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Abstract

This paper discusses theoretical and experimental investigations of vibrations of an autoparametric system composed of

two beams with rectangular cross sections. Different flexibilities in the two orthogonal directions are the specific features of

the structure. Differential equations of motion and associated boundary conditions, up to third-order approximation, are

derived by application of the Hamilton principle of least action. Experimental response of the system, tuned for the 1:4

internal resonance condition, are performed for random and harmonic excitations. The most important vibration modes

are extracted from a real mechanical system. It is shown that certain modes in the stiff and flexible directions of both beams

may interact, and, intuitively unexpected out-of-plane motion may appear. Preliminary numerical calculations, based on

the mathematical model, are also presented.

r 2008 Elsevier Ltd. All rights reserved.
1. Introduction

Beam structures are common in mechanical and civil engineering [1,2]. Linear and nonlinear models of a
single beam have been studied extensively in many papers. Large vibrations of non-planar motion of un-
extendable beams are considered in Ref. [3]. Equation of motions with nonlinear curvatures and nonlinear
inertia terms are derived systematically up to the third-order approximation, taking bending about two
principal axes and torsion of the beam into account. The reduction of the model to two differential equations
is carried out by expressing twisting of the beam versus bending in two directions. The response of such a
nonlinear model, when excited harmonically by an external distributed force, is presented in Ref. [4]. Paper [5]
presents the influence of parametric excitation on a single vertical beam response generated in a perpendicular
plane to that of the excitation. It is shown that a few resonances can be excited simultaneously and that a
ee front matter r 2008 Elsevier Ltd. All rights reserved.
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weaker type of coupling can modify that of stronger coupling to a significant extent. Non-planar motion of a
metal cantilever beam excited by vertical harmonic motion of the support is also presented in Ref. [6].
Bifurcation analyses show different possible vibrations of the beam and five branches of the dynamic solution.
Periodic, quasi-periodic and chaotic motions are found near the main parametric resonance. Because of a well
separated torsional frequency, the influence of torsional inertia is neglected in the model. A study of nonlinear
vibrations of metallic cantilever beams subjected to transverse harmonic excitations is given in Ref. [7], where
experimental and theoretical results are presented. The energy transfer between widely spaced modes via
modulation, both, in the presence and absence, of a one-to-one internal resonance is shown. Reduced-order
models using the Galerkin discretisation method are also developed to predict observed experimental motions.

More complicated situation may appear when instead of a single beam, a set of coupled beams is to be
analysed. Due to internal coupling, caused by nonlinear terms resulting from nonlinear geometry and inertia,
autoparametric vibrations may appear [8]. In such a case, one subsystem becomes a source of excitation for
the other, and under some conditions it may lead to an increase in vibration amplitude and, moreover, an
energy transfer between different vibration modes [9]. This kind of coupling appears in, so-called, ‘‘L’’ shaped
beam structures. In-plane motion analysis of such coupled beams is presented in Ref. [10]. Derivation of the
equations of motion and dynamical boundary condition are shown there for a structure flexible in one vertical
plane and stiff in the orthogonal direction. Analytical solutions are found in the neighbourhood of the
principal parametric resonance and for a 2:1 internal resonance, when the strongest coupling takes place.
Primary resonance of the first and the second mode, and prediction of the Hopf bifurcation, are determined
analytically. Experimental tests of nonlinear motion in a coupled beam structure with quadratic nonlinearities
are discussed in Refs. [11,12]. Periodic, quasi-periodic, and chaotic responses, predicted by theory are
confirmed experimentally. It is shown that under the 2:1 internal resonance, a very small excitation can lead to
chaotic response of the structure.

Another type of the ‘‘L’’ shaped metal beam structure is explored in Refs. [13–18]. The difference between
this and the models just summarised is that the beams are coupled in such a way that their stiffnesses are
essentially different in two orthogonal directions (see Fig. 1). The effect of nonlinear coupling between
bending modes of vibration is investigated theoretically and experimentally in Refs. [13,14]. The nonlinear
forced vibration responses show jumps at entry and exits frequencies. Small nonlinear interactions have
significant effect under the 2:1 internal resonance condition. A four-mode interaction exhibits large amplitudes
of indirectly excited modes and saturation of the directly excited mode. Planar and non-planar motions of the
vertical beam for two simultaneous internal resonance conditions are presented in Ref. [15]. The combination
and internal resonances give complicated responses and intermodal energy exchange effects, for small changes
in external and internal tuning. Differential equations of motion have been derived taking into account
bending of the horizontal beam, and bending/torsion of the vertical beam. It is shown in Ref. [16] that violent
non-synchronous torsion and bending vibrations occur as a result of the existence of quadratic nonlinear
coupling terms, and internal resonance effects caused by strong four-mode interactions.
Fig. 1. Model of the structure.



ARTICLE IN PRESS
J. Warminski et al. / Journal of Sound and Vibration 315 (2008) 486–508488
In spite of extensive investigations of the ‘‘L’’ shaped beam structure, there are no literature analyses, to the
authors’ knowledge, that take interaction between torsion and bending in both of the coupled beams into
account. The development of the mathematical modelling is particularly important if the structure is made of
composite material. Additional interactions of the composite structure can be observed because of a natural
closeness of the torsional and bending mode frequencies, which are usually well separated for metallic
structures.

This paper gives an extension of the analysis of the coupled beam structure presented in papers [13–18]. The
systematic derivation of the differential equations of motions and associated boundary conditions up to the
third-order approximation are given in the first part. Then, the results of preliminary experimental tests and
numerical simulations for out-of-plane motion, the modal interactions and their influence on the structure’s
response phenomena are presented in the second part.

2. Model of the structure

The structure considered in this paper consists of two slender glass epoxy composite beams with reinforcing
fibres orientated in the directions given by 0/90/45/–45/45/90/0 (Fig. 1). Both beams are of rectangular cross-
section and are fixed in such a way that their flexibilities are essentially different in the horizontal and vertical
directions [18]. They are clamped together at point C, while the horizontal (primary) beam is fixed at the
support B and can be excited by a shaker in the Y1 direction. A lumped mass A attached at the top of the
vertical (secondary) beam allows for tuning of the structure for the required dynamical conditions.

The deformed structure and the assumed coordinate systems are presented in Fig. 2. The axes X 1;Y 1;Z1 are
assumed to be inertial with their origin at point B, while the set X 2;Y 2;Z2 is attached to the centre of the
cross-section at point C and overlaps the principal axes of the beam cross-section. Frames x1; Z1; z1 and
x2; Z2; z2 are the principal axes of the beam cross-section at arbitrary positions s1 and s2 for the primary and
secondary beams, respectively. The components u1ðs1; tÞ, v1ðs1; tÞ, w1ðs1; tÞ and u2ðs2; tÞ, v2ðs2; tÞ, w2ðs2; tÞ denote
the elastic displacement of the cross-section centres of the primary and secondary beams (points O1 and O2) in
the X 1;Y 1;Z1 and X 2;Y 2;Z2 coordinate sets, respectively, while f1ðs1; tÞ, c1ðs1; tÞ, y1ðs1; tÞ and f2ðs2; tÞ,
c2ðs2; tÞ, y2ðs2; tÞ represent the rotations expressed by the Euler angles.

3. Equations of motion

The equations of free vibration of the structure given in Fig. 1 are derived by applying Hamilton’s principle
of least action,

d
Z t2

t1

ðT1 � V 1 þ F1 þ T2 � V 2 þ F2 þ TC � V C þ TA � V AÞdt ¼ 0, (1)

where T1, V1, F1, T2, V2, F2 denote the kinetic and potential energies and the constraint equations of the
primary and the secondary beams, and TC, VC, TA, VA, the kinetic and potential energies of the masses C and
A, respectively.

By introducing the notation T1 � V 1 þ F1 ¼
R l1
0 h1 ds1, T2 � V2 þ F2 ¼

R l2
0 h2 ds2, Eq. (1) can then be

re-written in the form Z t2

t1

Z l1

0

dh1 ds1 þ

Z l2

0

dh2 ds2 þ TC � V C þ TA � V A

� �
dt ¼ 0. (2)

The kinetic energy of the primary beam results from translational and rotational motions of the element
shown in Fig. 2a

T1 ¼
1

2

Z l1

0

r1A1 V2
x1
þ V2

y1
þ V 2

z1

� �
þ Ix1o

2
x1
þ IZ1o

2
Z1
þ I z1o

2
z1

� �
ds1, (3)

where r1, A1 denote density and cross-sectional area of the primary beam, and Ix1; IZ1; I z1 are the principal
mass moments of inertia of the beam per unit length. Velocity components of the translational motion take the
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Fig. 2. Deflected beam structure: (a) primary beam and (b) secondary beam.
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form

Vx1
¼ _u1; V y1 ¼ _v1; Vz1 ¼ _w1, (4)

where the dot denotes the time derivative. Assuming that the beam is un-extendable, and that there is no shear
deformation, we can express y1 and c1 versus deformations u1, v1, w1, and then angular velocities can be
determined from the rotation of the cross-section which, after expanding of the trigonometric functions in
power series, gives [3]

ox1 ¼
_f1 þ _v

0
1w
0
1,

oZ1 ¼ f1
_v01 � _w01 þ 1

2
f2
1
_w01 � 1

2
w0

2
1
_w01,

oz1 ¼
_v01 � 1

2
f2
1
_v01 þ 1

2
v0
2
1
_v01 þ f1 _w

0
1 þ v01w01

_w01, (5)

where the prime denotes the space derivative.
Taking into account the geometry of the beam of Fig. 2(a), we can assume that the angular velocity with

respect to the Z1 axis, and the mass moment of inertia relative to the z1 axis, are relatively small, therefore,

o2
Z1
ffi 0; I z1 ffi 0.
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Thus we keep only that part of the kinetic energy that corresponds to rotation with respect to the x1 axis:

ox1 ¼
_f1 þ _v

0
1w
0
1. (6)

Potential energy is determined in bending about the two principal axes Z1, z1, and in torsion about axis x1,

V1 ¼
1

2

Z l1

0

Dx1r
2
x1
þDZ1r

2
Z1
þDz1r

2
z1

� �
ds1, (7)

where Dx1 ¼ G1Jx1 means the torsional stiffness, DZ1 ¼ E1JZ1 ; Dz1 ¼ E1Jz1 flexural stiffnesses and rx1;rZ1;rz1
are the curvatures, determined from the angular velocities by using Kirchhoff’s kinetic analogue [6]:

rx1 ¼ f01 þ w01v
00
1,

rZ1 ¼ f1v001 � w001 þ
1
2
f2
1w001 �

1
2
w0

2
1w
00
1,

rz1 ¼ v001 �
1
2
f2
1v001 þ

1
2
v0
2
1v
00
1 þ f1w

00
1 þ v01w

0
1w
00
1. (8)

The constraint equation for the primary beam has the form,

F1 ¼

Z l1

0

l1ð1� ðð1þ u01Þ
2
þ v0

2
1 þ w0

2
1ÞÞds1, (9)

where l1 is the Lagrange multiplier.
The kinetic energy of the secondary beam is calculated by taking into account the velocity VO2

of the centre
of the cross-section O2, related to the translational and angular motions of set X 2Y 2Z2 which has its origin at
point C, together with the relative velocity Vr. It can be written in vector form,

VO2
¼ VCþxC2 � r2þVr, (10)

where r2 ¼ ½u2; v2; w2�.
Applying, and then projecting the velocity components onto the X 2Y 2Z2 coordinate set we get the kinetic

energy of the secondary beam,

T2 ¼
1

2

Z l2

0

r2A2 V2
x2
þ V2

y2
þ V 2

z2

� �
þ Ix2o

2
x2
þ IZ2o

2
Z2
þ I z2o

2
z2

� �
ds2. (11)

Absolute velocity components projected onto the moving frame take the forms

Vx2
¼ _u2 þ f1C _w1C � v2ð _f1C þ _v

0
1Cw01CÞ � w2ð_v

0
1C þ f1C _w1CÞ þ _v1C 1� 1

2
f2
1C �

1
2
v0
2
1C

� �
þ _u1Cð�v01C � f1Cw01CÞ,

V y2 ¼ _v2 þ ðs2 þ u2Þð
_f1C þ _v

0
1Cw01CÞ þ w2ðf1C _v

0
1C � _w01CÞ þ _u1Cðf1Cv01C � w01CÞ

þ _v1Cð�f1C � v01Cw01CÞ þ _w1C 1� 1
2
f2
1C �

1
2
w0

2
1C

� �
,

Vz2 ¼ _w2 � ðs2 þ u2Þð_v
0
1C þ f1C _w

0
1CÞ þ s2

1
2
f2
1C _v
0
1C �

1
2
_v01Cv0

2
1C � _w01Cv01Cw01C

� �
þ v2ðf1C _v

0
1C � _w01CÞ þ _v1Cv01C þ _w1Cw01C þ _u1C 1� 1

2
v0
2
1C �

1
2
w0

2
1C

� �
. (12)

Making assumptions similar to those of the primary beam,

o2
Z2
ffi 0; I z2 ffi 0,

we get

ox2 ¼
_f2 þ _v

0
2w
0
2. (13)

The potential energy of the secondary beam is expressed in the second local coordinate set, denoted by
index 2, and has an equivalent form to that of the primary beam,

V2 ¼
1

2

Z l2

0

Dx2r
2
x2
þDZ2r

2
Z2
þDz2r

2
z2

� �
ds2 (14)
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with torsional and flexural stiffnesses,

Dx2 ¼ G2Jx2 ; DZ2 ¼ E2JZ2 ; Dz2 ¼ E2Jz2

and curvatures

rx2 ¼ f02 þ w02v
00
2,

rZ2 ¼ f2v002 � w002 þ
1
2
f2
2w
00
2 �

1
2
w0

2
2w
00
2,

rz2 ¼ v002 �
1
2
f2
2v
00
2 þ

1
2
v0
2
2v
00
2 þ f2w

00
2 þ v02w

0
2w
00
2. (15)

The constraint equation for the secondary beam is defined as

F2 ¼

Z l2

0

l2ð1� ðð1þ u02Þ
2
þ v0

2
2 þ w0

2
2ÞÞds2. (16)

To obtain the differential equations of motion it is necessary to determine the variations of the functions h1
and h2, LA, and LC,

dh1 ¼
X13
i¼1

qh1

qpi

dpi; p ¼ colff1; _u1; _v1; _w1; _f1; _v
0
1; u
0
1; v
0
1;w
0
1;f
0
1; v
00
1 ;w
00
1 ; l1g, (17)

dh2 ¼
X25
i¼1

qh2

qqi

dqi;
q ¼ colfu2;v2;w2;f2; _u2; _v2; _w2; _f2; _v

0
2; u
0
2; v
0
2;w
0
2;f
0
2; v
00
2 ;w
00
1 ;

l2;f1C ; _u1C ; _v1C ; _w1C ; _f1C ; v
0
1C ;w

0
1C ; _v

0
1C ; _w

0
1Cg;

(18)

dLC ¼
X10
i¼1

qLC

qpCi

dpCi; pC ¼ colfv1;f1; _u1; _v1; _w1; _f1; v
0
1;w
0
1; _v
0
1; _w01g, (19)

dLA ¼
X21
i¼1

qLA

qqAi

dqAi;
qA ¼ colfu2; v2;w2;f2; _u2; _v2; _w2; _f2; _v

0
2; _w
0
2; v
0
2;

w02;f1C ; _u1C ; _v1C ; _w1C ; _f1C ; v
0
1C ;w

0
1C ; _v

0
1C ; _w

0
1Cg:

(20)

Next, integrating by parts with respect to time limits t1 and t2, and remembering that variations at the time
instances t1 and t2 are equal to zero we get,

Z t2

t1

Z l1

0

�
q2h1

q _u1 qt
�

q2h1

qu01 qs1

� �
du1 þ �

q2h1

q_v1 qt
þ

q3h1

q_v01 qs1 qt
�

q2h1

qv01 qs1
þ

q3h1

qv001 qs21

� �
dv1

"(

þ �
q2h1

q _w1 qt
�

q2h1

qw01 qs1
þ

q3h1

qw001 qs21

� �
dw1 þ

qh1

qf1

�
q2h1

q _f1 qt
�

q2h1

qf01 qs1

 !
df1 þ

qh1

ql1
dl1

#
ds1

þ

Z l2

0

qh2

qu2
�

q2h2

q _u2 qt
�

q2h2

qu02 qs2

� �
du2

�
þ

qh2

qv2
�

q2h2

q_v2 qt
þ

q3h2

q_v02 qs2 qt
�

q2h2

qv02 qs2
þ

q3h2

qv002 qs22

� �
dv2

þ
qh2

qw2
�

q2h2

q _w2 qt
�

q2h2

qw02 qs2
þ

q3h2

qw002 qs22

� �
dw2 þ

qh2

qf2

�
q2h2

q _f2 qt
�

q2h2

qf02 qs2

 !
df2 þ

qh2

ql2
dl2

#
ds2

)
dt ¼ 0. (21)

From that point, integrating by parts with respect to the space coordinates s1 and s2, and then collecting
terms for proper variations, up to the third order, we get successive differential equations of motions:
�
 for the primary beam
variation du1

�r1A1 €u1 þ l1u001 ¼ 0, (22)
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variation dv1

� r1A1 €v1 þ l1v001 þDx1ð�f
000
1 w01 � vIV1 w0

2
1 � w0001 ðf

0
1 þ 2w01v001Þ � 2w001ð2v0001 w01 þ v001w001 þ f001ÞÞ

þDZ1ðw
IV
1 f1 � vIV1 f2

1 þ 2w0001 f
0
1 � 4v0001 f1f

0
1 � 2v001ðf

02
1 þ f1f

00
1Þ þ w001f

00
1Þ

þDz1ð�vIV1 ð1� f2
1 þ v0

2
1Þ � wIV

1 ðf1 þ v01w01Þ þ 4v0001 ðf1f
0
1 � v01v

00
1Þ � w0001 ð2f

0
1 þ w01v

00
1 þ 3v01w

00
1Þ

þ v001ð2f
02
1 � v00

2
1 � w00

2
1 þ 2f1f

00
1Þ � w001f

00
1Þ þ I1ð _w

0
1
_f
0

1 þ w01ð
€f
0

1 þ 2 _w01 _v
00
1 þ w01 €v

00
1 þ 2_v01 _w

00
1Þ

þ w001ð
€f1 þ 2w01 €v

0
1 þ 2_v01 _w

0
1Þ þ

_f1 _w
00
1Þ ¼ 0, (23)

variation dw1

� r1A1 €w1 þ l1w001 þDx1ðv
000
1 ðf

0
1 þ 2w01v001Þ þ v00

2
1w001 þ v001f

00
1Þ þDZ1ð�wIV

1 ð1� f2
1 þ w0

2
1Þ

þ vIV1 f1 þ 2v0001 f
0
1 þ 4w0001 ðf1f

0
1 � w01w

00
1Þ þ w001ð2f

02
1 � w00

2
1 þ 2f1f

00
1Þ þ v001f

00
1Þ

þDz1ð�vIV1 ðf1 þ v01w
0
1Þ � wIV

1 f2
1 � v0001 ð2f

0
1 þ 3w01v

00
1 þ v01w001Þ � 4w0001 f1f

0
1

� w001ð2f
02
1 þ v00

2
1 þ 2f1f

00
1Þ � v001f

00
1Þ þ I1ð�_v

0
1
_f
0

1 � _v
02
1w001 �

_f1 _v
00
1 � 2w01 _v

0
1 _v
00
1Þ ¼ 0, (24)

variation df1

Dx1ðv
000
1 w01 þ v001w001 þ f001Þ þDZ1ð�f1v

002
1 þ v001w001 þ f1w00

2
1Þ

þDz1ðf1v
002
1 � v001w001 � f1w00

2
1Þ þ I1ð� €f1 � w01 €v

0
1 � _v

0
1 _w
0
1Þ ¼ 0, (25)

variation dl1

ð1� ½ð1þ u01Þ
2
þ v0

2
1 þ w0

2
1�Þ ¼ 0. (26)
�
 for the secondary beam
variation du2

r2A2ð� €u2 � €v1C 1� 1
2
f2
1C �

1
2
v0
2
1C

� �
þ s2ð _f

2

1C þ _v
02
1C þ 2f1C

_v01C _w
0
1C þ 2 _f1C

_v01Cw01CÞ

þ u2ð
_f
2

1C þ
_v0
2

1CÞ þ v2ð €f1C þ
_v0
2

1C þ 2 _v01C _w
0
1C þ €v

0
1Cw01CÞ þ w2ð€v

0
1C þ f1C €w

0
1CÞ

þ 2_v2ð _f1C þ _v
0
1Cw01CÞ þ €u1Cðv

0
1C þ f1Cw01CÞ � €w1Cf1CÞ þ l2u002 ¼ 0, (27)

variation dv2

r2A2ð�€v2 � €w1C 1� 1
2
f2
1C �

1
2
w0

2
1C

� �
� s2ð €f1C þ f1C _v

02
1C � f1C _w

02
1C þ €v

0
1Cw01CÞ � u2ð

€f1C þ €v
0
1Cw01CÞ

þ v2ð _f
2

1C þ _w021CÞ þ w2 €w
0
1C � 2 _u2ð

_f1C þ _v
0
1Cw01CÞ þ €u1Cðw

0
1C � f1Cv01CÞ þ €v1Cðv

0
1Cw01C þ f1CÞÞ

þ l2v002 þDx2ð�f
000
2 w02 � vIV2 w0

2
2 � w0002 ðf

0
2 þ 2w02v

00
2Þ � 2w002ð2v0002 w02 þ v002w002 þ f002ÞÞ

þDZ2ðw
IV
2 f2 � vIV2 f2

2 þ 2w0002 f
0
2 � 4v0002 f2f

0
2 � 2v002ðf

02
2 þ f2f

00
2Þ þ w002f

00
2Þ

þDz2ð�vIV2 ð1� f2
2 þ v0

2
2Þ � wIV

2 ðf2 þ v02w02Þ þ 4v0002 ðf2f
0
2 � v02v

00
2Þ � w0002 ð2f

0
2 þ w02v

00
2 þ 3v02w

00
2Þ

þ v002ð2f
02
2 � v00

2
2 � w00

2
2 þ 2f2f

00
2Þ � w002f

00
2Þ þ I2ð _w

0
2
_f
0

2 þ w02ð
€f
0

2 þ 2 _w02 _v
00
2 þ w02 €v

00
2 þ 2_v02 _w

00
2Þ

þ w002ð
€f2 þ 2w02 €v

0
2 þ 2_v02 _w

0
2Þ þ

_f2 _w
00
2Þ ¼ 0, (28)

variation dw2

r2A2 � €w2 þ s2 €v01C 1� 1
2
f2
1C þ

1
2
v0
2
1C

� �
þ €w01Cðf1C þ v01Cw01CÞ þ v01Cð_v

02
1C þ _w021CÞ

� ��
þ u2ð€v

0
1C þ f1C €w

0
1CÞ

þ v2ð €w
0
1C � f1C €v

0
1CÞ þ w2ð_v

02
1C þ _w021CÞ þ 2 _u1Cð_v

0
1Cv01C þ _w01Cw01CÞ � 2_v1C _v

0
1C � 2 _w1C _w

0
1C

� €u1C 1� 1
2
v0
2
1C �

1
2
w0

2
1C

� �
� €v1Cv01C � €w1Cw01C

�
þ l2w002 þDx2ðv

000
2 ðf

0
2 þ 2w02v002Þ þ v00

2
1Cw002 þ v002f

00
2Þ
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þDZ2ð�wIV
2 ð1� f2

2 þ w0
2
2Þ þ vIV2 f2 þ 2v0002 f

0
2 þ 4w0002 ðf2f

0
2 � w02w002Þ

þ w002ð2f
02
2 � w00

2
2 þ 2f2f

00
2Þ þ v002f

00
2Þ þDz2ð�vIV2 f2 þ v02w

0
2

� �
� wIV

2 f2
2 � v0002 2f02 þ 3w02v

00
2 þ v02w002

� �
� 4w0002 f2f

0
2 � w002ð2f

02
2 þ v00

2
2 þ 2f2f

00
2Þ � v002f

00
2Þ

þ I2ð�_v
0
2
_f
0

2 � _v
02
2w002 �

_f2 _v
00
2 � 2w02 _v

0
2 _v
00
2Þ ¼ 0, (29)

variation df2

Dx2ðv
000
2 w02 þ v002w002 þ f002Þ þDZ2ð�f2v

002
2 þ v002w002 þ f2w

002
2Þ

þDz2ðf2v
002
2 � v002w002 � f2w

002
2Þ þ I2ð� €f2 � w02 €v

0
2 � _v

0
2 _w
0
2Þ ¼ 0, (30)

variation dl2

ð1� ½ð1þ u02Þ
2
þ v0

2
2 þ w0

2
2�Þ ¼ 0. (31)
The components obtained from integration by parts for the limits s1 ¼ 0, s1 ¼ l1 and s2 ¼ 0, s2 ¼ l2, and
then grouped for the appropriate variations, give the associated boundary conditions as follows:
�
 at point B, s1 ¼ 0

u1B ¼ 0; v1B ¼ 0; w1B ¼ 0; f1B ¼ 0; v01B ¼ 0; w01B ¼ 0, (32)
�
 at point C, s1 ¼ l1, s2 ¼ 0
variation du1C

�l1ð1þ u01CÞ � r2A2l2½ €w2A þ €u1C � l2 €v01C � �mC €u1C �mA½ €w2A þ €u1C � l2 €v01C � þHOT ¼ 0, (33)

variation dv1C

Dz1v0001C � l1v01C � r2A2l2½ €u2A þ €v1C � �mCg�mC €v1C �mAg�mA½ €u2A þ €v1C � þHOT ¼ 0, (34)

variation dw1C

DZ1w
000
1C � l1w01C � r2A2l2½€v2A þ €w1C þ l2 €f1C � �mC €w1C �mA½€v2A þ €w1C þ l2 €f1C � þHOT ¼ 0, (35)

variation df1C

�Dx1f
0
1C � r2A2l2½l2ð€v2A þ €w1CÞ þ l22

€f1C � � ICx
€f1C �mA½l2ð€v2A þ €w1CÞ þ l22

€f1C �

þmAgðv2A þ l2f1CÞ þHOT ¼ 0, (36)

variation dv01C

�Dz1v001C � r2A2l2½�l2ð €w2A þ €u1CÞ þ l22 €v
0
1C � � ICz €v

0
1C

�mA½�l2ð €w2A þ €u1CÞ þ l22 €v
0
1C � �mAgðw2A � l2v01CÞ þHOT ¼ 0, (37)

variation dw01C

�DZ1w
00
1C � ICZ €w

0
1C þHOT ¼ 0. (38)
�
 at point A, s2 ¼ l2
variation du2A

�l2ð1þ u02AÞ �mAg�mA½ €u2A þ €v1C � þHOT ¼ 0, (39)

variation dv2A

Dz2v
000
2A � l2v02A �mAgf1C �mA½€v2A þ €w1C þ l2 €f1C � þHOT ¼ 0, (40)
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variation dw2A

DZ2w
000
2A � l2w02A �mAgv01C �mA½ €w2A þ €u1C � l2 €v

0
1C � þHOT ¼ 0, (41)

variation df2A

�Dx2f
0
2A � IAx

€f2A þHOT ¼ 0, (42)

variation dv02A

�Dz2v002A � IAz €v
0
2A þHOT ¼ 0, (43)

variation dw02A

�DZ2w
00
2A � IAZ €w

0
2A þHOT ¼ 0. (44)
Equations for the boundary conditions are given up to the first-order terms while the second and third
orders are written by the abbreviation HOT (higher order terms). Indices A, B and C denote values at the
proper points. Note that to have consistency in Eqs. (33)–(38) variations of the secondary beam at point s2 ¼ 0
are expressed by variations of the primary beam at s1 ¼ l1, by using a transformation of the local to the
absolute set of coordinates.

The derived partial differential equations which describe the problem consist of the geometrical and inertial
nonlinear terms and nonlinear, non-homogenous, dynamical boundary conditions. To solve this set of
nonlinear equations of motion, and the nonlinear boundary conditions, an approximate analytical method has
to be applied. It requires an appropriate assumption for the admissible vibration modes which will then satisfy
the boundary conditions to the required perturbation order accuracy. However, to make proper assumptions
for this further work on an approximate analytical approach, certain experimental and numerical (finite
element analysis (FEA)) tests had to be undertaken, and these are presented in the next section.

Determining the Lagrange multipliers and then introducing dimensionless time t ¼ ot, where

o ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Dz1=r1A1l

4
1

q
, and dimensionless coefficients

Dx1

Dz1
¼ ~Dx1;

DZ1

Dz1
¼ ~DZ1;

Dx2

Dz1
¼ ~Dx2;

DZ2

Dz1
¼ ~DZ2;

Dz2

Dz1
¼ ~Dz2,

ICx

r1A1l
3
1

¼ ~ICx;
ICZ

r1A1l
3
1

¼ ~ICZ;
ICz

r1A1l31
¼ ~ICz;

IAx

r1A1l
3
1

¼ ~IAx;
IAZ

r1A1l
3
1

¼ ~IAZ;
IAz

r1A1l
3
1

¼ ~IAz,

a2
1 þ b2

1

12l21
¼ ~I1;

a2
2 þ b2

2

12l21
¼ ~I2;

r2A2

r1A1
¼ ~m2;

r2A2l2

r1A1l1
¼ ~M2;

mA

r1A1l1
¼ ~MA;

mC

r1A1l1
¼ ~MC ,

l2

l1
¼ ~L2; g� ¼

g

o2l1
¼

g

Dz1
r1A1l31,

we get equations of motions and the boundary conditions in dimensionless form (the ‘‘tilde’’ used for
dimensionless parameters definition has been dropped for simplicity):
�
 v1 direction

� €v1 þ l1v001 þDx1ð�f
000
1 w01 � vIV1 w0

2
1 � w0001 ðf

0
1 þ 2w01v

00
1Þ � 2w001ð2v0001 w01 þ v001w001 þ f001ÞÞ

þDZ1ðw
IV
1 f1 � vIV1 f2

1 þ 2w0001 f
0
1 � 4v0001 f1f

0
1 � 2v001ðf

02
1 þ f1f

00
1Þ þ w001f

00
1Þ

þ ð�vIV1 ð1� f2
1 þ v0

2
1Þ � wIV

1 ðf1 þ v01w01Þ þ 4v0001 ðf1f
0
1 � v01v

00
1Þ � w0001 ð2f

0
1 þ w01v

00
1 þ 3v01w001Þ

þ v001ð2f
02
1 � v00

2
1 � w00

2
1 þ 2f1f

00
1Þ � w001f

00
1Þ þ I1ð _w

0
1
_f
0

1 þ w01ð
€f
0

1 þ 2 _w01 _v
00
1 þ w01 €v

00
1 þ 2_v01 _w

00
1Þ

þ w001ð
€f1 þ 2w01 €v

0
1 þ 2_v01 _w

0
1Þ þ

_f1 _w
00
1Þ ¼ 0, (45)
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w1 direction
�
� €w1 þ l1w001 þDx1ðv
000
1 ðf

0
1 þ 2w01v

00
1Þ þ v00

2
1w
00
1 þ v001f

00
1Þ

þDZ1ð�wIV
1 ð1� f2

1 þ w0
2
1Þ þ vIV1 f1 þ 2v0001 f

0
1 þ 4w0001 ðf1f

0
1 � w01w001Þ þ w001ð2f

02
1 � w00

2
1 þ 2f1f

00
1Þ þ v001f

00
1Þ

þ ð�vIV1 ðf1 þ v01w
0
1Þ � wIV

1 f2
1 � v0001 ð2f

0
1 þ 3w01v

00
1 þ v01w001Þ � 4w0001 f1f

0
1 � w001ð2f

02
1 þ v00

2
1 þ 2f1f

00
1Þ � v001f

00
1Þ

þ I1ð�_v
0
1
_f
0

1 � _v
02
1w001 �

_f1 _v
00
1 � 2w01 _v

0
1 _v
00
1Þ ¼ 0, (46)
�
 f1 direction

Dx1ðv
000
1 w01 þ v001w001 þ f001Þ þDZ1ð�f1v

002
1 þ v001w001 þ f1w

002
1Þ þ ðf1v

002
1 � v001w001 � f1w00

2
1Þ

þ I1ð� €f1 � w01 €v
0
1 � _v

0
1 _w
0
1Þ ¼ 0, (47)
�
 v2 direction

m2ð�€v2 � €w1C 1� 1
2
f2
1C �

1
2
w0

2
1C

� �
� s2ð €f1C þ f1C _v

02
1C � f1C _w

02
1C þ €v

0
1Cw01CÞ � u2ð

€f1C þ €v
0
1Cw01CÞ

þ v2ð _f
2

1C þ _w021CÞ þ w2 €w
0
1C � 2 _u2ð

_f1C þ _v
0
1Cw01CÞ þ €u1Cðw

0
1C � f1Cv01CÞ þ €v1Cðv

0
1Cw01C þ f1CÞÞ

þ l2v002 þDx2ð�f
000
2 w02 � vIV

2 w0
2
2 � w0002 ðf

0
2 þ 2w02v002Þ � 2w002ð2v0002 w02 þ v002w002 þ f002ÞÞ

þDZ2ðw
IV
2 f2 � vIV2 f2

2 þ 2w0002 f
0
2 � 4v0002 f2f

0
2 � 2v002ðf

02
2 þ f2f

00
2Þ þ w002f

00
2Þ

þDz2ð�vIV2 ð1� f2
2 þ v0

2
2Þ � wIV

2 ðf2 þ v02w02Þ þ 4v0002 ðf2f
0
2 � v02v

00
2Þ � w0002 ð2f

0
2 þ w02v

00
2 þ 3v02w

00
2Þ

þ v002ð2f
02
2 � v00

2
2 � w00

2
2 þ 2f2f

00
2Þ � w002f

00
2Þ þ I2m2ð _w

0
2
_f
0

2 þ w02ð
€f
0

2 þ 2 _w02 _v
00
2 þ w02 €v

00
2 þ 2_v02 _w

00
2Þ

þ w002ð
€f2 þ 2w02 €v

0
2 þ 2_v02 _w

0
2Þ þ

_f2 _w
00
2Þ ¼ 0, (48)
�
 w2 direction

m2 � €w2 þ s2 €v01C 1� 1
2
f2
1C þ

1
2
v0
2
1C

� �
þ €w01Cðf1C þ v01Cw01CÞ þ v01Cð_v

02
1C þ _w021CÞ

� ��
þ u2ð€v

0
1C þ f1C €w

0
1CÞ

þ v2ð €w
0
1C � f1C €v

0
1CÞ þ w2ð_v

02
1C þ _w021CÞ þ 2 _u1Cð_v

0
1Cv01C þ _w01Cw01CÞ � 2_v1C _v

0
1C � 2 _w1C _w

0
1C

� €u1C 1� 1
2
v0
2
1C �

1
2
w0

2
1C

� �
� €v1Cv01C � €w1Cw01C

�
þ l2w002 þDx2ðv

000
2 ðf

0
2 þ 2w02v002Þ þ v00

2
2w002 þ v002f

00
2Þ

þDZ2ð�wIV
2 ð1� f2

2 þ w0
2
2Þ þ vIV2 f2 þ 2v0002 f

0
2 þ 4w0002 ðf2f

0
2 � w02w

00
2Þ þ w002ð2f

02
2 � w00

2
2 þ 2f2f

00
2Þ þ v002f

00
2Þ

þDz2ð�vIV2 ðf2 þ v02w
0
2Þ � wIV

2 f2
2 � v0002 ð2f

0
2 þ 3w02v002 þ v02w

00
2Þ � 4w0002 f2f

0
2

� w002ð2f
02
2 þ v00

2
2 þ 2f2f

00
2Þ � v002f

00
2Þ þ I2m2ð�_v

0
2
_f
0

2 � _v
02
2w
00
2 �

_f2 _v
00
2 � 2w02 _v

0
2 _v
00
2Þ ¼ 0, (49)
�
 f2 direction

Dx2ðv
000
2 w02 þ v002w002 þ f002Þ þDZ2ð�f2v

002
2 þ v002w002 þ f2w

002
2Þ þDz2ðf2v

002
2 � v002w002 � f2w00

2
2Þ

þ I2m2ð�
€f2 � w02 €v

0
2 � _v

0
2 _w
0
2Þ ¼ 0. (50)
The dimensionless boundary conditions are stated as
�
 at point B

v1B ¼ 0; w1B ¼ 0; f1B ¼ 0; v01B ¼ 0; w01B ¼ 0, (51)
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at point C
�
v0001C � l1v01C � ðM2 þMAÞð €u2A þ €v1CÞ �MCð€v1C þ gnÞ �MAgn ¼ 0,

DZ1w
000
1C � l1w01C � ðM2 þMAÞð €v2A þ €w1C þ L2

€f1CÞ �MC €w1C ¼ 0,

Dx1f
0
1C þ ICx

€f1C þ ðM2 þMAÞL2ð€v2A þ €w1C þ L2
€f1CÞ �MAgnðv2A þ L2f1CÞ ¼ 0,

v001C þ ICz €v
0
1C � ðM2 þMAÞL2ð €w2A þ €u1C � L2 €v

0
1CÞ þMAgnðw2A � L2v

0
1CÞ ¼ 0,

DZ1w
00
1C þ ICZ €w

0
1C ¼ 0, (52)
�
 at point A

Dz2v
000
2A � l2v02A �MAð€v2A þ €w1C þ L2

€f1C þ gnf1CÞ ¼ 0,

DZ2w
000
2A � l2w02A �MAð €w2A þ €u1C � L2 €v

0
1C þ gnv01CÞ ¼ 0,

Dx2f
0
2A þ IAx

€f2A ¼ 0,

Dz2v
00
2A þ IAz €v

0
2A ¼ 0,

DZ2w
00
2A þ IAZ €w

0
2A ¼ 0. (53)
The Lagrange multipliers l1 and l2 are determined on the basis of the equations of motion and boundary
conditions for the u1 and u2 directions, respectively,

l1 ¼
Z s1

1

€u1 ds1 � ½ðM2 þMAÞð €w2A þ €u1C � L2 €v
0
1CÞ þMC €u1C �, (54)

l2 ¼
Z s2

L2

m2 €u2 þ €v1C 1�
1

2
f2
1C �

1

2
v0
2
1C

� ��
� s2ð _f

2

1C þ
_v0
2

1C þ 2f1C _v
0
1C _w

0
1C þ 2 _f1C _v

0
1Cw01CÞ

� u2ð_v
02
1C þ

_f
2

1CÞ � v2ð €f1C þ
_v0
2

1C þ 2_v01C _w
0
1C þ €v

0
1Cw01CÞ � w2ð €v01C þ f1C €w

0
1CÞ

� 2_v2ð _f1C þ _v
0
1Cw01CÞ � €u1Cðv

0
1C þ f1Cw01CÞ þ €w1Cf1C



ds2 �MAð €u2A þ €v1C þ gnÞ. (55)

Because coordinates u1 and u2 are dependent on the v1;w1; v2;w2 variables, then the following equations
have to be taken into account in the equations of motion given above:

u01 ¼ �
1

2
ðv0

2
1 þ w0

2
1Þ; u1 ¼ �

1

2

Z s1

0

ðv0
2
1 þ w0

2
1Þds1,

u02 ¼ �
1

2
ðv0

2
2 þ w0

2
2Þ; u2 ¼ �

1

2

Z s2

0

ðv0
2
2 þ w0

2
2Þds2.

Finally we get six coupled equations of motion and 15 boundary conditions.

4. Experiment and finite element analysis

The experimental setup used for the testing work is composed of a high-end proprietary modal analysis
system, spectral acquisition software, and an electrically matched shaker with control of the excitation level.
The signals are measured by three small, low mass, piezo-sensors and a piezo-sensor is used for monitoring the
excitation. The arrows in Fig. 1 indicate the orientations of the sensors used in the experimental tests.

Preliminary experimental investigations consisted of tuning the structure for chosen bending and torsional
natural frequencies of the structure. The frequencies are determined by modal analysis of the system response
activated by an impact. By modification of lumped masses A and C and the length of the primary beam, the
system has been tuned for a 1:4 ratio of the first bending frequency of the primary beam (ob1ðIÞ ¼ 3:61Hz) and
the first bending frequency of the secondary beam (ob1ðIIÞ ¼ 14:45Hz). The torsional frequency of the primary
beam, when the whole structure is fixed, has also been measured (ot1ðIÞ ¼ �4:9Hz). The parameters of the
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tuned structure are listed in Table 1. After the tuning procedure, the whole structure is mounted on the shaker
and then excited by a random excitation over the band from 0 to 40Hz. This test enables the main resonant
responses of the system to be found. Figs. 3 and 4 show, respectively, the frequency spectra of the system
responses obtained from sensors no. 1 (Z direction) and no. 3 (Y direction). The highest peaks in Fig. 3
correspond to the resonant frequencies of the system, which in a linear system are equal to the natural
frequencies. Individual peaks, in turn, correspond to the first bending frequency ob1ðIÞ ¼ 3:61Hz, the first
torsional frequency ot1ðIÞ ¼ 4:9Hz, and the second free bending frequency ob2ðIÞ ¼ 15:50Hz, of the primary
beam. Because of the positioning of the sensor no. 3, Fig. 4 mainly shows the dynamics of the primary beam.
The closeness of the torsion and bending frequencies is a typical feature of such a structure when made of
composite material. For geometrically equivalent aluminium or steel beams, the torsion natural frequency
would tend to be remote from the bending frequencies.

The structure has been also modelled in the ABAQUSTM commercial finite element code for natural
frequencies and mode shape extraction. The composite beams are modelled by fully integrated shell elements
S4 with 6 degrees of freedom per node and a consistent mass matrix. The elements are based on
Mindlin–Reissner theory with finite membrane strain. The material is a layered composite material with
proper orientation of each orthotropic layer, and with three integration points through the thickness.
Table 1

Parameters for structure after tuning 1:4

Length of horizontal beam 236mm

Length of vertical beam 201mm

Mass A value 15.3 g

Mass C value 38.0 g

Fig. 3. Spectrum of the response measured by sensor no. 1.

Fig. 4. Spectrum of the response measured by sensor no. 3.
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The natural frequency and mode extraction procedure was applied after one geometrically nonlinear step of
gravity loading of the flexible L-beam structure. In this way, the reference state of the structure accounts for
the large displacements and rotations leading to its deformed shape and the stiffness matrix used in the
analysis is the tangential stiffness of the deformed structure. The nonlinear preloading gives up to 2.5%
difference in the natural frequencies from the case of the unloaded structure.

The results based on the modal analysis of the finite element method (FEM) model and those obtained
experimentally are compared in Table 2. Vibration modes which correspond to the frequencies presented in
Table 2 are shown in Fig. 5. For better visualisation the modes of vibrations are plotted together with the
undeformed model. The first mode with the lowest frequency value, that is 3.61Hz (the first peak in Figs. 3
and 4) is given in Fig. 5(a), evidently the first bending mode of the primary beam is responsible for the
dynamics. The vertical beam moves in the vertical plane as a solid body. The mode at 4.9Hz represents torsion
of the primary beam (Fig. 5(b), the second peak in Fig. 3) while the mode at 15.5Hz corresponds to the second
bending mode of the primary beam (Fig. 5(c) and the third peak in Figs. 3 and 4). It is worth noting that the
three lowest vibration modes, which have been separated by linear modal analysis, only exhibit deformations
in bending and torsion of the primary beam. The secondary beam, which has the same cross-section, remains
undeformed.
Fig. 5. Vibration modes of the structure: (a) the first bending mode of the primary beam; (b) the first torsional mode of the primary beam;

(c) the second bending mode of the primary beam; and (d) the first bending mode of the primary beam in the stiffer direction coupled with

bending mode of the secondary beam.

Table 2

Comparison—experiment and FEM results

Physical model (Hz) FEM model (Hz)

Fig. 5(a) 3.61 3.78

Fig. 5(b) 4.90 4.21

Fig. 5(c) 15.50 16.10

Fig. 5(d) 29.60 29.25
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Fig. 6. Experimental modal analysis, equivalent to Fig. 5(d).
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An interesting phenomenon has been observed by studying the fourth peak of Fig. 3 in detail. For this
frequency the bending mode of the vertical beam is excited, and, due to interaction, the bending mode of the
horizontal beam in the stiff direction is excited too. Point C moves in the horizontal plane while the node of
vibration is localised very close to point A (top mass). This out-of-plane motion is presented in Fig. 5(d) and it
is confirmed experimentally in Fig. 6. This (the fourth) mode of vibrations is the object of further analysis. The
authors have not found this kind of behaviour to be evident in ‘‘L’’-shaped structures before, nor does there
appear to be evidence of discussions of such phenomena in the literature. As evident in Table 2 experimental
and FEA results for this mode are in a very good agreement. The next paragraph presents preliminary
numerical investigations of this mode.

In many practical engineering applications, the control of the motion of the top mass A plays an important
role. Therefore, the influence of the internal resonance conditions on trajectories at this point is of interest. By
imposing harmonic excitations at different frequencies, in particular around the resonant areas, the response
of the system can be investigated in some detail. As mentioned earlier, the two first frequencies, torsional and
flexural, of the composite structure are very close localised. Therefore, behaviour of the system for excitations
close to the first torsional frequency of the primary beam, is studied experimentally, as well. To avoid damage
to the structure, and to get satisfactory signals, the amplitude of excitation has been carefully chosen. Fig. 7
shows trajectories of the top mass near the torsional resonance of the primary beam. The trajectories are
reconstructed by signals received from sensors no. 1 and 2. During transition through the resonance,
differences in the structural response are clearly visible. Inside the resonance area, near 4.9Hz, the major axis
of an elliptic trajectory is almost parallel to the Z coordinate. Outside this resonance zone the axis rotates in
the clockwise direction and the trajectory, because of nonlinear interactions with other vibration modes,
assumes a more complex shape, reminiscent of a Lissajous figure.
5. Analysis of the out-of-plane response

To study the dynamical response of the system, the set of partial differential equations has been discretised
by applying the Galerkin method. Solutions of the system are assumed to be in the form

v1 ¼
Xn

i¼1

aviðtÞaviðs1Þ; w1 ¼
Xn

i¼1

awiðtÞawiðs1Þ; f1 ¼
Xn

i¼1

afiðtÞafiðs1Þ,

v2 ¼
Xn

i¼1

bviðtÞbviðs2Þ; w2 ¼
Xn

i¼1

bwiðtÞbwiðs2Þ; f2 ¼
Xn

i¼1

bfiðtÞbfiðs2Þ; (56)
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Fig. 7. Trajectories of the top mass.
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where aviðtÞ; awiðtÞ; afiðtÞ, bviðtÞ; bwiðtÞ; bfiðtÞ are time dependent and are the so-called Galerkin coefficients.
aviðs1Þ; awiðs1Þ; afiðs1Þ, bviðs2Þ; bwiðs2Þ; bfiðs2Þ are corresponding mode shapes, and n is the number of assumed
modes. Note that the notation a(t) and a(s1) corresponds to the primary beam, and b(t), b(s2) to the secondary beam.

Substituting Eq. (56) into the partial differential Eqs. (45)–(50) and assuming only one mode response for
each coordinate (n ¼ 1), we get

€av þ kavav ¼ ��ðkaw;afawaf þ m _aw; _af _aw _af þ mav; €avav €av þ maw; €afaw €af þ mav; €bwav
€bwÞ þ �

2ð. . .Þ,

€aw þ kawaw ¼ ��ðkav;afavaf þ m _av; _af _av _af þ maw; €avð2Þaw €av þ maw; €bwaw
€bwÞ þ �

2ð. . .Þ,

€af þ kafaf ¼ ��ðkav;awavaw þ m _av; _aw _av _aw þ maw; €avð3Þaw €avÞ þ �
2ð. . .Þ,

€bv þ kbvbv ¼ � �ðm €aw €aw þ m €af €af þ kbw;bfbwbf þ m _bw; _bf
_bw
_bf þ maw; €avaw €av

þ maf; €avaf €av þ mbv; €avbv €av þ mbw; €awbw €aw þ mbw; €bfbw
€bfÞ þ �

2ð. . .Þ,

€bw þ kbwbw ¼ � �ðm €av €av þ kbv;bfbvbf þ m _av; _av _a
2
v þ m _aw; _aw _a

2
w þ m _bv; _bf

_bv
_bf þ mav; €avav €av

þ mbw; €avbw €av þ maw; €awaw €aw þ maf; €awaf €aw þ mbv; €awbv €awÞ þ �
2ð. . .Þ,

€bf þ kbfbf ¼ ��ðkbv;bwbvbw þ m _bv; _bw
_bv
_bw þ mbw; €bvbw

€bvÞ þ �
2ð. . .Þ. (57)

In this paper, the analytical approach is concentrated only on the out-of-plane motion, represented by the
fourth mode response, obtained by FEA (Fig. 5(d)), and confirmed by real experimental tests (Fig. 6).

However, the proposed Galerkin approach initially needs to be used to solve the nonlinear boundary
condition problem, and that can cause difficulty. Therefore, the mode shapes are determined on the basis of
FEM. Analysing in detail the deformations of the structure presented in Fig. 5(d) as obtained by FE method,
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it can be concluded that the total deformation can be composed of the individual modes of each beam, taking
into account their torsional and flexural deformation components. The out-of-plane motion consists of the
first shape modes for the w1; f1; v2; w2; f2 coordinates and the third mode for the v1 coordinate. The mode
shapes presented in Fig. 8 are equivalent to those modes obtained from FEM. The shape functions presented
in Fig. 8 can be assumed to be in the classical form, e.g. in the v1 direction

av ¼ Cav1 coshðls1Þ þ Cav2 sinhðls1Þ þ Cav3 cosðls1Þ þ Cav4 sinðls1Þ, (58)
Fig. 8. Shape functions of the out-of-plane resonance: (a) beam 1—bending in flexible direction; (b) beam 1—bending in stiff direction;

(c) beam 1—torsion; (d) beam 2—bending in flexible direction; (e) beam 2—bending in stiff direction; and (f) beam 2—torsion.
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Fig. 9. Phase trajectories of free vibrations obtained from numerical calculations: (a), (c), (e) primary beam and (b), (d), (f) secondary

beam.
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while the orthogonality property of the assumed mode is defined by taking the attached lumped masses at
point C and A, and takes following form:

aviðxÞavjðxÞdxþmaviðlÞavjðlÞ ¼
1 for i ¼ j;

0 for iaj;

(
(59)

where for the primary beam: m ¼ m2 þMA þMC for the av and aw modes, and m ¼ ðICx þM2L2
2 þ

MAL2
2Þ=I1 for the af mode, and for the secondary beam m ¼MA=m2 for the bv and bw modes and m ¼

IAx=ðm2I2Þ for the bf mode.
To simplify the integration procedure using the Mathematicas package, Eq. (58) have been approximated

by polynomials

anv ¼ Bav2s
2
1 þ Bav3s

3
1 þ 	 	 	 þ Bav10s101 . (60)

Definitions of the coefficients included in Eqs. (57) are presented in Appendix A.
Physical data of the composite material such as Young’s modulus, Poisson’s ratio, density of the material,

etc., have been determined on the basis of several experimental tests. Physical data of the structure and the
coefficients of Eqs. (57) are included in Appendix A. From there a numerical model in the Matlab-Simulink
package could be created. The excitation has been included by adding the term v10W

2 cos Wt on the right-hand
side in the first equation. Small modal damping (0.1%) has been added to all coordinates of the system, as
well. Phase trajectories obtained from the numerical calculations are presented in Fig. 9, where axes represent
displacement and the first time derivative, respectively. As can be seen, the behaviour of the system, especially
for coordinates v1 and v2, is very complicated. Comparison of the frequencies of the system response obtained
Table 3

Comparison—experiment and numerical model

Physical model (Hz) Numerical model (Hz)

Fig. 5(b) 4.90 5.69

Fig. 5(d) 29.60 28.45

Fig. 10. Time series of displacement for free vibrations—w1 direction.
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Fig. 11. Time series of displacement for free vibrations—f1 direction.
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from the numerical model and the physical system is presented in Table 3. Numerical frequencies are obtained
directly from time histories received from the Simulink software (Figs. 10 and 11) and next by converting
them to dimensional form. The analytical results obtained for the fourth mode of vibration (Fig. 5(d)) are
very close to those obtained by experiment. Identification of the system parameters, especially estimation
of the damping coefficients, and fitting the numerical model with the real system will be the next step
of the work.
6. Conclusions and final remarks

The paper deals with preliminary theoretical and well-developed experimental studies of an autoparametric
beam structure with essentially different stiffnesses in two orthogonal directions. The systematically derived
equations of motion, and a preliminary series of numerical calculations, show that nonlinear terms which
couple the structure may result in many unexpected responses. An experimentally tested composite
beam structure, tuned for the 1:4 internal resonance condition, exhibits possible vibrations as an
out-of-plane motion in the stiff direction of the primary beam. In the neighbourhood of the torsional
resonance, due to nonlinear coupling, additional nonlinear modes are involved in the system response, and
this is expressed by the complex trajectories that have been seen. The experimental work has confirmed the
FEA analysis, with generally very good agreement. Therefore the results give a promising basis for finding and
interpreting analytical solutions of the mathematical model. This, and further investigation will eventually
allow a strategy to be developed for the active control of this kind of structure by the application of PZT or
SMA elements.
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Appendix A

A.1. Physical parameters of the structure

E1 ¼ E2 ¼ 25:5GPa; IAx ¼ 7:821� 10�9 kgm2;

G1 ¼ G2 ¼ 9:8GPa; IAZ ¼ 12:889� 10�9 kgm2;

r1 ¼ r2 ¼ 2100 kgm�3; IAz ¼ 5:2476� 10�9 kgm2;

a1 ¼ a2 ¼ 2:1mm; ICx ¼ 111:6� 10�9 kgm2;

b1 ¼ b2 ¼ 12:8mm; ICZ ¼ 75:7� 10�9 kgm2;

l1 ¼ 236mm; ICz ¼ 156:6� 10�9 kgm2;

l2 ¼ 201mm; b1 ¼ b2 ¼ 0:3;

mA ¼ 0:0153 kg;

mC ¼ 0:038 kg;

Dx1 ¼ G1Jx1; Jx1 ¼ b1b1a
3
1; Dx2 ¼ G1Jx2; Jx2 ¼ b2b2a

3
2;

DZ1 ¼ E1JZ1; JZ1 ¼
a1b3

1

12
; DZ2 ¼ E1JZ2; JZ2 ¼

a2b3
2

12
;

Dz1 ¼ E1Jz1; Jz1 ¼
b1a3

1

12
; Dz2 ¼ E1Jz2; Jz2 ¼

b2a
3
2

12
:

A1 ¼ a1b1; A2 ¼ a2b2;

A.2. Definition of the coefficients of Eq. (57)
�
 primary beam

kav ¼

R 1
0 Dz1aIVv av ds1R 1

0 a
2
v ds1

,

kaw;af ¼ �

R 1
0 ððDZ1 �Dz1ÞðaIVw af þ 2a000w a

0
f þ a00wa

00
fÞ �Dx1ða000f a

0
w þ a000w a

0
f þ 2a00wa

00
fÞÞav ds1R 1

0 a
2
v ds1

,

m _aw; _af ¼ �

R 1
0 I1ða0wa

0
f þ a00wafÞav ds1R 1
0
a2v ds1

; mav; €av ¼ �

R 1
0 ðM2 þMAÞL2a00va

0
vCav ds1R 1

0
a2v ds1

,

maw; €af ¼ �

R 1
0

I1ða0wa
0
f þ a00wafÞav ds1R 1
0 a

2
v ds1

; mav; €bw ¼

R 1
0 ðM2 þMAÞbwAa

00
vav ds1R 1

0 a
2
v ds1

,

kaw ¼

R 1
0 DZ1aIV

w aw ds1R 1
0 a

2
w ds1

,
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kav;af ¼ �

R 1
0 ðDx1ða000v a

0
f þ a00va

00
fÞ þ ðDZ1 �Dz1ÞðaIVv af þ 2a000v a

0
f þ a00va

00
fÞÞaw ds1R 1

0 a
2
w ds1

,

m _av; _af ¼

R 1
0 I1ða0va

0
f þ afa00v Þaw ds1R 1
0 a

2
w ds1

; maw; €avð2Þ ¼ �

R 1
0
ðM2 þMAÞL2a00wa

0
vCaw ds1R 1

0 a
2
w ds1

,

maw; €bw ¼

R 1
0 ðM2 þMAÞbwAa

00
waw ds1R 1

0
a2w ds1

; kaf ¼ �

R 1
0 Dx1a00faf ds1R 1

0
I1a2f ds1

,

kav;aw ¼ �

R 1
0 ðDx1a000v a

0
w þ ðDx1 þDZ1 �Dz1Þa00va

00
wÞaf ds1R 1

0 I1a2f ds1
; m _av; _aw ¼

R 1
0 a
0
va
0
waf ds1R 1

0 a
2
f ds1

,

maw; €avð3Þ ¼

R 1
0 a
0
va
0
waf ds1R 1

0 a
2
f ds1

.

�
 secondary beam

kbv ¼

R L2

0 ðDz2b
IV
v þMAgnb00v Þbv ds2R L2

0 m2b
2
v ds2

; m €aw ¼

R L2

0 awCbv ds2R L2

0 b2v ds2
; m €af ¼

R L2

0 s2afCbv ds2R L2

0 b2v ds2
,

kbw;bf ¼ �

R L2

0 ððDZ2 �Dz2Þðb
IV
w bf þ 2b000wb

0
f þ b00wb

00
fÞ �Dx2ðb

0
wb
000
f þ 2b00wb

00
f þ b000wb

0
fÞÞbv ds2R L2

0 m2b
2
v ds2

,

m _bw; _bf ¼ �

R L2

0 I2ðb
0
wb
0
f þ bfb

00
wÞbv ds2R L2

0
b2v ds2

; maw; €av ¼

R L2

0 s2a0vCa
0
wCbv ds2R L2

0
b2v ds2

; maf; €av ¼ �

R L2

0 avCafCbv ds2R L2

0
b2v ds2

,

mbv; €av ¼ �

R L2

0
m2b

00
v

R s2
L2
avC ds2 �MAavCb

00
v

� �
bv ds2R L2

0 m2b
2
v ds2

; mbw; €aw ¼ �

R L2

0 a0wCbwbv ds2R L2

0 b2v ds2
,

mbw; €bf ¼ �

R L2

0 I2ðb
0
wb
0
f þ b00wbfÞbv ds2R L2

0 b2v ds2
; kbw ¼

R L2

0 ðDZ2b
IV
w þMAgnb00wÞbw ds2R L2

0 m2b
2
w ds2

,

m €av ¼ �

R L2

0 s2a0vCbw ds2R L2

0 b2w ds2
,

kbv;bf ¼ �

R L2

0
ððDZ2 �Dz2Þðb

IV
v bf þ 2b000v b

0
f þ b00vb

00
fÞ þDx2ðb

000
v b
0
f þ b00vb

00
fÞÞbw ds2R L2

0
m2b

2
w ds2

,
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m _av; _av ¼ �

R L2

0 ða
02
vC � 2avCa0vCÞbw ds2R L2

0 b2w ds2
; m _aw; _aw ¼ �

R L2

0 ða
02
wC � 2awCa0wCÞbw ds2R L2

0 b2w ds2
,

m _bv; _bf ¼

R L2

0
I2ðb

0
vb
0
f þ bfb

00
v Þbw ds2R L2

0
b2w ds2

; mav; €av ¼ �

R L2

0
ða02vC � avCa0vCÞbw ds2R L2

0
b2w ds2

,

mbw; €av ¼ �

R L2

0
m2b

00
w

R s2
L2
avC ds2 �MAavCb

00
w

� �
bw ds2R L2

0 m2b
2
w ds2

; maw; €aw ¼ �

R L2

0 ða
02
wC � awCa0wCÞbw ds2R L2

0 b2w ds2
,

maf; €aw ¼ �

R L2

0 s2a0wCafCbw ds2R L2

0 b2w ds2
; mbv; €aw ¼ �

R L2

0 a0wCbvbw ds2R L2

0 b2w ds2
; kbf ¼ �

R L2

0 Dx2b
00
fbf ds2R L2

0 I2m2b
2
f ds2

,

kbv;bw ¼ �

R L2

0 ðDx2b
000
v b
0
w þ ðDx2 þDZ2 �Dz2Þb

00
vb
00
wÞbf ds2R L2

0 I2m2b
2
f ds2

; m _bv; _bw ¼

R L2

0 b0vb
0
wbf ds2R L2

0 b2f ds2
,

mbw; €bv ¼

R L2

0 b0vb
0
wbf ds2R L2

0 b2f ds2
.

A.3. Values of the coefficients
�
 primary beam

kav ¼ 2523:52; kav;aw ¼ 1:7575� 107; m _av; _aw ¼ 14:7653;

kaw ¼ 21:9026; kav;af ¼ 2408:99; m _av; _af ¼ 0:000315835;

kaf ¼ 0:953403; kaw;af ¼ 0:149711; m _aw; _af ¼ 1:27007� 10�7;

mav; €av ¼ 745:872; maw; €avð2Þ ¼ �21:6252; maw; €avð3Þ ¼ 14:7653;

maw; €af ¼ 1:27007� 10�7; mav; €bw ¼ �74:4068; maw; €bw ¼ 2:15729:
A.4. Values of the coefficients
�
 secondary beam

kbv ¼ 3:65204; kbv;bw ¼ �272942; m €av ¼ �11:6524;

kbw ¼ 133:677; kbv;bf ¼ 684:773; m €aw ¼ 0:817875;

kbf ¼ 16986:2; kbw;bf ¼ 625:955; m €af ¼ 0:0151564;

mav; €av ¼ �79:1398; m _av; _av ¼ �78:3826; mbw; €aw ¼ �0:662433;

maw; €av ¼ 7:71894; m _aw; _aw ¼ 0:649207; mbw; €bv ¼ 1:39161;

maw; €aw ¼ 0:107419; mbv; €av ¼ 0:102172; mbw; €bf ¼ �0:0011083;

maf; €av ¼ �0:000984119; mbv; €aw ¼ �0:662433; m _bv; _bw ¼ 1:39161;

maf; €aw ¼ �0:0100401; mbw; €av ¼ 0:102172; m _bv; _bf ¼ 0:0011083:

m _bw; _bf ¼ �0:0011083;
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