristic equation of
the partial differential equation governing the flexible link, obtains a space-state model representation for the
flexible arm. The evolution of the tip mass estimation is shown in the following graphs. Specifically, Figs. 8
and 9 show the tip mass identification by means of a single mass model estimator for a robot model truncated
at its second vibrational mode and Table 5 presents the numerical results.

Finally, the estimator obtained from the two masses model has also been applied to the distributed masses
model truncated on the second mode of vibration, with the results shown in Table 6. These results are very
close to those achieved with a simpler estimator. The graphs of the identification process are omitted again as
they are again very similar to those of Figs. 8 and 9.

As a consequence of the simulation results presented in this section, it is derived that both, the simple and
the two masses estimators, produce a similar identification of the payload. Theoretically, the complete
estimator should approximate better the solution, as it is based in the model used for simulating the link, but,
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in the end, the numerical errors accumulate because the estimator becomes more complicated and, hence, the
final errors are similar. The obvious choice is then to use the simplest estimator, and this solution will be
adopted in the application example.

4.4. Application to adaptive control

To illustrate the usefulness of this identification algorithm, an adaptive PD controller has been
designed for the vibration control loop of the flexible robot, as shown in Fig. 10. The model chosen
for the robot, which accurately depicts the experimental rig described in following Section 5.1, consists of a
massless link driven by a DC motor actuator. It carries a single, point payload, which is attached at the end of
the beam.

Firstly, we calculate the PD constants, Kp and Kv, for the nominal mass, m ¼ 60 g, with the following
specifications: no overshoot, Mp ¼ 0%, and small settling time, ts ¼ 1 s. The results are Kp ¼ �0.7963 and
Kv ¼ 0.07447. The tip position is not directly measured, but estimated with the aid of the coupling torque and
the motor angle measurements by means of following expression:

yt ¼ ym �
1

c
Gcoup (41)

obtained by combining Eqs. (25) and (26).
A noise term is added to the coupling torque to simulate the experimental measures of the strain gauges,

which are very noisy. From the experimental measurement of our sensing system, the variance of this noise
have been set to 10�5Nm. Therefore, we now need to filter the mass estimation as explained in Section 3.3.
The selected cut-off frequency for the estimator filter is of ¼ 10 rad/s, what, applied to Eqs. (36) and (37), and
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Table 5

Identification results for the distributed masses model with the single mass estimator

Payload (g) Estimated value (g) Absolute error (g) Relative error (%)

21.34 23.75 2.41 11.29

60.82 67.11 6.29 10.34

99.82 109.48 9.66 9.67

150.23 164.13 13.90 9.25

199.92 217.94 18.02 9.01

Table 6

Identification results for the distributed masses model with the two masses estimator

Payload (g) Estimated value (g) Absolute error (g) Relative error (%)

21.34 23.14 1.80 8.43

60.82 66.27 5.45 8.96

99.82 109.98 10.16 10.18

150.23 162.47 12.24 8.15

199.92 221.16 21.24 10.62
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particularized for the a sample time T ¼ 0.002 s, yields

F ðsÞ ¼
102

ðsþ 10Þ2
! Z½F ðsÞ�T¼0:002 ffi

0:01982z2

z2 � 1:961zþ 0:961
(42)
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Z½s2F ðsÞ�T¼0:002 ffi
98:023z2 � 196:046zþ 98:023

z2 � 1:961zþ 0:961
(43)

Now we will perform the maneuvers for each of the masses considered for the system, that is, from three
times lighter than nominal, mm ¼ 20 g, to more than three times heavier, mm ¼ 202 g. In Fig. 11, the tip mass
position during the maneuver when using the PD controller for the nominal case is displayed. It is noticeable
the high overshoot that appears for payloads bigger than nominal, reaching the 14% for the 200 g mass. On
the other side, the lightest mass performs slightly slower than the nominal one. These results advise the use of a
control scheme insensitive to payload variations, such as adaptive control, to fulfill the requirements imposed
to the system for the whole range of masses. Fig. 12 shows the control signal applied for each simulation. Due
to the noisy nature of these signals, it is very difficult to discriminate any differences between the different
masses. This voltage control is actually very similar for all of them, but slightly delayed in time for the bigger
masses.

Taking advantage of the identification algorithm (30), we will determine the appropriate controller for each
experiment. The simulation begins with the nominal PD parameters and, whenever the estimation process
finishes, these parameters are tuned according to the actual payload, as shown in Table 7. The results are
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Table 7

PD Controllers for different payloads

Payload (g) Kp Kv

21.34 �0.9227 0.003248

60.82 �0.7963 0.07447

99.82 �0.6697 0.1458

150.23 �0.4780 0.2538

199.92 �0.3203 0.3427
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displayed from Figs. 13 to 15. From comparing the system responses with and without adaptive control, the
improvements are obvious. Overshoot has been completely removed while settling time has been reduced and
kept nearly the same for every mass. The estimation time in closed-loop maneuvers is very similar to its
counterpart in open-loop maneuvers (around 0.5 s), while the estimation error is slightly bigger as can be
observed in Table 8.

Results in Table 8 have been obtained performing a series of two thousand simulations, with different seeds
for the generation of the white noise signal, and calculating the average values for the estimation of the mass.
No one of the simulations ended with an erroneous estimated value.

5. Experimental validation

This section presents the experiments carried out both for verifying the estimation process in open-loop
maneuvers and for testing the adaptive control.

5.1. Description of the experimental setup

The experimental rig is shown in Fig. 16. The link is a 3mm diameter, solid carbon fiber bar attached in one
end to the hub of a Harmonic Drive mini servo DC motor RH-8D-6006-E036AL-SP(N) which has a reduction
relation nr ¼ 50. A disk that can freely rotate around its vertical axis is placed at the other end. Due to this free
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rotation, the tip mass can be considered as a point mass, that is, its rotational inertia is equal to zero. This
payload is floating over an air table in order to cancel gravity effects that would make the beam bend on the
vertical direction. Then, the maneuver is performed in a horizontal plane with a minimum component of
friction between the table and the disk.

On the other hand, the sensorial system consists of a couple of KYOWA KFG-5-120-C1-11 strain gauges in
a half-bridge configuration. The gauge signals are adapted with the signal conditioner DPM-602A from
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Table 8

Identification results for the closed-loop adaptive control application (single mass model and single mass estimator)

Payload (g) Estimated value (g) Absolute error (g) Relative error (%)

21.34 19.60 1.74 8.15

60.82 56.90 3.92 6.44

99.82 93.62 6.20 6.21

150.23 148.60 1.63 1.08

199.92 192.87 7.05 3.53
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KYOWA and are read from the PC with a National Instruments PCI-6024E data acquisition board. These
gauges measure the strain of the beam at the base, which is directly proportional to the coupling torque. In
addition, an optical incremental encoder measures the motor angle with a precision of 7� 10�5 rad. These two
measurements are used in the identification of the mass. Moreover, they are also used in the outer control loop
to estimate the tip position used in the feedback for the PD controller.

5.2. Experimental results

A set of experiments emulating the simulations has been carried out in the real platform. The payload has
been adapted with disks of different masses to cover the proposed range of operation, from 20 to 200 g.
Firstly, the tip angle responses when using the PD nominal controller with every mass are shown in Fig. 17.
The behavior is similar to the obtained in simulation, with bigger overshoots for the heavier masses. The only
difference is the small oscillations that can be observed in the detail of Fig. 17, which corresponds to the
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Fig. 16. Photo of the experimental setup.
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second mode of vibration of the system, which had been assumed negligible in the model, and, hence, has not
been cancelled. This phenomenon, known as spillover [18], can be usually overlooked in systems with a high
payload–beam mass ratio, as it is rapidly damped and its amplitude is small. However, for the lightest
payload, which is only three times heavier than the beam, this effect is noticeable and causes the arm to
become unstable without the appropriate controller. The control signal injected for the motor remains quite
uniform, in terms of maximum values, for all the experiments.

Applying jointly the mass identification process and the selection of the appropriate PD control, we obtain
the dynamical response shown in Fig. 18. The mass identification evolution is displayed in Fig. 19. Its accuracy
is in the same range than in simulation, below 11% error, while the time of estimation is between the 0.41 s for
the 20 g mass and the 0.89 s for the 200 g disk. The specific figures for the estimation process are presented in
Table 9.
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6. Conclusions

This work describes a new, generic estimator for the payload of a flexible robot, which is the most
changeable parameter in a robot configuration (e.g. pick and place applications) and strongly influences the
system dynamics. This estimator can be adapted to any of the common models used to describe flexible links:
concentrated masses models or truncated distributed masses models. The estimator is independent of the
actuator dynamics and only needs the measurements of the motor angle and the coupling torque at the base.
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Table 9

Identification results of the experiments using a single mass estimator

Payload (g) Estimated value (g) Absolute error (g) Relative error (%)

21.34 19.60 1.74 10.50

60.82 55.10 2.92 9.40

99.82 92.22 7.60 7.61

150.23 149.02 1.21 0.81

199.92 196.29 3.63 1.82
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Along the paper, a set of simulations with models of different complexity has been carried out, proving the
estimator to be robust enough for a wide range of systems.

The addition of a filter improves the performance of the estimation process because it attenuates the noisy
nature of the strain gauges. It can also be used to diminish the effect of the higher order non-modeled
vibration modes (spillover), and actually, allows the use of a simpler estimator even when higher modes are not
negligible, as explained in the simulation section.

Finally, an application to the adaptive control of a rest-to-rest motion of a flexible robot has been
implemented. This example illustrates the usefulness of the estimator, which calculates the payload online
during the maneuvers. The efficiency of the PD controller is outstandingly improved with the joint use of the
adaptive controller and the estimation method. The simulation results are completely supported by the
experimental results obtained in an experimental platform.
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