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Abstract

The geometrically nonlinear free vibrations of thin isotropic circular plates are investigated using a multi-degree-of-

freedom model, which is based on thin plate theory and on Von Kármán’s nonlinear strain–displacement relations. The

middle plane in-plane displacements are included in the formulation and the common axisymmetry restriction is not

imposed. The equations of motion are derived by the principle of the virtual work and an approximated model is achieved

by assuming that the in-plane and transverse displacement fields are given by weighted series of spatial functions. These

spatial functions are based on hierarchical sets of polynomials, which have been successfully used in p-version finite

elements for beams and rectangular plates, and on trigonometric functions. Employing the harmonic balance method, the

differential equations of motion are converted into a nonlinear algebraic form and then solved by a continuation method.

Convergence with the number of shape functions and of harmonics is analysed. The numerical results obtained are

presented and compared with available published results; it is shown that the hierarchical sets of functions provide good

results with a small number of degrees of freedom. Internal resonances are found and the ensuing multimodal oscillations

are described.

r 2008 Elsevier Ltd. All rights reserved.
1. Introduction

Thin plate structures are encountered in various modern engineering problems and they are often subjected
to severe dynamic loading, which may result in large vibration amplitudes, inducing significant geometrical
nonlinearities. This leads to well-known consequences, as a change of the resonance frequencies and of the
mode shapes with the amplitude of vibration. Moreover, the natural frequencies may become commensurable
creating conditions for the strong interaction of the natural modes involved. As a result of this phenomenon,
known as internal resonance, energy is interchanged between those modes and the response becomes
multimodal [1].

One of the plate geometries of interest in engineering is circular and the nonlinear vibrations of circular
plates have been studied by several authors in the past decades. In the following sentences a brief, thus
incomplete, review is carried out. In Ref. [2] Sridhar et al. studied the axisymmetric response of a circular plate
ee front matter r 2008 Elsevier Ltd. All rights reserved.
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to a harmonic excitation. The method of multiple scales was employed and internal resonances were found.
Hadian and Nayfeh [3] used the method of multiple scales to investigate the axisymmetric response of circular
plates in the case of internal resonance. A reduced model based on specifically chosen mode shapes was
employed. Liu and Chen [4] analysed the geometrically nonlinear free vibrations of polar orthotropic circular
plates using an axisymmetric finite element method. Haterbouch and Benamar [5–8] carried out rather
complete investigations on the harmonic and axisymmetric nonlinear vibrations of circular plates; the
equations of motion were derived from the kinetic and potential energies and the harmonic balance method
was employed with one harmonic. While in Refs. [2–8] thin plate theory was followed, in Ref. [9] Raju and
Rao employed the finite element method to compute the first nonlinear natural frequencies in axisymmetric
vibrations of circular plates and to investigate the effect of shear deformation and rotary inertia. The authors
concluded that the hardening spring effect is stronger in thick plates. Sathyamoorthy [10] investigated the
influence of transverse shear and rotary inertia on the nonlinear vibrations of circular plates, assuming that the
transverse displacement is defined by a single axisymmetric mode. As in Ref. [9], a stronger hardening spring
effect took place in thicker plates.

The studies referred to in the previous paragraph and a few more are devoted to axisymmetric vibrations.
Some, but much fewer, studies were also carried out in asymmetric vibrations. By asymmetric we mean that
the deformed shape is not symmetric with respect to the central axis. Sridhar et al. [11] used the method of
multiple scales to investigate asymmetric vibrations. According to Yeo and Lee the solvability conditions
derived in the former reference are not correct, and other conditions were presented in Ref. [12]. The same
authors investigated the asymmetric vibrations of a clamped circular plate on an elastic foundation [13]. Touzé
et al. [14] carried out an interesting study of the forced asymmetric nonlinear vibrations of circular plates with
a free edge expressing the deflection as a function of linear modes. This study was followed by an experimental
investigation in Ref. [15]. In all these studies not restricted to axisymmetric vibrations, the perturbation
method of multiple scales was employed.

The use of hierarchical basis functions on geometrically nonlinear vibrations of beams and rectangular
plates has been found to be very efficient and allows employing multi-degree-of-freedom models with
flexibility and a reasonable computational cost (see Refs. [16–21] for example). The harmonic balance method
(HBM) and continuation method also proved to give important information in beams and rectangular plates
[18–20]. Although the HBM has some drawbacks, it also has some advantages when compared to perturbation
methods, like the method of multiple scales. The most important advantages are that it is not restricted to
small amplitude vibrations and its use with multi-degree-of-freedom models is relatively simple. The objective
of this paper is to analyse the geometrically nonlinear free vibrations of clamped immovable thin circular
plates using for the first time the above-mentioned methods. We intend to investigate the variation of the
mode shapes with the vibration amplitude and to study internal resonances. There are several studies on
axisymmetric vibrations of circular plates (Refs. [2–10] and others) and internal resonances may possibly relate
axisymmetric and asymmetric modes. Therefore, the present model is not limited to axisymmetric modes. If
the plates are thin, Von Kármán large deflection theory provides a good approximation and thus it will be
employed here.
2. Formulation

Consider a circular plate of thin uniform thickness h and radius R that is clamped along its edge. The
cylindrical coordinate is chosen such that the middle plane (i.e. z ¼ 0) of the plate coincides with the ry-plane.
The origin of the coordinate system is at the centre of the plate with the z-axis pointing downward in the
thickness direction (Fig. 1). The plate material is assumed to be elastic, homogeneous and isotropic.

The displacements (ur, uy, uz) are functions of time and of the r, y and z coordinates. We begin with the
following displacement field from the classical plate theory:

urðr; y; z; tÞ ¼ u0
r ðr; y; tÞ � z

qu0
z

qr
; uy ¼ ðr; y; z; tÞ ¼ u0

yðr; y; tÞ � z
1

r

qu0
z

qy

� �
,

uzðr; y; z; tÞ ¼ u0
zðr; y; tÞ, (1)
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Fig. 1. Clamped circular plate.
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where ðu0
r ; u

0
y; u

0
zÞ are the displacements in the radial, circumferential and transverse directions, respectively, of

a point on the middle plane of the plate. The displacement field (1) is based on Kirchhoff hypothesis. From
now on the superscript 0 will be dropped, as displacements will always be those of the middle surface. In this
paper, we will use bold for matrices and column vectors except when necessary to discriminate the components
of the array, in which case we will use: [] for matrices, {} for column vectors and bc for row vectors. It is also
noted that function arguments are often not written, for example, we may write ur instead of ur(r, y, z, t).

The middle plane displacements are expressed in the form

urðx; Z; tÞ

uyðx; Z; tÞ

uzðx; Z; tÞ

8><
>:

9>=
>; ¼

NrT ðx; ZÞ 0 0

0 NyT ðx; ZÞ 0

0 0 NzT ðx; ZÞ

2
664

3
775

qrðtÞ

qyðtÞ

qzðtÞ

8><
>:

9>=
>;. (2)

The row vectors of bi-dimensional shape functions are

NrT ðx; ZÞ ¼ g1ðxÞgt1ðZÞ g1ðxÞgt2ðZÞ . . . gpi
ðxÞgtpi

ðZÞ
j k

¼ Nr
1ðx; ZÞ Nr

2ðx; ZÞ . . .N
r

p2
i

ðx; ZÞ
� �

, (3)

NyT ðx; ZÞ ¼ h1ðxÞht1ðZÞ h1ðxÞht2ðZÞ . . . hpi
ðxÞhtpi

ðZÞ
� �

¼ Ny
1ðx; ZÞ Ny

2ðx; ZÞ . . .N
y
p2

i

ðx; ZÞ
� �

, (4)

NzT ðx; ZÞ ¼ f 1ðxÞft1ðZÞ f 1ðxÞft2ðZÞ . . . f po
ðxÞftpo

ðZÞ
j k

¼ Nz
1ðx; ZÞ Nz

I ðx; ZÞ . . .N
z

p2o
ðx; ZÞ

j k
, (5)

where po and pi are the numbers of one-dimensional out-of-plane and in-plane shape functions, respectively;
g and gt are the vectors of in-plane radial shape functions; h and ht are the vectors of in-plane circumferential
shape functions; f and ft are vectors of out-of-plane shape functions; and qr, qy and qz are the two in-plane and
one out-of-plane generalized displacement vectors. Shape functions gt, ht and ft are in the circumferential
direction and the others are in the radial direction. The set of shape functions in the radial direction is based
on a set of polynomials employed in Refs. [16–21], but with the argument varying from 0 to 1. Trigonometric
functions [22] are used as shape functions in the circumferential direction. Appendix A gives the one-
dimensional shape functions and shows plots of some of them. The dimensionless coordinates x and Z are
given by

x ¼ r=R; 0pxp1; Z ¼ y=p; �1pZp1. (6)

The sets of polynomials employed in Refs. [16–21] were chosen as shape functions in the radial direction
because they have a number of well-proven advantages, some of which are: it is easy to define higher order sets
for improved approximations where the polynomials corresponding to lower approximations constitute a
subset, all polynomials possess both a zero value (displacement) and a zero derivative (slope) at each
boundary, they result in models with a small number of degrees of freedom (dof), they are not prone to ill-
conditioning, and the computational effort required to define the elemental matrices is reduced.
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Trigonometric sets of functions and one constant function, which also has to be included in order to obtain
all the axisymmetric modes, are used as shape functions in the circumferential direction. Travelling waves have
been found in circular plates with axisymmetric boundary conditions [12–14], where a pair of companion
asymmetric modes appears. The two members of each pair share the same natural frequency but their shapes
are rotated at an angle of p/(2nd), nd being the number of nodal diameters. However, in this first study we will
only investigate standing waves and therefore, simple sets with either sine or cosine terms will be employed as
circumferential shape functions, i.e., we do not include the rotated shapes.

Von Kármán’s nonlinear strain–displacement relationships are expressed as

�r

�y

gry

8><
>:

9>=
>; ¼

1 0 0 z 0 0

0 1 0 0 z 0

0 0 1 0 0 z

2
64

3
75e, (7)

where

e ¼
ep
0

eb
0

( )
þ

ep
L

0

( )
. (8)

The linear membrane and bending strains, ep
0 and eb

0, and the geometrically nonlinear membrane strain, ep
L,

are defined as
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>>>>>>>>;
. (9)

The equations of motion are derived by applying the principle of the virtual work. Using the constitutive
relations of the plate, and in the absence of external forces, one obtainsZ

O
ðdepT

0 þ depT
L ÞAðe

p
0 þ ep

LÞdOþ
Z
O
debT

0 D eb
0 dOþ rh

Z
O
ðdur €ur þ duy €uy þ duz €uzÞdO ¼ 0, (10)

where r denotes mass per unit volume and O the area of the plate. A and D are the membrane and flexural
rigidity matrices, given by

A ¼
Eh

1� n2

1 n 0

n 1 0

0 0
1� n
2

2
664

3
775; D ¼

h2

12
A, (11)

where E represents Young’s modulus and n Poisson’s ratio.
Substituting Eq. (9) into Eq. (10) and because the virtual displacements are arbitrary, we obtain

Mp 0

0 Mb

" #
€qp

€qz

( )
þ

K1p 0

0 K1b

" #
þ

0 K2ðqzÞ

0 0

� 	
þ

0 0

K3ðqzÞ 0

" #
þ

0 0

0 K4ðqzÞ

" # !
qp

qz

( )
¼

0

0


 �
. (12)

In the former equation qp is the vector of generalized in-plane displacements, defined as qTp ¼ qTr qTy
� �

; Mp

and Mb are the in-plane and bending inertia matrices; K1p and K1b are the in-plane and bending stiffness
matrices; and K2(qz), K3(qz) and K4(qz) represent the nonlinear stiffness matrices. These matrices are defined in
Appendix B.

Neglecting the in-plane inertia and eliminating qp results in the following equations of motion:

Mb €qz þ K1bqz þ Kn‘ðqzÞqz ¼ 0, (13)
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where the nonlinear stiffness matrix, which is a quadratic function of the generalized transverse displacements
qz, is defined as

Kn‘ðqzÞ ¼ K4ðqzÞ � 2K2ðqzÞ
TK1pK2ðqzÞ. (14)

In the former equation relation K3 ¼ 2KT
2 , which is obtained by comparing the form of K2 and K3, was used.

Only periodic motions about the equilibrium position qz ¼ 0 will be analysed and the nonlinearity is cubic;
in this case qz may be expressed as

qzðtÞ ¼
Xk

i¼1

w2i�1 cosðð2i � 1ÞotÞ, (15)

i.e. only odd harmonics are considered in Eq. (15). With the former expression only standing waves can be
investigated. As we stated before, travelling waves may appear due to the co-existence of pairs of companion
modes with the same number of nodal diameters [12–14]. To analyse travelling waves, sin((2i–1)ot) terms
should be inserted into Eq. (15), and ‘‘sin’’ and ‘‘cosine’’ sets of trigonometric functions should be used as
shape functions in the circumferential direction. A preliminary analysis indicates that the methods employed
here also allow one to investigate travelling waves, but we will only investigate standing waves.

Inserting Eq. (15) into the equations of motion (13) and applying the HBM, the equations of motion in the
frequency domain are derived. These are of the form

Fðw;o2Þ ¼ ð�o2Mþ KL þ KNLðwÞÞw ¼ 0, (16)

where M represents the mass matrix, KL the linear stiffness matrix and KNL(w) the nonlinear stiffness matrix,
which depends quadratically on the vector of generalized displacements w. The latter is given by

w ¼

w1

w3

..

.

w2k�1

8>>>><
>>>>:

9>>>>=
>>>>;
. (17)

The frequency domain equations of motion when three odd harmonics are considered are explicitly given in
Appendix C.

The total number of dof of the model is n ¼ kp2
o, where k is the number of terms considered in Eq. (15). The

equations of motion are solved by a continuation method which was used, for example, in Refs. [18–20] and
which is based on the method presented in Refs. [23,24]. The method is composed of two main loops: in the
external loop a predictor to the solution is defined and this is corrected in the internal loop. The continuation
parameter is the arc-length and therefore it is possible to pass turning points.

Finally, the transverse displacement is obtained by inserting qz from Eq. (15) into Eq. (2)

uzðx; Z; tÞ ¼
Xk

i¼1

Nzðx; ZÞTw2i�1 cosðð2i � 1ÞotÞ. (18)

3. Applications

The geometric properties of the clamped plate analysed are R ¼ 1m and h ¼ 0.0012m. The material
properties are E ¼ 2.1� 1011Nm�2, r ¼ 7800 kgm�3, and n ¼ 0.3. The plate’s linear mode shapes are shown
in Fig. 2.

3.1. Analysis of convergence

It is intended to demonstrate that an accurate model can be constructed with a small number of dof with the
hierarchical set of functions employed here. Therefore, the convergence with the number of harmonics and
with the number of shape functions is discussed in the following paragraphs.
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Fig. 2. First nine linear mode shapes, po ¼ 10.

Table 1

Dimensionless linear natural frequencies, given by l ¼ oR2
ffiffiffiffiffiffiffiffiffiffiffiffi
rh=D

p
, where D ¼ Eh3/12(1�n)

Number of shape functions 3 5 7 9 Ref. [25]

dof 9 25 49 81

ll1 10.22 10.22 10.22 10.22 10.22

ll2 21.31 21.26 21.26 21.26 21.26

ll3 36.45 34.89 34.88 34.88 34.88

ll4 42.56 39.79 39.77 39.77 39.77

ll5 63.41 51.05 51.03 51.03 51.04

ll6 60.94 60.83 60.83 60.82

ll7 69.94 69.67 69.67 69.67

ll8 85.46 84.59 84.58 84.58

ll9 89.94 89.11 89.10 89.10

ll10 90.76 90.74 90.74

S. Stoykov, P. Ribeiro / Journal of Sound and Vibration 315 (2008) 536–555 541
Table 1 shows the convergence of the linear natural frequencies with the number of out-of-plane shape
functions. The values are compared with the ones published by Leissa [25]. Five out-of-plane shape functions
(25 dof) give a very good approximation to the first nine linear frequencies and with nine out-of-plane shape
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Fig. 3. Total amplitude of vibration displacement at t ¼ 0 s: (a) (x, Z) ¼ (0, 0), (b) (x, Z) ¼ (0.5, 0.5); (—) one harmonic, (&) two

harmonics, and (+) three harmonics (po ¼ 5, pi ¼ 9).

S. Stoykov, P. Ribeiro / Journal of Sound and Vibration 315 (2008) 536–555542
functions (81 dof) the first 10 linear frequencies are calculated precisely. The linear natural frequencies are
obtained by solving the eigenvalue problem that is the linear version of Eq. (16). The corresponding linear
mode shapes, shown in Fig. 2, are obtained be replacing the eigenvectors in Eq. (2).

Fig. 3 compares the amplitude of vibration displacement at point (x, Z) and t ¼ 0 s, computed using one,
two and three harmonics. This means that wm is given by

wm ¼ NzðZ; xÞT
Xk

i¼1

w2i�1, (19)

where k represents the number of harmonics. It is recalled that only odd harmonics are considered and that,
therefore, the first harmonic corresponds to the first term in the expansion of qz (Eq. (15)), the third harmonic
to the second term and the fifth harmonic to the third term.

Fig. 3 demonstrates that the one harmonic approximation is only accurate for moderate amplitudes of
vibration. The importance of the fifth harmonic slightly increases with o=o‘1 , but the expansion with the first
and third harmonics gives a very reasonable approximation in the frequency span of the figures and is very
accurate for amplitudes of the order of the plate’s thickness. Consequently, these two harmonics will be used
in the following analysis.

Fig. 4 indicates that the backbone curve is accurately calculated with po ¼ 5. W1 and W3 represent,
respectively, the amplitudes of the first and third harmonics given by

W 1ðZ; xÞ ¼ NzðZ; xÞTw1; W 3ðZ; xÞ ¼ NzðZ; xÞTw3. (20)

The amplitude of the first harmonic is calculated at (x, Z) ¼ (0, 0) where the largest amplitude of vibration
of the first mode is achieved; the amplitude of the third harmonic is calculated at (x, Z) ¼ (0.41, 0.5), where
mode 4 has a large vibration amplitude (Fig. 2).

Fig. 5 shows that eight in-plane shape functions are enough to accurately approximate the backbone curves
of the first and third harmonics. Due to the condensation implemented to obtain Eq. (13), the number of in-
plane shape functions does not interfere with the final number of dof; therefore, we will use nine in-plane shape
functions in the model.

Table 2 compares the ratios of the first nonlinear frequency to the first linear frequency with the ratios
published in Ref. [7]. It can be seen that the results of the present work agree with the ones obtained by
Haterbouch and Benamar, particularly for lower vibration amplitudes. We should note that only one
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Fig. 4. Amplitude of the first and third harmonics with pi ¼ 9 and: (J) po ¼ 4, (&) po ¼ 5, (+) po ¼ 6: (a) first harmonic at (x, Z) ¼ (0, 0)

and (b) third harmonic at (x, Z) ¼ (0.41, 0.5).

Fig. 5. Amplitude of the first and third harmonics with po ¼ 5: (J) pi ¼ 6, (&) pi ¼ 8, and (+) pi ¼ 9: (a) first harmonic at (x, Z) ¼ (0, 0)

and (b) third harmonic at (x, Z) ¼ (0.41, 0.5).

Table 2

Ratio between the first nonlinear frequency and the first linear frequency

wm 0.2 0.4 0.6 0.8 1.0 1.5 2.0

Ref. [7] 1.0075 1.0296 1.0654 1.1135 1.1724 1.3568 1.5790

Total shape 1.0075 1.0297 1.0659 1.1154 1.1777 1.4574 –

First harmonic 1.0075 1.0297 1.0654 1.1134 1.1717 1.3512 1.6296

wm—amplitude of vibration at point (x, Z) ¼ (0, 0) and at t ¼ 0 s, po ¼ 5, pi ¼ 9.

S. Stoykov, P. Ribeiro / Journal of Sound and Vibration 315 (2008) 536–555 543
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harmonic is employed in Ref. [7] and this is the reason why our values diverge from the ones of that reference
at larger amplitudes.

3.2. Bifurcation diagrams and internal resonances

In the following paragraphs, the free vibrations of the plate are studied. Taking into consideration the
former convergence studies, a model with two harmonics (first and third), five out-of-plane shape functions
and nine in-plane shape functions, i.e. a total of 50 dof, is used.

To analyse the free vibrations we will first trace the backbone curves, which relate the frequency with the
vibration amplitude. A branch of solutions is designated as ‘main branch’ if it contains one solution that
cumulatively satisfies the following conditions: occurs at a linear natural frequency or at a linear natural
frequency divided by an integer, occurs at zero vibration amplitude, and corresponds to a shape of vibration
equal to a linear mode shape. A branch of solutions that bifurcates from a main branch will be designated as
‘secondary branch’. We designate as ‘bifurcation points’ the points where two branches with distinct tangents
intersect.

Solving Eq. (16), eigenvalues and eigenvectors are obtained and, from these, a pair frequency/shape that
represents the free vibration of the undamped circular plate. We can distinguish three cases. In the first one
there is no internal resonance, that is, only one mode is important in the motion and only one vector wi is
different from zero. In this case, an approximation to the true nonlinear mode shape was computed, but,
unlike what happens in reality, the shape does not change during a given periodic motion. The second possible
case is the one where there is still no internal resonance, but two vectors wi are different from zero. It is easy to
see from Eq. (16) that in this case the present model results in a shape that changes during a specified motion,
i.e., the shape is not ‘‘self-similar at all times’’ [26]. In both these cases we will say that we obtained an
approximation to a nonlinear mode of vibration. Finally, we have the case of internal resonance where two
modes are coupled [1].

When a figure caption contains a statement like ‘‘bifurcation diagram of the first mode’’, it should be
understood that one of the solutions that is present in that bifurcation diagram corresponds to the first linear
mode of vibration; however, more than one mode may be present in solutions in the nonlinear regime.

In Figs. 6 and 7 the bifurcation diagrams of the plate are shown. These diagrams were defined by starting
the continuation procedure at the first linear mode. Two main branches were found and in each of them a
bifurcation point, which occurs due to a 1:3 internal resonance. A secondary branch links the main branches
Fig. 6. Bifurcation diagram of the first mode at (x, Z) ¼ (0, 0): (—) first main branch, (- - - -) secondary branch, (?) second main branch;

(a) first harmonic and (b) third harmonic.
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Fig. 7. Bifurcation diagram of the first mode at (x, Z) ¼ (0.5, 0.25): (—) first main branch, (- - -) secondary branch, (?) second main

branch; (a) first harmonic and (b) third harmonic.

Fig. 8. Transformation of the shape of the third harmonic of the secondary branch moving from the bifurcation point of the first main

branch to the bifurcation point of the second main branch.

S. Stoykov, P. Ribeiro / Journal of Sound and Vibration 315 (2008) 536–555 545
between these two bifurcation points. The first main branch is born at the first linear mode and it is mainly
defined by the first harmonic. Although the shapes of the first harmonic of solutions in the first main branch
change with the amplitude, they remain very similar to the first linear mode shape shown in Fig. 2. The second
main branch is related to the third mode of vibration and to the third harmonic. This branch starts at the third
linear frequency divided by three and with a shape equal to the third linear mode shape. The shape also
changes with the amplitude of vibration, but remains quite similar to the shape of the third linear mode.

The secondary branch that links the two bifurcation points involves mainly the first and third modes and the
first and third harmonics. As one moves along the secondary branch, from the bifurcation point of the first
main branch to the bifurcation point of the second main branch, the importance of the first harmonic
decreases while the importance of the third harmonic increases. Also, the shape of the third harmonic
transforms from a shape similar to the fourth linear mode—with a very small amplitude—to a shape similar to
the third linear mode. These transformations are shown in Fig. 8. The brief appearance of the fourth mode is
explained below; the third mode is excited due to a 1:3 internal resonance, since 3offi on‘3 , where o is the
frequency of the fundamental harmonic (i ¼ 1 in Eq. (15)).

For most solutions on the secondary branch, the shape of the plate changes considerably during the period
of vibration, because it is described by a sum of the first and third modes and involves both harmonics.



ARTICLE IN PRESS

Fig. 9. Shapes of solutions on the three branches at frequency o=o‘1 ¼ 1:26. First main branch: first harmonic (a), third harmonic (b) and

total shape at t ¼ 0 s (c). Secondary branch: first harmonic (d), third harmonic (e) and total shape at t ¼ 0 s (f). Second main branch: first

harmonic (g), third harmonic (h) and total shape at t ¼ 0 s (i).

S. Stoykov, P. Ribeiro / Journal of Sound and Vibration 315 (2008) 536–555546
The shapes of the first and third harmonics and the total shape of vibration at t ¼ 0 s, of a particular solution
on the secondary branch, are shown in Figs. 9(d)–(f), as an example. Fig. 9 also shows the shapes that
correspond to solutions at the same frequency but on other branches; the fact that different vibration modes
appear on different branches is obvious.

Returning to the first main branch, Fig. 10 shows that after o=o‘1 ffi 1:15, the importance of the third
harmonic increases significantly, a phenomenon that is also due to a 1:3 internal resonance. Fig. 11 shows the
shapes assumed by the first and third harmonics for a particular point of the first main branch. The first shape
is similar to the first linear mode and the second to mode four; this explains the previously detected appearance
of mode four in the beginning of the secondary branch. Both modes are axisymmetric and in this case the
internal resonance does not result in a bifurcation point of the backbone curve. Fig. 11(c) shows the total
shape of vibration, where the influence of the higher mode is visible. However, because both modes involved
are axisymmetric and because the first harmonic is dominant, the influence of the higher mode on the shape is
not as noticeable as in the previous example of internal resonance on the secondary branch.
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Fig. 10. First main branch: (—) total amplitude at t ¼ 0 s (wm=h), (?) amplitude of the first harmonic (W 1=h), (- - -) amplitude of the third

harmonic (W3/h): (a) (x, Z) ¼ (0, 0) and (b) (x, Z) ¼ (0.5, 0.25).

Fig. 11. Shapes at point o=o‘1 ¼ 1:37 of the first main branch of: (a) first harmonic; (b) third harmonic; and (c) total shape of vibration at

t ¼ 0 s.
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Figs. 12(a) and (b) show sections, at Z ¼ 0, of the shape associated with the first and third harmonics for
different points of the first main branch. It is evident that the shapes associated with each harmonic vary with
the frequency of vibration, which is equivalent to stating that they vary with the maximum amplitude of
vibration, due to the effect of the membrane forces. The variation of the first harmonic shape is very small.
Fig. 12(c) represents the shape of the plate defined by both harmonics at t ¼ 0 s. This shape varies with the
maximum amplitude of vibration displacement, i.e. with the frequency of vibration, because the shapes of each
harmonic and the relative weight of each of them vary.

Similar modal coupling and bifurcation phenomena occur in the second mode of vibration. Figs. 13 and 14
represent the bifurcation diagrams of the second mode of the plate. Again, there are two main branches and a
secondary branch, which occurs due to a 1:3 internal resonance and links the main branches between two
bifurcation points. The internal resonance and bifurcation point on the first main branch occur because 3offi
on‘7 and o ¼ on‘2 , where o is the frequency of the fundamental harmonic. The amplitudes of the figures are
computed at (x, Z) ¼ (0.41, 0.5), because here the first harmonic of the first main branch has a large value, and at
(x, Z) ¼ (0.64, 0.875), because the third harmonic of the second main branch has a large value at this point.
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Fig. 12. Sections of shapes at Z ¼ 0, first main branch: (a) first harmonic; (b) third harmonic; and (c) shape of vibration at t ¼ 0 s.

Fundamental frequencies (—)o=o‘1 ¼ 1:05, (?) o=o‘1 ¼ 1:2, and (- - -) o=o‘1 ¼ 1:3.
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The first main branch is born from the second linear mode and, although the shape of vibration changes with
the frequency, it remains very similar to the second linear mode along the complete period of vibration. The
second main branch is related to the seventh mode of vibration and with the third harmonic. The shape changes
with the frequency and amplitude of vibration, but remains similar to the shape of the seventh linear mode. The
secondary branch links the bifurcation points of the two main branches. As one moves along the secondary
branch, from the bifurcation point of the first main branch to the bifurcation point of the second main branch,
the importance of first harmonic decreases while the importance of third harmonic increases. The shapes
associated with the first and third harmonics of the first main branch and of the secondary branch, respectively,
are presented in Fig. 15. The influence of the third harmonic on the secondary branch is obvious in Fig. 15(f).

4. Conclusion

A model to analyse geometrically nonlinear periodic vibrations of thin isotropic circular plates was
presented. It is based on the principle of the virtual work, hierarchical basis functions and the harmonic
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Fig. 13. Bifurcation diagram of the second mode at (x, Z) ¼ (0.41, 0.5): (a) first harmonic and (b) third harmonic: (—) first main branch,

(- - -) secondary branch, and (?) second main branch.

Fig. 14. Bifurcation diagram of the second mode at (x, Z) ¼ (0.64, 0.875): (a) first harmonic, and (b) third harmonic; (—) first main

branch, (- - -) secondary branch, and (?) second main branch.
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balance method. It was shown that the convergence to accurate solutions with the number of shape functions
and of harmonics is rapid, but also that a multi-degree-of-freedom model and more than one harmonic are
often required for accuracy.

The first and second nonlinear modes of vibration were investigated and it was demonstrated that
multimodal oscillations occur both in axisymmetric and in antisymmetric (in relation to the central axis)
nonlinear modes. The bifurcations found occurred due to internal resonances between modes with different
symmetry properties, leading to a loss of axisymmetry in the deformed shape of the plate. Coupling between
modes with similar symmetry properties was also found—in our case between axisymmetric modes: it led to
increasing curvature of the backbone curve, but not to secondary branches. Naturally, the coupling between
modes and consequent excitation of higher harmonics leads to shapes of vibration that strongly change during
the period of vibration.
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Fig. 15. Shapes of solutions on the three branches at frequency o=o‘2 ¼ 1:15. First main branch: first harmonic (a), third harmonic

(b), and total shape at t ¼ 0 s (c). Secondary branch: first harmonic (d), third harmonic (e) and total shape at t ¼ 0 s (f). Second main

branch: first harmonic (g), third harmonic (h) and total shape at t ¼ 0 s (i).
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Travelling waves were not considered in the oscillation of this axisymmetric structure. Nevertheless, exactly
the same methods should allow one to study the effect of travelling waves on the free nonlinear oscillations of
circular plates, by inserting additional functions into the Fourier expansion of the displacements.
Appendix A. Shape functions

In this appendix the shape functions are presented. Since the boundaries are clamped and immovable—for
other boundaries the following sets would be complemented with lower order polynomials—the in-plane
radial and circumferential shape functions, both in the radial direction, are given by

gr�2ðxÞ ¼ hr�2ðxÞ ¼
XINTðr=2Þ

n¼0

ð�1Þnð2r� 2n� 5Þ!!

2nn!ðr� 2n� 1Þ!
xr�2n�1; r42 (A.1)
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Fig. A1. In-plane radial and circumferential shape functions: g1(x) (a), g2(x) (b), g3(x) (c), g4(x) (d), g5(x) (e), g6(x) (f).
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and the out-of-plane radial shape functions are given by

f r�4ðxÞ ¼
XINTðr=2Þ

n¼0

ð�1Þnð2r� 2n� 7Þ!!

2nn!ðr� 2n� 1Þ!
xr�2n�1; r44, (A.2)

where r!! ¼ r(r�2)y(2 or 1), 0!! ¼ (�1)!! ¼ 1 and INT(r/2) denotes the integer part of r/2. The argument x
varies from 0 to 1. Figs. A1 and A2 show some of the functions g(x) and f(x), respectively.

The trigonometric sets of functions, employed as shape functions in the circumferential direction, are gt1
(Z) ¼ ht1 (Z) ¼ ft1 (Z) ¼ 1 and

ftrðZÞ ¼ sinððr� 1ÞZÞ; r42, (A.3)

gtrðZÞ ¼ cosððr� 1ÞZÞ; r42, (A.4)

htrðZÞ ¼ sinððr� 1ÞZÞ; r42. (A.5)
Appendix B. Mass and stiffness matrices of time domain equations of motion

This appendix gives the mass, linear stiffness and nonlinear stiffness matrices of Eq. (12).
Mb and K1b are given by

M
bp2o�p2o

¼ rh

Z
O
NzNzT dO, (B.1)
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Fig. A1. Out-of-plane radial shape functions: f1 (x) (a), f2 (x) (b), f3 (x) (c), f4 (x) (d), f5 (x) (e), and f6 (x) (f).
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K
1bp2o�p2o

¼

Z
O

q2Nz

qr2
1

r

qNz

qr
þ

1

r2
q2Nz

qy2
2

r

q2Nz

qrqy
�

2

r2
qNz

qy

� 	

�

D11 D12 0

D12 D22 0

0 0 D66

2
664

3
775

q2NzT

qr2

1

r

qNzT

qr
þ

1

r2
q2NzT

qy2

2

r

q2NzT

qrqy
�

2

r2
qNzT

qy

2
6666666664

3
7777777775
dO. (B.2)

The indices in Dij assume the values 1, 2 and 6, because the matrix D, defined by Eq. (11), results from a
simplification of the generalized Hooke’s law, which involves a 6� 6 matrix [27]. The same applies to matrix A

defined in Eq. (11).
The nonlinear stiffness matrices K2 and K4 are given by

K2 ¼
U

V

" #
2p2

i
�p2o

, (B.3)
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where

U ¼
1

2

Z
O

A11p
1

R

quz

qx
qNz

qx
qNzT

qx
xþ A12p

1

R

quz

qx
Nz qNzT

qx

"

þ A12
1

p
1

R

1

x
quz

qZ
qNz

qx
qNzT

qZ
þ A22

1

p
1

R

1

x2
quz

qZ
Nz qNzT

qZ

þ2A66
1

p
1

R

1

x
quz

qx
qNz

qZ
qNzT

qZ

#
dO, (B.4)

V ¼
1

2

Z
O

A12
1

R

quz

qx
qNy

qZ
qNzT

qx
þ A22

1

p2
1

R

1

x2
quz

qZ
qNy

qZ
qNzT

qZ

"

þ2A66
1

R

quz

qx
qNy

qx
qNzT

qZ
� 2A66

1

R

1

x
quz

qx
Ny qNzT

qZ

#
dO (B.5)

and

K
4p2o�p2o

¼
1

2

Z
O

A11p
1

R2

quz

qx

� �2 qNz

qx
qNzT

qx
xþ A12

1

p
1

R2

1
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quz

qx

� �2 qNz

qZ
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dO. (B.6)

The in-plane linear stiffness matrix K1p is given by

K
1p2p2

i
�2p2

i
¼

Z
O

qNr

qr

1

r
Nr 1

r

qNr

qy

0
1

r

qNy

qy
qNy

qr
�

1

r
Ny

2
664

3
775

A11 A12 0

A12 A22 0

0 0 A66

2
64

3
75

qNrT

qr
0

1

r
NrT 1

r
qNyT

qy

1

r

qNrT

qy
qNyT

qr
�

1

r
NyT

2
66666664

3
77777775
dO. (B.7)

Appendix C. Harmonic balance equations of motion

In this appendix the frequency domain equations (16) are explicitly given for the particular case where three
harmonics are used. The vector of generalized displacements is then defined as

w ¼

w1

w3

w5

8><
>:

9>=
>; (C.1)

and the transverse displacement and the acceleration are given by

qzðtÞ ¼ w1 cosðotÞ þ w3 cosð3otÞ þ w5 cosð5otÞ, (C.2)
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€qzðtÞ ¼ �o
2w1 cosðotÞ � 9o2w3 cosð3otÞ � 25o2w5 cosð5otÞ. (C.3)

Substituting expressions (C.2) and (C.3) into equations of motion (16) and neglecting harmonics higher than
5ot, the following frequency domain equations of motion are obtained:

�o2

Mb 0 0

0 9Mb 0

0 0 25Mb

2
64

3
75þ

K1b 0 0

0 K1b 0

0 0 K1b

2
64

3
75

0
B@

1
CA

w1

w3

w5

8><
>:

9>=
>;þ

F1

F3

F5

8><
>:

9>=
>; ¼ 0. (C.4)

The cubic nonlinear terms—F1, F3 and F5—are given by

F1

F3

F5

8><
>:

9>=
>; ¼ KNL

w1

w3

w5

8><
>:

9>=
>;, (C.5)

where the nonlinear stiffness matrix KNL is

KNL ¼
1

4

3KNL1 KNL1 0

KNL1 2KNL1 KNL1

0 KNL1 2KNL1

2
664

3
775

0
BB@ þ 2

KNL2 2KNL2 KNL2

2KNL2 0 KNL2

KNL2 KNL2 0

2
664

3
775

þ 2

0 KNL3 2KNL3

KNL3 KNL3 0

2KNL3 0 0

2
664

3
775þ

2KNL4 0 KNL4

0 3KNL4 0

KNL4 0 KNL4

2
664

3
775

þ 2

KNL5 KNL5 0

KNL5 0 2KNL5

0 2KNL5 0

2
664

3
775þ

2KNL6 0 0

0 2KNL6 0

0 0 3KNL6

2
664

3
775
1
CCA. (C.6)

KNLi are of the form

KNLiðwc;w
�
c Þ ¼ K4ðwc;w

�
c Þ � K2ðwcÞ

TK�11p K2ðw
�
c Þ � K2ðw

�
c Þ

TK�11p K2ðwcÞ, (C.7)

where K4ðwc;w�c Þ means that this matrix is a quadratic function of vectors wc and wc*. The following
substitutions should be implemented in Eq. (C.7): wc ¼ w�c ¼ w1 for KNL1; wc ¼ w�c ¼ w3 for KNL4; wc ¼

w�c ¼ w5 for KNL6; wc ¼ w1; w�c ¼ w3 for KNL2; wc ¼ w1; w�c ¼ w5 for KNL3; wc ¼ w3; w�c ¼ w5 for KNL5.
Matrices KNLi, i ¼ 1, y, 6 are symmetric.
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