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Abstract

In this work, geometrically nonlinear vibrations of fully clamped rectangular plates are used to study the sensitivity of

some nonlinear vibration response parameters to the presence of damage. The geometrically nonlinear version of the

Mindlin plate theory is used to model the plate behaviour. Damage is represented as a stiffness reduction in a small area of

the plate. The plate is subjected to harmonic loading with a frequency of excitation close to the first natural frequency

leading to large amplitude vibrations. The plate vibration response is obtained by a pseudo-load mode superposition

method. The main results are focussed on establishing the influence of damage on the vibration response of the plate and

the change in the time-history diagrams and the Poincaré maps caused by the damage. Finally, a criterion and a damage

index for detecting the presence and the location of the damage is proposed. The criterion is based on analysing the points

in the Poincaré sections of the damaged and healthy plate. Numerical results for large amplitude vibrations of damaged

and healthy rectangular and square plates are presented and the proposed damage index for the considered cases is

calculated. The criterion demonstrates quite good abilities to detect and localize damage.

r 2008 Elsevier Ltd. All rights reserved.
1. Introduction

Vibration-based structural health monitoring (VSHM) methods are based on the fact that any changes
introduced into a structure result in changes in its dynamic behaviour. Thus introduction of even a small
defect will change the physical characteristics of a structure (its mass, stiffness, damping characteristics), which
in turn will affect its vibration response and change its dynamic characteristics. VSHM methods are especially
attractive because they are global monitoring methods in the sense that no a priori information for the location
of the damage is needed and/or immediate access to the damaged part is not required. These features are
especially important when the objects of monitoring are large and/or complex structures and when some parts
of these structures are either inaccessible or very difficult for carrying out measurements.
ee front matter r 2008 Elsevier Ltd. All rights reserved.
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Most of the previous efforts of researchers in a major part of the literature on VSHM have been directed
towards modal-based methods [1–7]. One of the main problems with these methods arises from the fact that in
general damage is a local phenomenon and does not necessarily affect the global lower frequency response of
the structure, which is normally measured during vibration tests. This is the reason why many modal-based
methods suffer from lack of sensitivity to damage when applied to different structures [8–11].

Another problem with a number of VSHM methods is that they rely on a certain model of the structure. As
the theoretical model itself can only approximate the actual behaviour of the vibrating structure, it will
introduce computational errors [3,4]. If some nonlinearities or environmental conditions are not taken into
account in the model, the methods might yield a false alarm due to a discrepancy between the measured and
the modelled response.

To address some of the above-mentioned problems a new paradigm in vibration-based monitoring has been
emerging recently—the employment of the measured time series response of the structure for VSHM purposes.
Techniques that apply pure time series analysis will not necessarily suffer from the above limitations and may
provide a broader utility due to their generic approach. Most of the studies in this field are devoted to the
problem of features extraction from the structural vibration response, which can be indicative of the presence
of damage and its location [8,10–13]. In Ref. [8], the authors use the time domain analysis and beating
phenomenon for damage detection (DD) purposes. In Refs. [10,13], the authors introduce two new attractor-
based metrics as damage sensitive features. The results are promising but the procedure has certain
requirements for the excitation and for the experimental equipment. Other non-modal-based methods suggest
the use of statistical approaches [14–16], neural networks [17], wavelet techniques [18,19] and other generic
techniques [20]. Time series analysis, which draws most of its applications from statistical analysis and
nonlinear dynamics, can provide a number of features and techniques that may hold significant promise for
VSHM. Although the approach seems to hold considerable potential, there is limited research addressing
VSHM methods based on nonlinear time series analysis [10–13].

In this work phase-space variables are used for damage detection purposes. The geometrically nonlinear
theory of vibrations of a rectangular plate is used to study the sensitivity of some parameters of the nonlinear
vibration response to the presence of damage. The plates are subjected to a harmonic loading leading to large
amplitude vibrations and the influence of the damage on the time-history diagrams of the plate as well as on
the geometry of the phase space is studied. Finally, a new criterion based on the Poincaré map of the plate
response is proposed.
2. Basic equations

The investigation was carried out on a rectangular plate with sides a and b and thickness h, subjected to a
dynamic loading p(x,y,t) perpendicular to the plate (Fig. 1a). The presence of a defect can be modelled as a
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Fig. 1. Plate geometry and coordinate system: (a) plate dimensions and loading and (b) mid-plane of the plate and the components of the

generalized displacement vector.
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reduction of the plate thickness or a stiffness reduction and therefore a variation of the flexural rigidity in the
governing equations is used. The basic equations of the plate motion are described below.
2.1. Geometrical relationships

The strain and curvature-displacement relationships associated with the mid-plane of the plate for large
displacements and shear can be expressed as
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and the strain vector is given by
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where f(z) is a function describing the distribution of the shear strain along the plate thickness, u(x,y,t) and
v(x,y,t) are the in-plane displacements, w(x,y,t) is the transverse displacement and cx(x,y,t), cy(x,y,t) are the
angles of the rotation of the normal of the cross section to the plate mid-plane (see Fig. 1b).
2.2. Constitutive equations

Assuming that the material of the plate is linear elastic and isotropic the relations for the generalized stress
and strain components are given by
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where E is the Young modulus, n is the Poison ratio and k2 is a shear correction factor which is assumed to be
equal to 5/6 throughout the paper [21]. In Eqs. (3) Nx, Ny and Nxy are the stress resultants in the mid-plane of
the plate, Mx, My and Mxy are the stress couples and Qx and Qy are the transverse shear stress resultants.
2.3. Equations of motion

The equilibrium equations may be deduced by considering the translational equilibrium in the x, y and z

directions and the rotational equilibrium about x and y which are as follows:
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Here and throughout the paper dots over variables denote derivatives with respect to time, c1 and c2 are the
damping coefficients and r is the density of the plate material.

2.4. Boundary and initial conditions

In the present work fully clamped plates, i.e. plates for which all their four edges are clamped and in-plane
fixed, are considered. This means that all displacements u, v and w and angular rotations cx and cy are zero
along the boundaries.

The initial conditions are accepted in the following general form:

wðx; y; 0Þ ¼ w0ðx; yÞ; _wðx; y; 0Þ ¼ _w0ðx; yÞ;
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yðx; y; Þ; x 2 ½0; a�; y 2 ½0; b�
(6a2d)
3. Solution of the problem

3.1. Reorganizing the equations of the plate motion

Making the widely accepted assumption that mid-plane inertia effects are negligible, i.e. rh €ux ¼ rh €uy ¼ 0 and
moving the nonlinear terms to the right-hand side, the equations of motion (5) are written in the following form:
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and G3
L denotes the component of the vector GLð0; 0;G

3
LÞ which is called a ‘‘nonlinear force vector due to finite

displacements’’ (see Refs. [22,23]). G3
L has the form:
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3.2. Numerical approach

Assuming Gu and Gv are known functions, Eqs. (7a,b) form a linear system of PDEs which can be solved
numerically. The solution is obtained using a finite a difference method by applying a central differences
formula (see Appendix A).

The left-hand sides of Eqs. (7c–e) contain only linear terms and therefore the mode superposition method
can be used for their solution.

Thus, the generalized displacements vector U ¼ {acx, acy,w}
T (a ¼ h2/12) is expanded as a sum of the

product of the vectors of the pseudo-normal modes Un and the time-dependent functions qn(t) as follows:
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Substituting Eq. (10) into Eqs. (7c–e), multiplying by Um(x,y), integrating the product over the plate
surface, applying the orthogonallity condition and assuming ‘‘proportional damping’’ in the senseR R
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nÞdxdy ¼ 2xnon, the equations for qn(t) will be ‘‘uncoupled’’ in the form:
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where on are the natural frequencies of the linear elastic (undamped) Mindlin plate, xn are the modal damping
parameters and
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The initial conditions defined by Eqs. (6) are also transformed in terms of qn(0) and _qnð0Þ:
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Using the methodology developed by Kukreti and Issa [22] the pseudo-load vector {P+G} is interpolated
by a quadratic time-dependent polynomial, i.e.

Pðx; y; tÞ þGðx; y; tÞ ¼ Aðx; yÞ þ Bðx; yÞtþ Cðx; yÞt2; 0ptpLt (14)

where Lt ¼ ti+1�ti represents the time increment, and t, which is defined as t ¼ t�ti, identifies a new time
origin for each time increment.

Denoting

P0ðx; yÞ ¼ Pðx; y; 0Þ; P1ðx; yÞ ¼ Pðx; y;mLtÞ; P2ðx; yÞ ¼ Pðx; y;LtÞ,
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the expressions for the constants A, B and C are derived in terms of Pi and Gi (i ¼ 1 to 3). The general solution
of Eq. (14) is given by
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n þ E2n _q

0
n þ F1nan þ F2nbn þ F 3ncn (16)

where E1n, E2n, F1n, F2n, F3n denote complicated mathematical expressions containing on, xn and t (see
Ref. [23]) and
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The iterative procedure applied to solve the above equation (11) is identical to the ones for circular plates
and beams given in Refs. [23,24]. This is why it is summarized very briefly here.

We first solve the eigenvalue problem for the plate described by the small deflection Mindlin plate theory
which gives the frequencies of free vibration, the normal modes of vibration Un and the necessary derivatives.
Then the initial values q0

n and _q0
n are computed according to Eqs. (13).

At each time-step [ti, ti+1] an iterative procedure is applied. It includes solving the small deflection plate
theory equations and then using the obtained values of w and its derivatives Gu and Gv are computed, and the
system of algebraic equations (A.1) and (A.2) is solved for u and v, and then form the nonlinear force vector
GL and solve the system of ODE (11) again. At the next time step the values of generalized displacement and
velocity vectors U and _U at the end of the previous time interval are used as initial conditions. The iterative
procedure is repeated until the convergence criterion is fulfilled.

The integrals in Eqs. (12), (13) and (17) are evaluated by numerical quadrature following the Simpson rule.

4. Damage identification technique

In several cases a small damage in structures does not influence the static response or the small amplitude
vibration response of the structure. However, its influence can be observed when the structure is subjected to
large dynamic loads, leading to large amplitude vibrations. In this case even small changes in the structure
(like cracks and other local damage scenarios) can have a considerable effect on the structural response in the
time domain, which in turn can give an indication of the presence of damage. Damage which induces very
small changes in the natural frequencies and the mode shapes may result in phase shifts between the vibration
response of the healthy structure and the damaged structure in the time domain. In many applications
vibrating plates are subjected to dynamic loadings leading to large amplitude vibrations. In such cases the
small deflection plate theory cannot provide adequate simulation of the plate vibration response and therefore
the large deflection plate theory should be applied, which takes into account the geometrical nonlinearities
present in the system. On the other hand, large amplitude vibrations can increase substantially the influence of
small defects (which have very small or nearly no influence on the plate response in the case of small
deflections) on the dynamic behaviour of the plate and thus make them easily identifiable.

There are several techniques to treat nonlinear structural response in the time domain. As mentioned above,
the state-space representation of the structural vibration response is a suitable and powerful tool for studying
the dynamic behaviour of a structure. A standard technique for dealing with the phase space ðw; _w; tÞ of
periodically driven oscillators is to study the projection of ðw; _wÞ at moments in time t, where t is a multiple of
the period T ¼ 2p/o. Here o could be the frequency of the excitation of the mechanical system, an
eigenfrequency of the structure or its multiple, and T is a period of the forcing function, an eigenperiod of the
system or its multiple. The result of inspecting the phase projection ðw; _wÞ only at specific times t ¼ kT is a
sequence of dots, representing the so-called Poincaré map. The steady-state converging trajectories, which
represent the attractor, are usually formed in the phase space and in many cases of nonlinear systems they are
very sensitive to any changes in the system.

The idea of the approach presented here is based on the following considerations:
1.
 A Poincaré map can be interpreted as a discrete representation of the dynamic system in a state space,
which is one dimension smaller than the original continuous space of the dynamic system. Since it preserves
many properties of periodic and quasi-periodic orbits of the original system and has a lower dimension, it is
often used for analysing the original system.
2.
 The Poincaré maps contain data for the displacements and the velocities of the structure in a compact form
and since these two parameters are expected to be sensitive to damage these diagrams can be used to detect
damage. When the damage is large and the plate undergoes substantial nonlinear vibrations, this leads to
changes in the attractor of the vibrating system in the phase space and then the application for damage
assessment purposes becomes obvious. Even when the damage is small, and the responses of the damaged
and the healthy structure are close to each other, the points from the Poincaré map are easier to use for
comparison and identification purposes because the number of these points is much smaller than the
enormous number of points in the time-history diagrams.
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According to the above considerations the following damage index can be introduced for the ith node:
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where i ¼ 1,2yNnodes, Nnodes is the number of nodes, Np is the number of points in the Poincaré map and
ðwu

ij ; _w
u
ijÞ and ðw

d
ij ; _w

d
ijÞ denotes the jth point on the Poincaré maps of the undamaged and the damaged states,

respectively.
A small (close to 0) damage index will indicate no damage, while a large damage index will indicate the

presence of a fault at the corresponding location. The above damage index depends on the location of the
point on the plate, and consequently it is a function of the plate coordinates x and y. One can expect that the
maxima of the surface Id(xd, yd) (18a) will represent the location of the damage, i.e. Id

maxðxd ; ydÞ ¼ max
i
fId

i g.
It is easy to notice that Su

i and Sd
i (18b,c) represent the lengths of the lines formed by connecting the dots on

the Poincaré maps for the damaged and the non-damaged plate for ith node. Therefore, the damage index is
defined as the relative difference between these two lengths. The logical expectations are that:
(1)
 Since the fault influences the vibration response of the plate it will introduce changes in the Poincaré map.
The differences between the Poincaré maps of the healthy and damaged plates will be indicative of the
presence of damage.
(2)
 At the nodes close to the damaged area the introduced damage index Id
i (18a) will be larger than the index

for points which are far from the damaged zone. This can be used to localize the detected damage.
5. The case study

This study focuses on damage assessment in rectangular and square plates. The material characteristics of
the plates are: Young modulus E ¼ 7� 1010N/m2, Poison ratio n ¼ 0.34 and density r ¼ 2778 kg/m3. The
damping coefficient c1 ¼ c2(12/h

2) in Eqs. (7) was chosen to be 0.00075N s/m3. The square plate has
dimensions a ¼ b ¼ 0.5m and thickness h ¼ 0.006m. Two cases of damage were considered: (A) almost

central damage—thickness reduction in a small area located in the central part of the plate slightly moved from
the centre (one element up and one element left) (see Fig. 2); (B) side damage—thickness reduction in a small
area close to the left lower corner of the plate as shown in Fig. 2. A finite element model of the plate is shown
in Fig. 2.

The finite element discretization of the rectangular plate is shown in Fig. 3. Its dimensions are: a ¼ 10m,
b ¼ 2.5m and h ¼ 0.05m. Again two damage cases are considered: (A) almost central damage and (B) side

damage. The damage is modelled as thickness reduction. In both cases (rectangular and square plates) the
thicknesses of the damaged areas are equal to half the thickness of the undamaged plate.

The aim of the following numerical example performed is to test the suggested procedures to detect and
localize damage in the plate.

6. Some results

In this paragraph some result for the detection and the localization of the defects described above in the
square and the rectangular plates considered are discussed.

First of all, the sensitivity of the first ten natural frequencies of the plate was tested. Our results show that in
these particular cases both defects introduce very small or nearly no changes in the first 10 natural frequencies
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Fig. 2. Square plate with a central defect and a side defect.

Fig. 3. Rectangular plate with a central defect and a side defect.
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of the plate. The relative differences between the frequencies of the intact and the damaged square and
rectangular plates are shown in Figs. 4 and 5, respectively. Especially for case B the differences between the
frequencies are very small and are in the range of the accuracy of its experimental determination. So in these
particular cases there is obviously a need for an alternative method.

Then, the forced response of the plates subjected to harmonic loading was considered. Cases when the
frequency of excitation is close to one of the first natural frequencies of the system are interesting and
important for this study of a nonlinear system because they often lead to complex phenomena like beating,
quasi-periodic or chaotic vibrations [25]. In such regimes the vibrating systems are usually quite sensitive to
even small changes introduced in their geometry and/or the physical properties including damage. These
regimes of large amplitude vibrations are therefore expected to enhance the sensitivity of nonlinear vibrating
structures to damage, even though the changes in the natural frequencies might be negligible. Accordingly, the
plates considered were subjected to a harmonic loading uniformly distributed over the plate surface.
Numerical experiments were carried out for different values of the excitation frequency.

In the case of a square plate with a central defect (case A) the excitation frequency was chosen to be equal to
oe ¼ 1000 rad/s. In order to show the applicability of the methods for higher frequencies for case B the
excitation frequency was oe ¼ 2000 rad/s. (The first two natural frequencies of the healthy plate are
o1 ¼ 1326.32 rad/s and o2 ¼ 2700.3 rad/s.) The amplitude of the harmonic loading was 6N.

Let us first have a look at the time histories of the plate response for the undamaged and the damaged cases.
Figs. 6 and 7 give parts of the time histories for the case of a central defect and a side defect compared to those
for the non-damaged plate. It can be observed that the applied load leads to large amplitude vibrations of the
plate. Due to the fact that the excitation frequency is close to the first natural frequency of the plate a beating
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Fig. 4. Differences between the eigenfrequencies of the damaged and undamaged square plate. Solid line—side defect; dashed line—

central defect.
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Fig. 5. Differences between the frequencies of the damaged and undamaged rectangular plate in the case of central and side defects.
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phenomenon occurs. It can be appreciated from Figs. 6 and 7 that the time histories undergo changes with
damage. As expected, the differences for the case A central defect are larger than the differences for case B side
defect. It can be seen that close to the origin (t ¼ 0) the responses almost coincide with each other (especially
for case B) but then the phase shifts and the differences between the responses increase.

The next question is how to use these differences in the time responses of the non-damaged and the damaged
plate for the purposes of VSHM. Our approach suggests the use of Poincaré maps and the damage index Id

i

(Eq. (18a)) which is based on these maps to detect and localize the damage. To visualize the damage index and
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to set a threshold for detecting the damage we use the so-called contour plots. A contour plot is a graphical
technique for representing a three-dimensional surface by plotting constant z slices, called contours, on a two-
dimensional plane. That is, for a given value of z, lines are drawn that connect the (x,y) coordinates that
correspond to this particular value of z.

The influence of the damage on the Poincaré maps at the plate centre can be seen in Figs. 8 and 9. As can be
expected the influence of the central damage (case A) on the Poincaré maps of the plate is larger than the
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influence of the side defect (case B). The introduced damages do not change the type of the Poincaré section
(circle); they only influence the length of the curves formed by the Poincaré dots. Then the damage index Id

i

was calculated for the points from the Poincaré maps for all the nodes and its contour plots were obtained.
Fig. 10 details the contour plots of Id

i for the case A defect for all the plate nodes. As can be seen from this plot
the case A damage can be detected and localized quite precisely.

Fig. 11 presents similar contour plots for the case of side damage (case B). It can be observed that the plot
identifies quite precisely the position of the defect despite of the fact that the absolute values of the differences
in the displacements and the velocities of the two responses at the nodes of the damaged area are small. The
calculations for smaller values of damage (hdamaged/h ¼ 0.66) still show a very good prediction of the damage
location (not shown here).
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Similar results were obtained for the case of a rectangular plate. The time-history diagram of the plate
centre of a plate with a side defect is shown in Fig. 12. The excitation frequency is 260 rad/s, which is only 7%
less then the first eigenfrequency of the healthy plate. Again, a strong beating can be observed in the responses
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of the healthy and damaged plates. The phase of the response of the damaged plate and the difference between
the responses increases with time. Despite of the fact that the Poincaré maps at the plate centre (where the
deflections and the velocity are the largest) are very close to each other (Fig. 13) the damage index
corresponding to the damaged area has the highest values, which gives the possibility to locate the damage. In
Fig. 14 the contour plot of Id

i is compared to the FE model of the plate where the damaged area is coloured in
white. It can be seen that the damage location is predicted very precisely. The same conclusion applies in the
case of the rectangular plate with central damage (see Figs. 15 and 16). As in the case of the square plate the
location of the damage is predicted very precisely and even the small non-symmetry of the damage location
with respect to the plate centre can be seen on the contour map of Id

i .
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7. Conclusions

A numerical approach for studying the geometrically nonlinear vibrations of rectangular plates with and
without damage is developed in the paper. The computed time domain responses are used to analyse the
dynamic behaviour of plates under the intact condition and of plates with defects. Based on these analyses a
damage index and a method for damage detection and damage location have been proposed. The damage
assessment method is based on the phase-space representation of the time domain nonlinear response of the
plate and uses the analysis of the Poincaré map of the response. The developed damage assessment procedure
was applied for the test cases of a square and a rectangular aluminium plate with different defects modelled as
areas with reduced thickness. It was demonstrated that damage can influence substantially the time domain
response of the plate despite its very small influence on the plate natural frequencies. The suggested damage
assessment method demonstrates quite good capability for detecting damage. The index suggested in Eqs. (18)
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is used to localize damage and it shows very good performance. The potential, the sensitivity and the
applicability of the developed method still have to be tested for real measurements and for more structures,
defects and loading conditions.
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Appendix A. Finite difference scheme for a solution of equations for mid-plane displacements

Applying the central difference formula Eqs. (7a,b) are transformed into the following system of algebraic
equation with respect to ui,j, vi,j, i ¼ 1,2,yNx, j ¼ 1,2,yNy, (Nx and Ny are the numbers of nodes along the x

and y axes, respectively
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Assuming that Gu and Gv are known functions the linear system of algebraic equations is solved by using the
LSLRG routine of the Microsoft IMSL Libraries.
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