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Abstract

This study is devoted to the derivation of some properties of the von Kármán equations for geometrically nonlinear

models of plates, with a boundary of arbitrary shape, for applications to nonlinear vibration and buckling. An intrinsic

formulation of the local partial differential equations in terms of the transverse displacement and an Airy stress function as

unknowns is provided. Classical homogeneous boundary conditions—with vanishing prescribed forces and displace-

ments—are derived in terms of the Airy stress function in the case of a boundary of arbitrary geometry. A special property

of this operator, crucial for some energy-conserving numerical schemes and called ‘‘triple self-adjointness’’, is derived in

the case of an edge of arbitrary shape. It is shown that this property takes a simple form for some classical boundary

conditions, so that the calculations in some practical cases are also simplified. The applications of this work are either semi-

analytical methods of solution, using an expansion of the solution onto an eigenmode basis of the associated linear

problem, or special energy-conserving numerical methods.

r 2008 Published by Elsevier Ltd.
1. Introduction

Thin plates are widely used as parts of various engineering structures. In some applications, a linear model is
not sufficient to capture important aspects of their behavior and nonlinearities have to be introduced,
especially when the plate is subjected to displacements of the order of magnitude of the thickness. In the cases
of both static and dynamic loading, a realistic model has to include geometrical nonlinearities [1]. Under
dynamic conditions, numerous nonlinear phenomena can be observed, including energy transfer between
modes as well as chaotic vibrations, that a linear model fails to predict [2]. A nonlinear model is also necessary
when the plate is subjected to thermal or longitudinal forces that lead to buckling elastic deformation.
Whereas the buckling loads can generally be deduced from a linear analysis, the simulation of the plate post-
buckling behavior necessitates the introduction of geometrical nonlinearities into the model [3]. A widely used
way of introducing geometrical nonlinearity in plate models was introduced in the static case by von Kármán
ee front matter r 2008 Published by Elsevier Ltd.
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in 1910 [4]. It consists of retaining lower order nonlinear quadratic terms in the expressions for longitudinal
strain as a function of transverse displacement. This theory has been extended to dynamic problems of
homogeneous linear elastic plates in Ref. [5] and to laminated plates—see e.g. Refs. [1,6]. The same ideas are
also used to formulate shell theories. Examples are the Donnell–Mushtari–Vlasov theories for shallow shells
[7–11]. Another widely used plate theory that includes geometrical nonlinearities is that of Berger [12], in
which the first invariant of the strain tensor is neglected. However, this theory leads to erroneous results for
some boundary conditions, especially when the edge is free of loads in the in-plane direction [13–15]. von
Kármán and Berger theories usually give correct results for large displacements and moderate rotations, if the
transverse displacement remains of the order of magnitude of the thickness of the plate. Other theories include
higher order nonlinear terms, and account for large rotations. The interested reader is referred to Ref. [16] for
a thorough literature review as well as for precise derivations of those formulations.

The von Kármán equations have been used in a huge number of analytical and semi-analytical studies
during the past decades, devoted to a very large spectrum of applications: from the modeling and the analysis
of nonlinear vibrations and chaos in plates [17] and in percussive musical instruments [18], to the crumpling of
paper sheets [19], along with a huge number of engineering studies, from buckling and dynamics of micro/
nanosystems [20,21] to problems in flow-induced vibration [22]. The interested reader is referred to the
following reviews of the literature: [23,24] for studies on plates, [25–27] for shells and to recent textbooks on
nonlinear vibrations [2,16,28]. The von Kármán theory has been found to be attractive to scientists and
engineers probably because it is able to simulate complex nonlinear phenomena with an excellent accuracy as
compared to experiments (among others, see Refs. [2,28–30]), whereas the nonlinearities are included in a very
simple way—by adding only a single bilinear operator to the classical linear Kirchhoff–Love theory.

Aside from the previous cited studies involving particular applications, the von Kármán theory has been
rigorously justified in more mathematical works, through a reduction from the nonlinear three-dimensional
equilibrium equations. Asymptotic expansions have been used in Refs. [31–34] and lead to a classification of
various plate theories—including the von Kármán model—that are valid for a specific scaling of the applied
loads as compared to the thickness of the plate. A recent study [35] proposes a further justification. Even if all
these studies are restricted to static cases and particular boundary conditions, they give interesting and
rigorous justifications of the core of the von Kármán model and in particular the associated nonlinear
strain–displacement law. To the knowledge of the authors, similar studies that include the dynamical terms
have not yet been published.

The von Kármán equations can take several forms, depending on the choice of the unknowns. The natural
choice would be to write the equations with respect to the three unknown displacements. The three obtained
equations include several nonlinear terms, which probably explains why they have been scarcely used in
practical analytical works [15]. If the plate is free of an externally distributed in-plane forcing, one can derive
an alternate formulation with the transverse displacement w and an Airy stress function F as unknowns. In
this case, the problem is written with two equations that take a very compact form, with the nonlinear terms
concentrated within a single bilinear operator Lð�; �Þ. This formulation is useful when one is interested in
modeling the transverse displacement of the plate at first, all other unknown quantities—the stresses and the
in-plane displacements—being obtained in post-processing if necessary, as functions of w and F .

This ðw;F Þ formulation has been used in a large number of studies in the past, in majority related to
analytical or semi-analytical derivations. However, some energy-conserving numerical schemes recently
developed by the second author [36] use this ðw;F Þ formulation to simulate the nonlinear and chaotic response
of a plate in large deflection vibrations. In those cases, a difficulty related to the present ðw;F Þ formulation is
that the in-plane boundary conditions naturally appear in terms of the membrane forces and the in-plane
displacement. The first goal of this article is to revisit those boundary conditions in order to express them in
terms of F and w only, in the two classical homogeneous cases of a free edge and an immovable edge. The
derivation is conducted with intrinsic notations, so that it can be applied to any coordinate system and thus to
plates with an edge of arbitrary shape in the numerical simulations. These in-plane boundary conditions,
derived in Section 3.2, have already been derived and used in the literature in the case of a plate with a circular
edge (see Refs. [37–40]) but not in the general case.

The second goal of this work is to derive a special symmetry property of the bilinear operator Lð�; �Þ,
defined in Ref. [36] as ‘‘triple self-adjointness.’’ This property can be useful in some practical cases. Firstly, it
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allows considerable simplification when a solution to the von Kármán nonlinear equations is obtained by an
expansion onto eigenfunctions, a common manner of deriving semi-analytical solutions [2,16,40]. This latter
point will be emphasized in this paper. Secondly, this property has also been found crucial in the above-cited
energy-conserving numerical method of solution of the von Kármán equations.

This article is organized as follows: the classical governing equations are first presented in Section 2. Then,
the homogeneous boundary conditions are derived in terms of w and F in Section 3. A particular spatial
discretization of the partial differential equations by an expansion onto the eigenmode basis of the associated
linear problem is proposed in Section 4. Finally, Section 5 is devoted to the derivation of the triple self-
adjointness property in the general case and to some simplifications that can be exploited for some particular
boundary conditions.

2. Governing equations

This section gathers all the important hypotheses and formula that lead to the von Kármán equations that
will be written in Section 2.2. All equations are written with the help of intrinsic notation and can be applied to
a plate with an edge of arbitrary shape. They are equivalent to those found in many textbooks (see e.g. Refs.
[11,1,6,16]), often written in a particular set of coordinates associated with a particular edge geometry
(rectangular or circular). The interested reader will find in Appendix A some precisions about the notations
used in this article and in Appendix C the application of the intrinsic formulation to particular geometries: a
rectangular plate and a circular plate.

The underlying hypotheses that lead to the von Kármán equations formulation of Section 2.2 are recalled
here:
(1)
 A Kirchhoff–Love kinematic, where any normal to the plate mid-surface before deformations remains
normal to the deformed mid-surface, is used. The transverse shear stresses are thus neglected.
(2)
 The normal stress along the transverse direction is neglected.

(3)
 A von Kármán-like strain–displacement law is used, by neglecting the nonlinear terms of higher order in

the Green–Lagrange strain tensor plane part.

(4)
 The material is linear, homogeneous and isotropic.

(5)
 The in-plane and rotatory inertia terms are neglected.

(6)
 The in-plane external forcing is neglected.
2.1. Preliminary derivations

The plate in its reference configuration occupies a domain O of a three-dimensional Euclidean space, defined
by its mid-surfaceS, a bounded region of a given infinite planeP (called the mid-plane), and its thickness h by
O ¼ S� ½�h=2; h=2�. We use the right-handed orthonormal basis ðe1; e2; ezÞ, with ez chosen normal to the
mid-surface S of the plate so that ðe1; e2Þ is a basis of P. In the following, we shall often separate the in-plane
components (along e1 and e2) and the out-of-plane components (along ez) of vectors and tensors. We shall use
the Einstein summation rule, with Greek letter subscripts referring to in-plane components (i.e. ea means e1 or
e2, that is to say a 2 f1; 2g).

The location of any point M of the plate is defined by OM ¼ xþ zez, where O is a given point of P,
z 2 ½�h=2 h=2� and x 2 P are the transverse and in-plane coordinates, respectively. Under hypothesis (1), the
displacement field of the plate during its deformations may be written as

Uðx; zÞ ¼ uðxÞ � z=wðxÞ þ wðxÞez, (1)

where u and w are, respectively, the in-plane and transverse displacements of point M and =w is the plane part
of the vector gradient of scalar field w. Then, using hypothesis (3), the plane part e of the Green–Lagrange
strain tensor reads

eðxÞ ¼ eabea � eb ¼ eðxÞ � zjðxÞ (2)
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with membrane strain tensor e ¼ �abea � eb and curvature tensor j ¼ kabea � eb that are functions of u and w:

e ¼ 1
2
ð=uþ =Tuþ =w� =wÞ; j ¼ ==w. (3a, b)

In the above equations, � denotes the tensor product of two vectors, =u is the tensor gradient of vector field u

and =Tu is its transpose.
The material is assumed to be linear, elastic, homogeneous and isotropic (Hyp. (4)), of Young’s modulus E

and Poisson’s ratio n. Under hypotheses (2), all out of plane components of the stress tensor are neglected.
Then, by defining the membrane forces and moment’s tensor fields with integration of the stress tensor plane
part r over the thickness of the plate:

N ¼

Z h=2

h=2
rdz; M ¼

Z h=2

�h=2
zrdz, (4)

one obtains the constitutive laws:

N ¼ A½ð1� nÞeþ n tr e1�, (5a)

M ¼ �D½ð1� nÞ==wþ nDw 1�, (5b)

where A ¼ Eh=ð1� n2Þ and D ¼ Eh3=½12ð1� n2Þ� are, respectively, the membrane stiffness and the flexural
stiffness of the plate.

2.2. Equations of motion

By applying a variational formulation (Hamilton’s principle or the principle of virtual work) to the plate,
one obtains the local equations of motions in terms of N and M. Then, by neglecting the in-plane and rotatory
inertia terms (hypothesis (5)), and in the particular case of vanishing external membrane loading (hypothesis
(6)), the in-plane equilibrium equation is satisfied exactly by defining the following Airy stress function F :

DF1� ==F � N. (6)

In this case, the equations of motions can be written:

DDDwþ rh
q2w
qt2
¼ Lðw;F Þ þ pðxÞ, (7a)

DDF ¼ �
Eh

2
Lðw;wÞ, (7b)

where pðxÞ is a normal pressure loading and r denotes the mass density of the material. The interested reader
can refer to Ref. [41] or to the textbooks [15,6,16] for exhaustive mathematical derivations. The problem is
now defined in terms of two unknown scalar fields—transverse displacement w and Airy stress function F—
that are solutions of the two scalar equations (7a, b). Eq. (7) is the transverse equation of motion and Eq. (7b)
comes from the compatibility condition [1].

The bilinear operator Lð�; �Þ introduced in the above equations appears in any von Kármán-like plate or
shell theory [1,6–8,10]. It is sometimes referred to as the ‘‘Monge-Ampère form’’ [34] and will be named in this
work as the ‘‘von Kármán operator’’. It is defined by

Lðw1;w2Þ ¼ Dw1 Dw2 � ==w1 : ==w2, (8)

where : denotes the doubly contracted product of two tensors (see Appendix A). One can remark that all the
nonlinear terms of the equations of motion are included within this single operator.

It is worth remarking that the Airy stress function, as defined by Eq. (6) as a function of N through its
second derivatives, is unique up to an arbitrary function, bilinear in the components of x. However, this non-
uniqueness is not a problem as F is only an auxiliary function that enables to solve the problem and to obtain
the physical variable w, and in a second step, u and N. In a practical problem, F can by uniquely determined
either by some particular boundary conditions [31,34] or by adding linear conditions on the boundary that do
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Fig. 1. Sketch of domain O occupied by the plate and its middle plane surface S with edge qS.
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not change the value of w, u and N. The particular discretization procedure described in Section 4 also leads to
a unique determination of F .

2.3. Boundary conditions

The boundary is subjected to an external forcing, represented by a force field Teez þNe and a moment field
Me, with Ne andMe two vectors parallel to the plate mid-plane. One can also impose an in-plane displacement
ue, a transverse displacement we or a normal rotation of the edge wne. The boundary conditions can be
obtained in a classical manner using the principle of virtual work or the Hamilton principle [41,1,6,16]. At any
point of the plate boundary qS, s denotes the arc-length and ðn; sÞ are the normal and tangent unit vector (see
Fig. 1). The boundary conditions are:

u ¼ ue or Nn ¼ Ne, (9a, b)

w ¼ we or Qn þ
qMnt

qs
¼ Te þ

q
qs
ðMe � sÞ, (9c, d)

=w � n ¼ wne or Mnn ¼Me � n, (9e, f)

where Qn ¼ ðdivMþN=wÞ � n, Mnn ¼ n �Mn is the normal bending moment and Mnt ¼ s �Mn is the normal
twisting moment. One can note that considering Eq. (5b) and identities (B.20, B.21, B.22) leads to

divM ¼ �D=ðDwÞ. (10)

In addition to the above boundary conditions (9a–f), the balance with Kirchhoff’s corner load has to be
fulfilled [42]: at any angular point of coordinate t0 of the plate boundary qS,

w ¼ we or ½Mnt �Me � s�
tþ
0
t�
0
¼ 0, (11)

where ½f �a
þ

a� ¼ f ðaþ eÞ � f ða� eÞ, with e5a, denotes the variation of function f around point a.
The purpose of the following sections is to rewrite the boundary conditions (9a–h) in terms of unknowns w

and F only. We restrict ourselves to the cases of homogeneous boundary conditions, defined by the
vanishing of the applied loads (Ne ¼Me ¼ Te ¼ 0 on qS) and the applied displacements (ue ¼ we ¼ wne ¼ 0
on qS).

3. Boundary conditions in terms of ðw;FÞ

In this section, we use an orthogonal coordinate system to parametrize the plate boundary qS, so
that qS is exactly a coordinate line. For details about the curvilinear coordinate systems used in this work
as well as on differential operators, the reader can refer to Appendix B. ðn; tÞ denotes the two curvilinear
coordinates and Cn and Ct are the corresponding coordinate lines. qS coincides with Ct for a particular value
of n. n and s still denote unit vectors normal and tangent to qS (see Fig. 1). Rn and Rt are the curvatures
of Cn and Ct and if f denotes the mapping that defines the coordinate system, hn ¼ kqf=qnk and ht ¼ kqf=qtk,
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so that

n ¼
1

hn

qf
qn
; s ¼

1

ht

qf
qt

. (12)

The arc-length s on the plate boundary qS is then defined by ds ¼ ht dt.

3.1. Flexural boundary conditions

To be exhaustive, the classical homogeneous flexural boundary conditions are rewritten here in terms of w

and F only.
	
 In the case of a transversely and rotationally immovable edge, we ¼ wne ¼ 0 and Eqs. (9c, e) are written as

w ¼ 0; =w � n ¼
qw

qn
¼ 0. (13a, b)
	
 For a transversely free edge, Te ¼ 0 and the twisting moment Me � s has to be a constant along the edge.
Eq. (9d) together with Eqs. (10) and (5b) leads to

=ðDwÞ � nþ ð1� nÞ
q
qs
½n � ð==wÞs� þNwðF ;wÞ ¼ 0, (14)

where

NwðF ;wÞ ¼
1

D
ðNnÞ � =w (15)

is the nonlinear part of this boundary condition. One can remark thatNw is canceled on the edge if Nn ¼ 0,
and thus in the case of an edge free of loads in the in-plane direction (see Section 3.2.1).

	
 For a rotationally free edge, Me � n ¼ 0. With Eq. (9f), one obtains:

Mnn ¼ n �Mn ¼ 0, (16)

which gives

nDwþ ð1� nÞn � ð==wÞn ¼ 0. (17)

3.2. In-plane boundary conditions

3.2.1. Free edge in the in-plane direction

The case of a free edge in the in-plane direction is defined by the vanishing of applied external in-plane
forcing at the plate edge, namely Ne ¼ 0. With Eqs. (9b, d), one obtains for all points of qS:

N � n ¼ 0 (18)

that may be written, with the help of Eq. (6), as

ðDF1� ==F Þ � n ¼ 0. (19)

This condition can be written in the above-defined orthogonal curvilinear coordinate system with Eqs. (B.15)
and (B.16) as given in Appendix B.1. Eq. (18) is then equivalent to the following two scalar equations that the
Airy stress function F has to verify at any point on the boundary:

q2F

qt2
þ

h2
t

Rthn

qF

qn
�

1

ht

qht

qt
qF

qt
¼ 0, (20a)

q2F
qn qt

�
ht

Rn

qF

qn
�

hn

Rt

qF

qt
¼ 0. (20b)
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A much simpler expression for these boundary conditions can now be obtained by considering the following
conditions, for any point on the boundary:

F ¼
qF

qn
¼ 0. (21a, b)

Since the above relation (21a) is valid at any point on the edge qS, it necessarily implies

qF

qt
¼

q2F
qt2
¼

q2F
qt qn

¼ 0 (22)

for any point on the boundary, so that Eqs. (20a, b) and consequently Eq. (18) are verified. As a consequence,
Eqs. (21a, b) are sufficient conditions to impose a free edge in the in-plane direction. To the knowledge of the
authors, this last result has been introduced in the literature only by Ciarlet in Ref. [31] and used in Ref. [40] in
the case of a circular plate.

3.2.2. Immovable edge

The case of an immovable edge is defined by a vanishing in-plane displacement on the plate boundary, that
is to say for all points on qS (Eqs. (9a, c)):

u ¼ unnþ uts ¼ 0. (23)

Expressing the above condition, written using displacements, in terms of the Airy stress function F is less
straightforward than in the previous Section 3.2.1. The usual approach is first to integrate the local equation
(36) and thus obtain an analytical expression for F as a function of x, then to calculate N with Eq. (6) in order
to obtain � with the constitutive relation (5a) and finally to integrate � to obtain u with Eq. (3). It is then
possible to apply the boundary conditions (23) in terms of u.

Here, we follow an idea introduced in Ref. [39] that consists in writing two scalar equations with F that are
consequences of the boundary conditions written in terms of u. We first write the membrane strain tensor e as a
function of ut and un, by expressing Eq. (3) in curvilinear coordinates with Eqs. (B.9) and (B.11). We have
e ¼ �nnn� nþ �tts� sþ �ntðs� nþ n� sÞ with

�nn ¼
1

hn

qun

qn
�

ut

Rn

þ
1

2h2
n

qw

qn

� �2

, (24a)

�tt ¼
1

ht

qut

qt
þ

un

Rt
þ

1

2h2
t

qw

qt

� �2

, (24b)

�nt ¼
1

2

1

ht

qun

qt
þ

1

hn

qut

qn
�

ut

Rt
þ

un

Rn

þ
1

hnht

qw

qn

qw

qt

� �
. (24c)

A first remark is that since Eq. (23) is valid at any point on the edge qS, it necessarily implies that

qut

qt
¼

qun

qt
¼ 0. (25)

Consequently, by introducing Eqs. (23) and (25) into Eq. (24b), one arrives at

�tt þN1ðwÞ ¼ 0, (26)

where the nonlinear part may be written as

N1ðwÞ ¼ �
1

2h2
t

qw

qt

� �2

. (27)

The above boundary condition can be written in terms of F by combining Eqs. (6) and (5a), yielding

e ¼
1

hE
DF1� ð1þ nÞ==F½ �, (28)
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so that

DF � ð1þ nÞs � ð==F ÞsþN1ðwÞ ¼ 0. (29)

The second boundary condition is obtained as a second consequence of Eq. (23), by eliminating all the
derivatives with respect to n in the components of e so that only derivatives with respect to t remain and then
vanish, due to the above remark (25). One can verify using Eqs. (24a–c) that the following expression is valid
for any point on the boundary, if Eq. (23) is fulfilled:

q
qn
ðht�ttÞ �

hnht

Rt
�nn � 2

q
qt
ðhn�ntÞ þNF ðwÞ ¼ 0 (30)

with

NF ðwÞ ¼
ht

2Rthn

qw

qn

� �2

þN2ðwÞ, (31)

where N2 is a nonlinear function of qw=qt, not written here for the sake of brevity. The above boundary
condition (30) can be easily written in terms of F by using Eq. (28). This operation will not be presented here in
general curvilinear coordinates, as it leads to very complex expressions. However, the interested reader will
find those calculations in case of particular geometries in Appendix C.

A simple practical case is obtained if the transverse displacement w vanishes on the entire boundary (w ¼ 0).
This assumption is justified as immovable edge in-plane boundary conditions are usually associated with zero
transverse displacement, as, for example, in clamped edge, simply supported or hinged edge (see Section 5.2)
conditions. As before, it leads to

qw

qt
¼ 0 (32)

at any point on the edge, so that N1 and N2 vanish in the above two boundary conditions (29) and (30).
Relations (29) and (30) can be considered as two boundary conditions written in terms of F . These two

equations are necessary to ensure u ¼ 0 on qS, but not sufficient. To ensure u ¼ 0 on qS, one would have to
integrate in space the expression for F with Eqs. (28) and (3a) to obtain u that would thus be defined up to an
arbitrary rigid body motion. The latter would then be canceled by applying condition Eq. (25). However, Eqs.
(29) and (30) written in terms of F are two sufficient boundary conditions if one is interested in transverse
displacement w only, as u appears only through F in the present formulation (Eqs. (36a, b)).

3.3. Crossed-similarity between the free edge and the clamped edge

In the case of an edge free of loads in both the transverse and the in-plane direction (classically denoted
‘‘free edge’’ boundary conditions), one has to impose Eqs. (14), (17) and (21). It may be written as

F ¼ 0;
qF

qn
¼ 0, (33a, b)

Eq. (14); Eq. (17). (33c, d)

In the case of an edge clamped in any direction (classically denoted ‘‘clamped edge’’ boundary conditions),
one has to impose Eqs. (13), (29) and (30). It appears as

Eq. (29); Eq. (30), (34a, b)

w ¼ 0;
qw

qn
¼ 0. (34c, d)

One can note that Eqs. (33a, b) have the same form as Eqs. (34c, d), so that free boundary conditions in the in-

plane direction written in terms of Airy stress function F have the form of clamped boundary conditions. This
result has been previously pointed out in Ref. [40] in the case of a circular plate and is extended here to a plate
of arbitrary geometry.
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Conversely, comparing Eqs. (33c, d) and Eqs. (34a, b) is difficult in the general case, because the
corresponding expressions in orthogonal curvilinear coordinates are complex. However, this can be done in
Cartesian coordinates—c.f. Eqs. (C.3a, b) and (C.4, C.6)—and in polar coordinates—c.f. Eqs. (C.11a, b) and
Eqs. (C.12, C.14). Consequently, one can observe that immovable in-plane boundary conditions (in term of F )
and transverse free boundary conditions (in terms of w) have forms that are very close to each other but not

perfectly identical, as some signs differ.
4. A solution to the nonlinear problem

4.1. Dimensionless form of the equations

Eqs. (7a, b) are rewritten in a dimensionless form by defining the following dimensionless quantities,
denoted by overbars:

x ¼ ax; w ¼ w0w; t ¼ a2
ffiffiffiffiffiffiffiffiffiffiffiffi
rh=D

p
t; F ¼ Ehw2

0F , (35a)

p ¼ Dw0=a4p; N ¼ Ehw2
0=a2N; M ¼ Dw0=a2M e ¼ w2

0=a2e, (35b)

where a is the characteristic length of the mid-surface S and w0 is the order of magnitude of
transverse displacement w, generally chosen with reference to a particular problem. Substituting the above
definitions (Eqs. (35a, b)) into the equations of motion (7a, b) and dropping the overbars in the result, one
obtains

DDwþ €w ¼ eLðw;F Þ þ pðxÞ, (36a)

DDF ¼ �1
2

Lðw;wÞ, (36b)

where e ¼ 12ð1� n2Þw2
0=h2 and €w denotes the second time derivative of w. The choices for w0 can be h, h2=a,

h3=a2, etc. w0 ¼ h is a good choice in the general case, because it enables easy interpretation of the results by
comparing the transverse displacement magnitude directly to the thickness of the plate. However, w0 ¼ h2=a

or w0 ¼ h3=a2 leads to a small value of e compared to unity, if the plate is thin (h=a51). This latter scaling
choice can be useful if perturbation methods are used, as they are justified when the nonlinear terms (scaled
by e) are small compared to the linear terms [39,40,43].
4.2. Mode expansion

The problem described by Eqs. (7a, b) can be discretized by expanding w and F onto proper expansion
functions. A useful set is the eigenmodes of the linear part of Eqs. (7a, b). The main advantage is that the
obtained discretized problem has a diagonal linear part.

We denote by ðok;FkðxÞÞ and ðzk;CkðxÞÞ the eigenmodes of the linear part of Eqs. (7a, b)—Fk and Ck are
two functions defined over domain S—that are solutions of, for all k 2 N
:

DDFk � o2
kFk ¼ 0, (37a)

DDCk ¼ z4kCk (37b)

along with proper boundary conditions, chosen in Eqs. (13a, b), (14) and (17) for Fk and in Eqs. (21), (29) and
(30) for Ck.

The solution of Eqs. (7a, b) is obtained by using the following expansions for the unknowns w and F :

wðx; tÞ ¼
Xþ1
k¼1

FkðxÞqkðtÞ; F ðx; tÞ ¼
Xþ1
k¼1

CkðxÞZkðtÞ. (38a, b)
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4.3. Quadratic ðZ; qÞ-formulation

By introducing Eq. (38a) into Eq. (7b), using Eq. (37b), multiplying the result by Ck, integrating over the
mid-surface S and finally using the orthogonality properties of modes ðzk;CkÞ, one obtains the membrane
modal coordinate Zk for all k 2 N
:

ZkðtÞ ¼ �
1

2z4k

Xþ1
p¼1

Xþ1
q¼1

Hk
pqqpðtÞqqðtÞ, (39)

where

Hk
pq ¼

RR
SCkLðFp;FqÞdSRR

SC
2
k dS

. (40)

By introducing Eqs. (38a, b) into Eq. (7a), using Eqs. (39) and Eq. (37a), multiplying the result by Fk,
integrating over the mid-surface S and finally using the orthogonality properties of modes ðok;FkÞ, one
obtains the following set of equations, satisfied by the transverse modal coordinates qk, for all k 2 N
:

€qkðtÞ þ 2xkok _qkðtÞ þ o2
kqkðtÞ ¼ e

Xþ1
p¼1

Xþ1
q¼1

Ek
pqqpðtÞZqðtÞ þQkðtÞ (41)

with

Ek
pq ¼

RR
SFkLðFp;CqÞdSRR

SF
2
k dS

. (42)

The initial continuous problem of Eqs. (36a, b), with proper boundary conditions, has been discretized and
now consists in finding modal coordinates ðqk; ZkÞ, for all k 2 N
, solutions of the set of ordinary differential
equations (ODEs) (39) and (41). One can remark that the present formulation is quadratic in terms of the
fqk; Zkgk2N
 . A linear viscous modal damping term has also been introduced, with modal damping factor xk.

4.4. Cubic q-formulation

Another formulation can be obtained by eliminating Zk in Eq. (41) by using its expression as a function of
the fqkgk2N
 (Eq. (39)). Eq. (41) becomes, for all k 2 N
:

€qkðtÞ þ 2xkok _qkðtÞ þ o2
kqkðtÞ ¼ �e

Xþ1
p¼1

Xþ1
q¼1

Xþ1
r¼1

Gk
pqrqpðtÞqqðtÞqrðtÞ þQkðtÞ (43)

with

Gk
pqr ¼

Xþ1
i¼1

Hi
pqEk

ri

2x4i
. (44)

In this case, the in-plane unknowns (F , through the in-plane modal coordinates fZkgk2N
) do not appear in
the formulation: one has just to calculate the transverse modal coordinates fqkgk2N
 by solving the set of ODEs
(43) and then using the deformed shapes fFkgk2N
 with Eq. (38a) to obtain wðx; tÞ. The present formulation has
fewer unknowns (only the fqkgk2N
) but, on the other hand, it is cubic in terms of the fqkgk2N
 .

4.5. Discussion

A practical advantage of the above choice of the eigenmodes to discretize the nonlinear equations of
motions is that the damping can be heuristically introduced by viscous modal damping terms, whose value for
each mode must be determined experimentally in any particular application. One obtains a rich damping
model, richer than traditional proportional damping approximations, which is essential if one is interested in
simulating realistic plate vibration decays [44].
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In a practical setting, one must truncate the infinite set of Eqs. (38a, b), by retaining Nw 2 N functions Fk

and NF 2 N functions Ck in the expansions. This truncation has to be carefully done [45,46] and the number
of expansion functions that have to be retained depends on the practical problem under study, in order to
obtain a good accuracy of the solution.

The advantage of the second (q cubic) formulation is that it is more compact, since it introduces fewer
unknowns (only Nw unknowns qk in Eq. (43)). It has been successfully used in many past studies of nonlinear
vibrations of plates and shells. The interested reader is referred to the following books for thorough literature
reviews [2,16,28]. The cubic-q formulation has also served as a basis for numerical simulations in more recent
studies. Among others, the interested reader can refer to the above-cited textbook [28] and to [46,47], that
present various numerical studies that solve similar cubic sets of ODEs. Direct time integrations as well as
amplitude/frequency diagrams obtained with the continuation software AUTO [48] are presented.

On the contrary, the first (Z; q) formulation has the advantage of being quadratic in terms of the unknowns.
Even if more unknowns have to be considered (NF unknowns Zk in Eq. (39) plus Nw unknowns qk in Eq. (41)),
some resolution methods mandatory need a quadratic formulation of the problem. This is the case of the
Asymptotic Numerical Method [49,50], a powerful continuation method that has recently been implemented
in the Matlab software environment, under the name MANLab [51,52]. Other interesting examples are some
energy-conserving schemes, developed by the second author [36] in the time–space (i.e. non-modal) context,
but applicable to systems of ODEs as well. In both formulations, the number of time integrations is the same:
Nw second-order nonlinear ODEs have to be integrated, since Eq. (39) is an algebraic nonlinear set of
equations.

Another remark is that any eigenmode Ck solution of Eq. (37b) associated with two boundary conditions
chosen in Eqs. (21), (29) and (30) is uniquely determined. As a consequence, F , calculated with relation (38b),
is also perfectly defined, with Zk and qk solutions of Eqs. (39) and (41). F obtained in this way then constitutes
one solution of the set (36a, b), which is not the only one, since an F solution of (36a, b) is defined up to an
arbitrary bilinear space function (see Section 2.2).
5. Triple self-adjointness of the von Kármán operator

In this section, a particular property of Lð�; �Þ is investigated in the general case of a plate boundary of
arbitrary geometry. This property has been introduced and called ‘‘triple self-adjointness’’ in Ref. [36] in the
case of a rectangular plate. It states that for scalar field f , g and h, from S into R, one hasZZ

S

fLðg; hÞdS ¼

ZZ
S

Lðf ; gÞhdS þ

I
qS

I ds, (45)

where I is a function of f , g and h and their spatial derivatives.
The purpose of this section is to prove the above property and to find the expression for I , in the case of a

boundary of arbitrary shape. Moreover, it will be shown that I vanishes for some particular boundary
conditions.
5.1. General case

One can first remark that, by using identities (B.14) twice and (B.17):

f Dh ¼ f divð=hÞ (46)

¼ divðf =hÞ � =f � =h (47)

¼ divðf =hÞ � divðh=f Þ þ hdivð=f Þ, (48)

so that

f Dh ¼ hDf þ divðf =h� h=f Þ. (49)
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Then, using the same method and identities (B.14), (B.17) and (B.21), one has, for any vector field v:

Dgdiv v ¼ divðDg vÞ � v divð==gÞ. (50)

Finally, by multiplying Eq. (49) by Dg and using Eq. (50) by substituting f =h� h=f for v, one obtains

f DgDh ¼ hDf Dgþ div½Dgðf =h� h=f Þ� � ðf =h� h=f Þ � divð==gÞ. (51)

In the same manner as above, by using identity (B.19) twice, one can show that

f ==h ¼ h==f þ =ðf =h� h=f Þ. (52)

Finally, by multiplying Eq. (52) by ==g and using identity Eq. (B.18) by substituting ==g for T and f =h�

h=f for u, one obtains

f ==g : ==h ¼ h==g : ==f þ div½==gðf =h� h=f Þ� � divð==gÞ � ðf =h� h=f Þ. (53)

Now, by considering the definition (Eq. (8)) of the von Kármán operator Lð�; �Þ and using Eqs. (51) and (53),
one obtains the following compact formula:

fLðg; hÞ ¼ Lðf ; gÞhþ div½ðDg 1� ==gÞðf =h� h=f Þ�. (54)

Then, by integrating the above formula over domain S and applying the divergence theorem, one obtains the
triple self-adjointness property (45), with

I ¼ ½ðDg 1� ==gÞðf =h� h=f Þ� � n. (55)

5.2. A particular simplification

The purpose of this section is to investigate which of the classical boundary conditions leads to the
vanishing of IðxÞ for any x 2 qS. In this case, one hasZZ

S

fLðg; hÞdS ¼

ZZ
S

Lðf ; gÞhdS, (56)

that simplifies the calculation of the coefficients that appear in the modal expansion introduced in Section 4, as
some of them become equal. In fact, if Eq. (56) holds, it is obvious with Eqs. (40), (42) and (44) that for any
integer p, q, r, k:

E
q
pk ¼ Hk

pq; Gk
pqr ¼

Xþ1
i¼1

Hi
pqHi

rk

2x4i
(57)

provided the mode shapes have been normalized in the following way, for all k:ZZ
S

F2
k dS ¼

ZZ
S

C2
k dS ¼ 1. (58)

The above simplification can be very useful because all coefficients E
q
pk and Hk

pq are numerically evaluated in a
practical case. If NF �Nw functions Ck � Fk are retained, considering the symmetry of the von Kármán
operator (Lðf ; gÞ ¼ Lðg; f Þ), one has to numerically evaluate N ¼ NF NwðNw þ 1Þ=2 coefficients, a number that
can be large in a practical case (If NF ¼ Nw ¼ 30, N ¼ 13950). If Eq. (57) holds, only half of the coefficients
have to be calculated, which saves half the computation time.

As a preliminary step, IðxÞ is written in the orthogonal curvilinear coordinate system defined in Section 3.2,
with Eqs. (B.9), (B.15) and (B.16) of the appendix. One obtains

I ¼
1

hn

1

h2
t

q2g

qt2
þ

1

hnRt

qg

qn
�

1

h3
t

qht

qt
qg

qt

" #
f
qh

qn
� h

qf

qn

� �

�
1

ht

1

hnht

q2g
qn qt

�
1

hnRn

qg

qn
�

1

htRt

qg

qt

� �
f
qh

qt
� h

qf

qt

� �
(59)
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Then, two simple cases lead to a vanishing of I at any point on the boundary:

either f ¼
qf

qn
¼

qf

qt
¼ 0 or h ¼

qh

qn
¼

qh

qt
¼ 0 (60)

at any point on the boundary. As we are interested in proving Eqs. (57), considering Eq. (40), f plays the role
of Airy stress function F (or any in-plane mode Ck); g, and h play the role of transverse displacement w (or
any transverse mode Fk). Thus, Eq. (57) is fulfilled in the following two cases:
	

Ta

Sum

In-

Eq

In-

F ¼

Th
if the edge free of loads in the in-plane direction, since this case is obtained if

F ¼
qF

qn
¼ 0 (61a, b)

at any point on the edge (see Section 3.2.1);

	
 if the edge is clamped in the transverse direction, since this case is obtained if

w ¼
qw

qn
¼ 0 (62)

at any point on the edge.

As in Section 3.2.1, we have considered that f ¼ qf =qn ¼ 0 at any point at the edge necessarily implies that
qf =qt ¼ 0, for any scalar field f . The above two cases obviously show that classical clamped-edge as well as
free-edge boundary conditions necessarily implied property Eq. (57).

The particular case of hinged-edge boundary conditions has to be addressed. As the nonlinearities couple
transverse-w and in-plane-F motion, one has to consider two subcases.
	
 The case of a simply supported edge is obtained if

w ¼Mnn ¼ 0 (63a, b)

and if the edge is free of loads in the plane (Eqs. (61a, b)). In this case, because of this latter reason, property
Eq. (57) is fulfilled.

	
 The case of a hinged edge is obtained if Eqs. (63a, b) are fulfilled and if the edge is immovable in the plane

(Eqs. (29) and (30)). Considering the corresponding expressions as a function of w and F , it appears that
ble 1

mary of the classical homogeneous boundary conditions and the associated relations in terms of w and F

Transversely immovable, w ¼ 0 Transversely free Eq. (14)

Rot. immov. Rot. free Rot. immov. Rot. free

qw=qn ¼ 0 Eq. (17) qw=qn ¼ 0 Eq. (17)

plane immovable

s. (29) and (30)

Clamped STSA Hinged

plane free

qF=qn ¼ 0

STSA Simply supported STSA STSA Free STSA

e cases where the simplified TSA property (56) holds are denoted by ‘‘STSA’’.
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they cannot generally lead to the vanishing of I . As a consequence, in the case of a hinged edge, property
Eq. (57) is generally not fulfilled.

As a consequence, three classical cases lead to the vanishing of I : a free edge, a clamped edge and a simply
supported edge. The case of a clamped edge in the transverse direction with a free edge in the in-plane
direction, that also leads to the vanishing of I , has already been shown in Ref. [53]. The case of a hinged edge
does not, in general, simplify Eq. (45) to Eq. (56). These results are gathered in Table 1.

6. Conclusion

The main goal of the paper has been to exhibit some properties of the von Kármán model of nonlinear
mechanical behavior of thin plates. As a preliminary, the main steps of the derivation of the two governing
partial differential equations have been written in terms of two unknown scalar fields: the transverse
displacement w and an Airy stress function F . To obtain a general and compact formulation, intrinsic
notations have been used, so that all the important relations can be written in any particular coordinate
system, depending on the plate edge shape. This can be easily done by using the formula giving the classical
differential operators in a particular coordinate system, to be found in many textbooks. As an example, an
appendix gathers all important formulae, written in Cartesian and polar coordinates.

As the nonlinearities couple the transverse and in-plane motions, one has to consider in-plane boundary
conditions (BC) even if only the transverse behavior of the plate is addressed. As a consequence, in-plane BC
in terms of F have been derived for a plate edge of arbitrary geometry, in the particular cases of a free edge
and an immovable edge. In the case of a free edge, it has been shown that the in-plane BC in terms of F take
the form of clamped boundary conditions. In the case of an immovable edge, the in-plane boundary
conditions show complicated expressions in terms of F , close, but not identical, to free BC. An intrinsic
expression, written in terms of the membrane strains for the sake of brevity and that can be easily rewritten in
terms of F , has been given.

Then, the governing partial differential equations have been discretized by expanding the two unknown
scalar fields w and F onto the eigenmodes of the associated linear problem. Two discretized formulations have
been exhibited, in terms of two sets of nonlinear ordinary differential equations (ODE). The first one is
quadratic in terms of the unknowns, an essential property if those ODE have to be integrated by the
asymptotic numerical method, such as a continuation method [49,50]. This quadratic form is also useful in the
context of some energy-conserving numerical schemes [36]. A second formulation, cubic in terms of the
unknowns and already used in past studies on plates, has also been obtained.

Finally, a particular property of the so-called von Kármán bilinear operator has been given and proved,
again for a plate edge of arbitrary geometry, thanks to the intrinsic formulation. It is shown that this property,
called the triple self-adjointness, can lead to simplifications that enable to divide by a factor two the
computation time needed for the numerical coefficients of the ODE set calculation. This property has also
been found to be essential to use the above-cited energy-conserving numerical schemes [36].
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Appendix A. Notations for operators

In this article, we use the same notation P for the plate mid-plane—a two-dimensional Euclidean space—
and the associated two-dimensional vector space.

u � v denotes the scalar (dot) product between two vectors u and v. In an orthonormal coordinate system, it
writes u � v ¼ uava.
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u� v denotes the tensor (dyadic) product between vectors u and v. If T ¼ u� v, where u; v 2 P, one defines
the linear transformation w 2 P 7!Tw ¼ ðv � wÞu 2 P. The components of tensor T on the basis ðe1; e2Þ of P
are Tab ¼ uavb. The obtained tensor is a second-order tensor, an element of a four-order vector space written
P�P. One usually writes T ¼ Tabea � eb.

S : T denotes the doubly contracted (double dot) product of tensors S and T, that writes in an orthonormal
coordinate system S : T ¼ SabTba.

=a and =u denote, respectively, the vector gradient of scalar field a and the tensor gradient of vector field u.
div u and divT denote, respectively, the scalar divergence of vector field u and the vector divergence of tensor
field T. Da is the Laplacian of scalar field a and ==a is the tensor gradient of the vector gradient of scalar field
a, also called the Hessian. All these differential operators are defined in Appendix B.

Appendix B. Differential operators in orthogonal curvilinear coordinates

The aim of this section is to recall the main properties of orthogonal curvilinear coordinates in the plane in
order to derive the expressions of the main differential operators (Fig. B.1).

B.1. Curvilinear orthogonal coordinates

The position vector x of any point M of a given region of plane P is defined by two curvilinear coordinates
ðn1; n2Þ 2 I1 � I2, with I1 � I2 � R2, so that x ¼ OM ¼ fðn1; n2Þ, where f : ðn1; n2Þ 2 I1 � I2 7!fðn1; n2Þ 2 P is a
mapping from I1 � I2 into P that defines the curvilinear coordinate system.

Let two basis vectors of plane P be defined by

ga ¼
qf
qna

; a 2 f1; 2g. (B.1)

The two families of coordinate lines are defined by

C1 ¼ C1ðn20Þ ¼ fM 2 P=OM ¼ fðn; n20Þ; n 2 I1g, (B.2)

C2 ¼ C2ðn10Þ ¼ fM 2 P=OM ¼ fðn10; nÞ; n 2 I2g. (B.3)

One can note that ga, a 2 f1; 2g, is tangential to Ca.
We now assume that C1 and C2 form a family of orthogonal curves, so that for all ða1; a2Þ 2 I1 � I2, g1 is

normal to g2. It is convenient to use a basis of unit vectors, defined by

ea ¼
ga

kgak
¼

1

ha

qf
qna

; a 2 f1; 2g, (B.4)
Fig. B.1. Sketch of the curvilinear coordinate system.
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where

ha ¼ haðn1; n2Þ ¼
qf
qna

����
����

����
����; a 2 f1; 2g (B.5)

are scale factors. By applying the classical Frenet relations between the radius of curvature and the
tangent and normal unit vectors of a plane curve [54] to orthogonal curves C1 and C2, one obtains the
following properties:

qe1
qn1
¼

h1

R1
e2;

qe2
qn2
¼ �

h2

R2
e1, (B.6a, b)

qe2
qn1
¼ �

h1

R1
e1;

qe1
qn2
¼

h2

R2
e2, (B.6c, d)

where Ra ¼ Raðn1; n2Þ, a 2 f1; 2g, is the radius of curvature of curve Ca. The signs in Eqs. (B.6a, b) have been
chosen so that R140 (R2o0) if x2 (x1) points toward the center of curvature of C1 (C2). One can also show
that

qh2

qn1
¼

h1h2

R2
;

qh1

qn2
¼ �

h1h2

R1
. (B.7)

B.2. Differential operators

In the following, x ¼ fðn1; n2Þ denotes the position vector of any point M of plane P, ðn1; n2Þ its curvilinear
coordinates and ðe1; e2Þ the orthonormal curvilinear basis defined in Section B.1. a denotes a two-dimensional
scalar field, from P into R, u denotes a two-dimensional vector field from P into P, defined by u ¼ uaea and T

denotes a two-dimensional tensor field, from P into P�P, defined by T ¼ Tabea � eb.
B.2.1. Vector gradient

By definition, the gradient of a is a vector field of P, denoted by =a, such that

da ¼ =a � dx. (B.8)

To calculate the components of =a in basis ðe1; e2Þ, one can differentiate a and x, introduce the result into Eq.
(B.8) and identify the two members of the obtained equation, to obtain

=a ¼
1

ha

qa

qna
ea. (B.9)
B.2.2. Tensor gradient

By definition, the gradient of u is a tensor field of P�P, denoted by =u, such that

du ¼ =udx. (B.10)

In a similar way as in the previous section, by differentiating u, one obtains the components of the tensor
gradient in basis ðe1; e2Þ:

=u :

1

h1

qu1

qn1
�

u2

R1

1

h2

qu1

qn2
�

u2

R2

1

h1

qu2

qn1
þ

u1

R1

1

h2

qu2

qn2
þ

u1

R2

0
BBB@

1
CCCA
ðe1;e2Þ

. (B.11)
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B.2.3. Scalar divergence and Laplacian

The scalar divergence of vector field u can be defined by

div u ¼ trð=uÞ. (B.12)

With Eq. (B.11), one obtains

div u ¼
1

h1

qu1

qn1
�

u2

R1
þ

1

h2

qu2

qn2
þ

u1

R2
. (B.13)

The Laplacian of scalar field a is, by definition:

Da ¼ divð=aÞ. (B.14)

With Eqs. (B.9) and (B.13), one obtains

Da ¼
1

h2
1

q2a
qn21
þ

1

h2
2

q2a

qn22
þ

1

h1

1

R2
�

1

h2
1

qh1

qn1

 !
qa

qn1
�

1

h2

1

R1
þ

1

h2
2

qh2

qn2

 !
qa

qn2
. (B.15)

B.2.4. Another useful operator (the Hessian)

Using Eqs. (B.9), (B.11) and properties (B.7), one can show that

==a ¼
1

h2
1

q2a

qn21
�

1

h3
1

qh1

qn1

qa

qn1
�

1

R1h2

qa

qn2

 !
e1 � e1

þ
1

h2
2

q2a

qn22
�

1

h3
2

qh2

qn2

qa

qn2
þ

1

R2h1

qa

qn1

 !
e2 � e2

þ
1

h1h2

q2a
qn1n2

�
1

R1h1

qa

qn1
�

1

R2h2

qa

qn2

� �
e1 � e2 þ e2 � e1ð Þ. (B.16)

B.2.5. Useful identities

Here are some classical identities:

divðauÞ ¼ a div uþ u � =a, (B.17)

divðTuÞ ¼ T : =uþ divTT � u, (B.18)

=ðauÞ ¼ a=uþ u� =a, (B.19)

=div u ¼ div=Tu, (B.20)

=T=a ¼ ==a, (B.21)

divða1Þ ¼ =a. (B.22)

Appendix C. Application to particular geometries

In this section, the main formulae, written in an intrinsic form in the core of the paper, are translated into a
special coordinate system, to be applied to, respectively, a rectangular and a circular plate.

C.1. A rectangular plate

A rectangular plate is considered. A rectangular Cartesian ðx; yÞ orthonormal coordinate system is used (see
Fig. C.1), defined by the mapping

OM ¼ fðx; yÞ ¼ xex þ yey. (C.1)
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The coordinate lines are straight (with zero curvatures: 1=Rx ¼ 1=Ry ¼ 0) and hx ¼ kqf=qxk ¼

hy ¼ kqf=qyk ¼ 1.
The edge of the plate is thus composed of particular coordinate lines, parallel to ex and ey (Fig. C.1).

C.1.1. Classical boundary conditions

The classical boundary conditions in terms of w and F can be any combination of the following relations
that must be satisfied at any point on the edge qS:
	
 In-plane direction:
� Free edge (Eqs. (21a, b)):

F ¼
qF

qn
¼ 0. (C.2)

� Immovable edge, with w ¼ 0 on the boundary, so that N1 ¼N2 ¼ 0 (Eqs. (29) and (30)):

q2F

qn2
� n

q2F
qt2
¼ 0;

q3F
qn3
þ ð2þ nÞ

q3F

qn qt2
¼ 0. (C.3a, b)
	
 Edge rotation:
� Rotationally free edge (Eq. (17)):

q2w
qn2
þ n

q2w
qt2
¼ 0. (C.4)

� Rotationally immovable edge:

qw

qn
¼ 0. (C.5)
	
 Transverse edge translation:
� Free edge (Eq. (14)):

q3w

qn3
þ ð2� nÞ

q3w

qn qt2
þNwðF ;wÞ ¼ 0 (C.6)

with

NwðF ;wÞ ¼ �
1

D

q2F
qt2

qw

qn
�

q2F

qn qt
qw

qt

� �
.
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� Immovable edge:
w ¼ 0. (C.7)
In all the above relations, t ¼ x (t ¼ y) and n ¼ y (n ¼ x) if the considered edge is parallel to ex (ey).

C.1.2. Triple self-adjointness property

It is written as ZZ
S

fLðg; hÞdS ¼

ZZ
S

Lðf ; gÞh dS

þ

I
qS

q2g

qt2
f
qh

qn
� h

qf

qn

� �
�

q2g
qt qn

f
qh

qt
� h

qf

qt

� �� �
dt (C.8)

with the same rule on n and t corresponding to x and y as before.

C.2. A circular plate

A circular plate of radius a is considered. A polar orthonormal coordinate system ðr; yÞ is used (see Fig. C.1,
defined by the mapping

OM ¼ fðr; yÞ ¼ rer. (C.9)

Cr coordinate lines are straight (with zero curvatures: 1=Rr ¼ 0) and Cy coordinate lines are concentric circles,
of radius r. hr ¼ kqf=qrk ¼ 1 and hy ¼ kqf=qyk ¼ r.

The edge of the plate is the coordinate line Cy of radius a, of tangent and normal vectors s ¼ ey and n ¼ er

(Fig. C.1).

C.2.1. Classical boundary conditions

The classical boundary conditions in terms of w and F can be any combination of the following relations
that must be satisfied at any point on the edge qS:
	
 In-plane direction:
� Free edge Eqs. (21):

F ¼
qF

qr
¼ 0 (C.10)

� Immovable edge, with w ¼ 0 on the boundary, so that N1 ¼N2 ¼ 0 (Eqs. (29) and (30)):

q2F
qr2
� n

1

r

qF

qr
þ

1

r2
q2F

qy2

� �
¼ 0 (C.11a)

q3F
qr3
þ

1

r

q2F
qr2
�

1

r2
qF

qr
þ

2þ n
r2

q3F

qrqy2
�

3þ n
r3

q2F

qy2
þNF ðwÞ ¼ 0 (C.11b)

with

NF ðwÞ ¼
1

2r

q2w
qr2

� �2

.

	
 Edge rotation:
� Rotationally free edge (Eq. (17)):

q2w
qr2
þ n

1

r

qw

qr
þ

1

r2
q2w

qy2

� �
¼ 0. (C.12)
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� Rotationally immovable edge:

qw

qr
¼ 0. (C.13)
	
 Transverse edge translation:
� Free edge (Eq. (14)):

q3w

qr3
þ

1

r

q2w
qr2
�

1

r2
qw

qr
þ

2� n
r2

q3w

qr qy2
�

3� n
r3

q2w

qy2
þNwðF ;wÞ ¼ 0 (C.14)

with

NwðF ;wÞ ¼ �
1

D

1

r

qF

qr
þ

1

r2
q2F

qy2

� �
qw

qr
þ

1

D

1

r

qF

qr qy
�

1

r2
qF

qy

� �
1

r

qw

qy
.

� Immovable edge:

w ¼ 0. (C.15)
C.2.2. Triple self-adjointness property

It may be written asZZ
S

fLðg; hÞdS ¼

ZZ
S

Lðf ; gÞhdS þ

Z 2p

0

qg

qr
þ

1

r

q2g

qy2

� �
f
qh

qr
� h

qf

qr

� ��

�
1

r

q2g
qr qy

�
1

r

qg

qy

� �
f
qh

qy
� h

qf

qy

� ��
dy. (C.16)
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[29] O. Thomas, C. Touzé, A. Chaigne, Asymmetric non-linear forced vibrations of free-edge circular plates, part 2: experiments, Journal

of Sound and Vibration 265 (5) (2003) 1075–1101.
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