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Abstract

The geometrically non-linear vibrations of linear elastic composite laminated shallow shells under the simultaneous

action of thermal fields and mechanical excitations are analysed. For this purpose, a model based on a very efficient

p-version first-order shear deformation finite element, with hierarchical basis functions, is employed. The equations of

motion are solved in the time domain by a Newmark implicit time integration method. The model and code developed are

partially validated by comparison with published data. Parametric studies are carried out in order to study the influence of

temperature change, initial curvature, panel thickness and fibre orientation on the shells’ dynamics.

r 2008 Elsevier Ltd. All rights reserved.
1. Introduction

Composite laminated shells possess interesting properties like a high stiffness to weight ratio and the
possibility to tailor the panel characteristics by selecting the fibre orientation and the stacking sequence of the
layers. Therefore, composite laminates are widely used in demanding applications, as for example in aerospace
structures, where large dynamic loads occur and the temperature varies [1,2]. In these applications, non-linear,
large amplitude, oscillations take place.

A few papers have been published in the area of vibrations of plates and shells under thermomechanical
loads and some are referred to here. Reviews on various aspects on the vibration of shells can be found in
Refs. [3,4]. Sai Ram and Sinha [5] investigated the effects of moisture and temperature on the linear free
vibrations of laminated composite plates using a quadratic isoparametric element, which takes transverse
shear into account. It was found that the linear natural frequencies decrease as the moisture and temperature
increase. A triangular flat shell finite element was used in Ref. [6] to simulate the geometrically non-linear
oscillations of laminated composite plates and shells under the action of heat loads; non-periodic motions
were found, with large growth in the vibration amplitude. Mei and co-workers used the finite-element method
(FEM) in studies devoted to geometrically non-linear vibrations of panels with thermal fields by combining
ee front matter r 2008 Elsevier Ltd. All rights reserved.
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the FEM with modal transformation, in order to reduce the number of degrees of freedom (Refs. [7–9], for
example). In Ref. [10], linear vibrations of shear deformable laminated plates exposed to thermomechanical
loads and resting on Pasternak-type foundations were analysed. The temperature rise had a small effect on the
dynamic response of the plates studied. Ref. [11] deals with hygrothermal effects on the non-linear vibrations
of shear deformable, laminated composite plates. A model only with mode (1,1) was employed in the
parametric studies. In Ref. [12] a parallel study was carried out, but this focused on the non-linear vibrations
of cross-ply laminated plates with piezoelectric actuators and thermal fields. Both in Refs. [11,12], it was
concluded that deflections and bending moments increase with temperature, and that, on the other hand, the
first linear natural frequency decreases.

Although finite elements have been used to investigate thermomechanical, geometrically non-linear
vibrations of laminated panels, to the best of the authors’ knowledge, there is no work where this problem was
investigated by the p-version, hierarchical FEM. This version of the FEM has several advantages over the
more widely accepted h-version. The reader is referred to Refs. [13–18] and references therein for further
details, but it is recalled here that the most important advantage of the p-version FEM in non-linear problems
is that it generally requires less degrees of freedom.

In this paper, we propose that an efficient p-version finite element with hierarchical basis functions, first
presented in Ref. [17], is employed to analyse the transient, geometrically non-linear vibration of laminated
shallow shells subjected to thermal fields and to mechanical excitations. The equations of motion are solved by
Newmark’s method. The model and computational codes developed are partially validated by comparing the
results with published ones and parametric studies are carried out in order to illustrate the variation of the
dynamic response with the temperature, fibre orientation and initial curvature radius.
2. Formulation

If the shell raise is small in comparison with the span, then a relatively simple shallow shell theory can be applied.
The derivation of the shallow shell strain displacement relations in linear vibrations can be found in Ref. [19]; here
only the essential equations for geometrically non-linear vibrations of shallow shells are presented.

One of the major advantages of the shallow shell theory followed here is that it allows one to employ
Cartesian coordinates. The undeformed geometry of the shell is defined from a reference plate by introducing an
initial displacement w1. In terms of a three-dimensional, rectangular coordinate system, which is orientated so
that R is the principal curvature, Fig. 1, the middle surface of an open cylindrical shallow shell is expressed as

w1ðx; yÞ ¼ �
1

2

y2

R

� �
. (1)

First-order shear deformation theory (FSDT) will be followed for three main reasons: (1) whilst remaining
relatively simple, it allows one to investigate moderately thick shells; (2) it allows for a better description of
stresses than classical, thin shell theory; and (3) the connection between finite elements is straightforward, as only
C0 continuity is required [20]. Therefore, the displacement components along the in-plane x and y directions—
displacements u(x, y, z, t), v(x, y, z, t)—at any point of the shell are assumed to be functions of the middle surface
z

x

y

R

b

a

Fig. 1. Representation of an open cylindrical shell.
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membrane translations u0(x, y, t), v0(x, y, t), and of the independent rotations about the x and y axes, which are,

respectively, denoted by y0xðx; y; tÞ and y0yðx; y; tÞ. The displacements are given by:

uðx; y; z; tÞ ¼ u0ðx; y; tÞ þ zy0yðx; y; tÞ, (2)

vðx; y; z; tÞ ¼ v0ðx; y; tÞ � zy0xðx; y; tÞ, (3)

wðx; y; z; tÞ ¼ w0ðx; y; tÞ, (4)

where w(x, y, z, t) and w0(x, y, t) represent the displacement in the transverse direction, measured in relation to
the reference surface.

In each element, the middle plane displacements depend on the local coordinates x and Z, expressed through
the shape functions matrix N(x,Z), and on the time-dependent vector of generalized displacements q(t):

u0ðx; Z; tÞ

v0ðx; Z; tÞ

w0ðx; Z; tÞ

y0xðx; Z; tÞ

y0yðx; Z; tÞ

8>>>>>>><
>>>>>>>:

9>>>>>>>=
>>>>>>>;
¼ Nðx; ZÞ

quðtÞ

qvðtÞ

qwðtÞ

qyx
ðtÞ

qyy
ðtÞ

8>>>>>>><
>>>>>>>:

9>>>>>>>=
>>>>>>>;
. (5)

When it is necessary to improve the accuracy of the approximation, the number and the order of the shape
functions are increased, without re-defining the finite-element mesh. The shape functions used here are the
ones employed in Refs. [16–18], which can be consulted for more details; the total numbers of membrane,
transverse and rotation shape functions are, respectively, 2pi

2, p0
2 and 2py

2. Henceforth, the representation of
functions will be simplified: for example u0(x, Z, t) will be represented simply as u0.

Neglecting the transverse normal stress, the stress–strain relations of an orthotropic lamina, including
thermal effects [21], are:
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where the transformed coefficients of thermal expansion are given by
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and the elastic coefficients Qij may be found, for example, in Ref. [19] or Ref. [21]. The symbols a1 and a2 in
Eq. (7) represent the coefficients of thermal expansion along the principal directions 1 and 2, respectively,
while y represents the angle at which the fibres of the layers are oriented in relation to the x-axis.

The classical shear correction factor l ¼ 5/6 is employed here. Ref. [22] provides a comparison between
different forms of computing the shear correction factor and it shows that, in most situations, l ¼ 5/6 gives rather
accurate results. This issue was also addressed in Chapter 2 of Ref. [13], where it was shown that with FSDT and
l ¼ 5/6 fairly accurate transverse shear stresses of moderately thick (h/ap0.1) laminated plates are computed.
In the present work the relation between the thickness and the projected length (h/a) is not larger than 0.1.

Since constant temperature changes from reference temperatures are of interest here, it will be assumed that
the material properties are constant. The parameter DT(z) in Eq. (6) represents the temperature change from
the temperature of zero thermal stress. A linear variation with z is assumed and therefore the temperature
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change is defined as

DTðzÞ ¼ DT0 þ DT1
z

h
; DT0 ¼

1

2
ðDTi þ DTeÞ; DT1 ¼ DTe � DTi, (8)

where DTi and DTe represent the change of the temperatures from the temperatures of zero thermal stresses at
the surfaces z ¼ �h/2 and h/2, respectively.

The direct and membrane shear strain components are given by
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where the linear membrane strains, em and ei, the bending strain, eb, and the geometrically non-linear
membrane strain, enl, are
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Rx and Ry represent the principal radius of curvature; since only open cylindrical shells are considered here,
either Rx or Ry is infinite. Derivation with respect to x is represented by ( � ),x or by q( � )/qx.

The relations between the transverse shear strains, the displacements and the rotations are as
follows:

gzx

gyz

( )
¼

w0
;x þ yy

w0
;y � yx

( )
. (11)

Defining the virtual work of the inertia, internal and external forces and applying the principle of the virtual
work, the equations of motion are obtained. These equations are:
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The constant matrices Mii
k (where i ¼ 1–5 and where k represents any of the matrice’s sub-indices) are mass

matrices; matrices KL
ij
k are constant stiffness matrices and so are K33

DT0 and K33
DT1, which are due to the thermal

effects. Matrices of type KNLðqwÞ
i3
k , where i can be 1, 2 or 3, and k ¼ 2 or k ¼ 2 s, depend linearly on the

transverse generalized coordinates qw and matrix KNLðqwÞ
33
4 depends quadratically on these coordinates.

The components of the vector of generalized external forces are: Pu is the vector of membrane forces in
the x direction, Pv is the vector of membrane forces in the y direction, Pw is the vector of membrane forces
in the z direction, Myx is the vector of moments about the x-axis and Myy is the vector of moments about the
y-axis.

The matrices and vectors present in the former equation are the ones employed in Ref. [17], with the
exception of the matrices and vectors due to the thermal effects. The generalized forces due to DT0 are defined
as follows:

FDT0
u ¼ DT0

Z
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u
;yÞdO, (13)
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The membrane forces FDT0
u , FDT0

v are due to DT0 and em; the transverse force FDT0
w is due to DT0 and ei; the

moments are due to DT0 and to eb. Symmetric laminates are under analysis here and Bai is zero; therefore,

momentsM
DT0
yx

andM
DT0
yy

are also zero. Similarly, the force vectors FDT1
u , FDT1

v and FDT1
w due to DT1 are zero in

symmetric laminates. The moments due to DT1 and eb are given by
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In Eqs. (13)–(19) Nu, Nv and Nu are the vectors of shape functions associated with the displacement

components in the x, y and z directions, respectively. The vectors Nyx and Nyy correspond to the rotations. The
terms Aai and DaI—where i ¼ x, y, xy—are defined in the appendix for the sake of completeness.

Matrix K33
DT1

is zero in symmetrical laminates and matrix K33
DT0

, which exists because of the geometrical non-

linear strain enl and of DT0, is given by

K33
DT0
¼ DT0

Z
O
ðAaxN

w
;xN

wT

;x þ AaxN
w
;yN

wT

;y þ 2AaxyN
w
;xN

wT

;y ÞdO. (20)

The mechanical excitations considered here are uniformly distributed and in the z direction. The non-linear
equations of motion are solved in the time domain by Newmark’s method, with Newmark’s parameters [23,24].
This is an implicit method, which allows one to update the non-linear stiffness matrix until the equation

ðK‘ þ Kn‘ðqtiþDtÞ þ a0Mþ a1CÞqtiþDt

¼ PtiþDt þMða0qti
þ a2 _qti

þ a3 €qti
Þ

þ Cða1qti
þ a4 _qti

þ a5 €qti
Þ (21)

is satisfied below a desired error condition. In the former equation K‘ and Knl stand for the linear and non-
linear stiffness matrices, respectively; M and C represent the mass and damping matrices. In this work,
damping effects are added to the system of equations of motion (12) by introducing a matrix proportional to
the linear stiffness matrix, with a factor of proportionality a, i.e. C ¼ aK‘ [23,24]. The vector P is the vector of
external forces. The constants a0�a5 are [24]:

a0 ¼
1

gDt2
; a1 ¼

d
gDt

; a2 ¼
1

gDt
; a3 ¼

1

2g
� 1; a4 ¼

d
g
� 1,

a5 ¼
d
g
� 2

� �
Dt

2
; d ¼ 0:5; g ¼ 0:25.

The repeated update of the non-linear stiffness matrix until convergence is achieved benefits from the fact
that the number of degrees of freedom of the p-version model is rather moderate. Additionally, the number of
elements is also smaller than in the h-version of the FEM, reducing the time spent in the assembly stage;
actually, for simple geometries as is the case here, just one element is required. The fact that the number of
degrees of freedom is not large also means that less time is needed to solve the system of equations that arises
in each step of the implicit iterative procedure.

3. Numerical results and comments

3.1. Comparison with published data

In order to partially validate the model used and the computational code implemented a few comparisons
with published results were carried out. First, linear vibrations were considered and the frequency parameters

O ¼ oa2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r=E1h2

q
of a completely free, moderately thin (a/h ¼ 100) shallow shell of square planform

(a/b ¼ 1) analysed in Refs. [19,25] were computed. In the code, geometric boundary conditions are imposed
and in the case of free boundaries all middle surface displacements and rotations are unrestrained, which
should correspond to zero membrane forces and moments at the boundaries. The stacking sequence is
[301/�301/�301/301], where the angle lies between the fibres and the projection of the x-axis upon the shell.
The relation between the projected span and the radius is a/R ¼ 0.5 and the material properties are the ones
of Refs. [19,25] for graphite-epoxy: E1 ¼ 138.0GPa, E2 ¼ 8.96GPa, G12 ¼ 7.1GPa and v12 ¼ 0.30. Because
thin plate theory was followed in those references, G13 and G23 were not given and will be made equal to G12

here, as is done in other examples presented in Ref. [19]. Moreover, the mass density was assumed to be
r ¼ 1600 kgm�3.

Table 1 shows that with the p-version finite element po ¼ pi ¼ py ¼ 7 the natural frequencies are very close
to the ones given in Refs. [19,25] and that with the element po ¼ pi ¼ py ¼ 8 lower values are obtained for all
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Table 1

Frequency parameter of a graphite epoxy [301/�301/�301/30] completely free shallow shell; a/R ¼ 0.5, a/b ¼ 1, a/h ¼ 100

dof Mode number

1 2 3 4 5 6 7 8

p-Version, po ¼ 7, pi ¼ 7, py ¼ 7 245 2.2137 5.1271 5.5641 7.6941 7.9948 12.847 13.263 14.243

p-Version, po ¼ 8, pi ¼ 8, py ¼ 8 320 2.2110 5.1171 5.5561 7.6590 7.9690 12.506 12.930 13.963

p-Version, po ¼ 10, pi ¼ 10, py ¼ 8 428 2.2109 5.1162 5.5544 7.6551 7.9614 12.489 12.900 13.938

p-Version, po ¼ 8, pi ¼ 10, py ¼ 10 464 2.2092 5.1161 5.5513 7.6497 7.9601 12.483 12.902 13.942

p-Version, po ¼ 10, pi ¼ 8, py ¼ 10 428 2.2091 5.1158 5.5509 7.6495 7.9585 12.494 12.903 13.939

p-Version, po ¼ 10, pi ¼ 10, py ¼ 10 500 2.2091 5.1156 5.5505 7.6470 7.9570 12.479 12.885 13.924

Refs. [19,25], thin shell theory 192 2.2156 5.1241 5.5678 7.6824 7.9914 12.551 12.982 13.997

Table 2

Frequency parameter O ¼ oa2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r=E2h2

q
of a [01/901/901/01] simply supported plate, a/b ¼ 1, a/h ¼ 100, DT0 ¼ 25K, DT1 ¼ 0

Deflection mode Sai Ram and Sinha [5] Huan et al. [11] Parhi et al. [26] p-Version FEM

(1,1) 8.088 8.043 8.046 8.0453

(1,2) 19.196 18.140 18.350 18.332

(2,1) 39.324 38.364 38.590 38.550

P. Ribeiro, E. Jansen / Journal of Sound and Vibration 315 (2008) 626–640632
natural frequencies computed. It is natural that the present approach yields lower values, since FSDT provides
lower frequencies than thin shell theory. On the other hand, because in FSDT the rotations require additional
variables, the FSDT p-element approach requires more degrees of freedom—yet still a moderate number—
than the model employed in Refs. [19,25].

Table 1 also shows that the importance of the different shape functions and coordinates—that is, of pi, po

and py—depends on the mode in question. For example, with po ¼ 10, pi ¼ 8, py ¼ 10 the first five natural
frequencies are lower than with po ¼ 10, pi ¼ 10, py ¼ 8 and po ¼ 8, pi ¼ 10, py ¼ 10, but the sixth and seventh
natural frequencies are higher (the linear natural frequency converges from above in the p-version FEM if a
hierarchic set of functions is used). In most of the following numerical examples po, pi and py are equal.

Since it is apparently easier to find published results on plates than on shells for the problem at hand, the
ensuing comparisons are on plates. The next comparison concerns the linear natural frequencies of a graphite/
epoxy, square laminated thin plate (b/h ¼ 100), simply supported with no membrane displacements at all
boundaries (for example at x ¼ �1 the imposed boundary conditions are u0(�1, Z, t) ¼ v0(�1, Z, t) ¼ w0

(�1, Z, t) ¼ 0, y0xð�1; Z; tÞ ¼ 0 and the rotation about the y-axis is free). The plate is at a uniform temperature
T0 equal to 325K, increasing from a uniform temperature for zero thermal stress equal to 300K (DT0 ¼ 25K,
DT1 ¼ 0K). The properties of the lamina are [5]: E1 ¼ 130.0GPa, E2 ¼ 9.5GPa, G12 ¼ G13 ¼ 6.0GPa,
G23 ¼ 0.5, G12, v12 ¼ 0.30 and a11 ¼ �0.3� 10�6K�1, a22 ¼ 28.1� 10�6K�1. We could not find the value of r
in Ref. [5] and used 1600 kgm�3. The values of the frequency parameters computed in different references are
given in Table 2 and the agreement is close.

Next, the response of an undamped and moderately thick plate investigated in Ref. [10] is examined.
The four plate edges are simply supported with no membrane displacements. The uniform temperature
increase from the temperature for zero thermal stresses is DT0 ¼ 200K and the properties of each lamina
are E2 ¼ 6.895GPa, E1/E2 ¼ 40, G12/E2 ¼ G13/E2 ¼ 0.6, G23/E2 ¼ 0.5, G12, v12 ¼ 0.25 and a11 ¼ �1.14�
10�6K�1, a22 ¼ 11.4� 10�6K�1. The thickness of the plate is 50.8mm and a ¼ b ¼ 10 h. Probably there is a
typographical mistake in the value of the mass density given in Ref. [10], which is not realistic, and here it was
assumed that r ¼ 1389.23 kgm�3 from another example of the same reference.

In this case, the frequency parameters O ¼ oa2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r=E2h2

q
computed with the p-version model at DT0 ¼ 0

and DT0 ¼ 200K are 14.434 and 14.021, respectively. These values are close to the ones given in Ref. [10],
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which are 14.702 (DT0 ¼ 0K) and 14.490 (DT0 ¼ 200K). A load that is zero at t ¼ 0� s and is equal to
q(x, y, t) ¼ q0 sin(px/a) sin(py/b), with q0 ¼ 34.48MPa, for t40 s is applied and the response computed with
the p-model is shown in Fig. 2; it is similar to the one given in Fig. 3 of Ref. [10], although there is a small
difference in the time taken between minimum displacements. This small difference may be due to the value of
r which is unclear as explained.

A simply supported square plate with immovable edges, isotropic, undamped and vibrating in the
geometrically non-linear regime due to a suddenly applied distributed transverse load is the subject of the
following example. The geometric material and load parameters are the ones given in Ref. [27]: a ¼ b ¼ 2.438m,
h ¼ 0.00635m, r ¼ 254.7 kgm�3 (Ref. [27] gives r ¼ 2.547� 10�6N s2 cm�4), E1 ¼ E2 ¼ 7.031� 109Nm�2 and
v12 ¼ 0.25. The response to load q ¼ 24.41Nm�2 is given in Fig. 3. The maximum amplitude displacement
attained is 1.21� 10�2m, which is fairly close to the one presented in Refs. [27,28].

Finally, a three-layered, [451/�451/451], undamped, fully clamped plate (for example, at x ¼ �1, the
imposed boundary conditions are u0(�1, Z, t) ¼ v0(�1, Z, t) ¼ w0(�1, Z, t) ¼ 0, y0xð�1; Z; tÞ ¼ y0yð�1; Z; tÞ ¼ 0)
investigated in Refs. [15,18,29] is analysed. The properties are: a ¼ b ¼ 0.5m, h ¼ 5� 10�3m,
r ¼ 2564.856 kgm�3, E1 ¼ 206.84GNm�2, E2 ¼ 5.171GNm�2, G12 ¼ 2.5855GNm�2 and v12 ¼ 0.25, and
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the excitation is provided by a distributed force of 3454.665Nm�2 amplitude, which varies sinusoidaly with
time. In order to dissipate transients a small damping parameter (a ¼ 10�6) was introduced into the present
model. Table 3 shows that the relations between the amplitude displacement and excitation frequency
computed with the present approach agree with the ones of the other references. Resemblance is particularly
close to the results of Ref. [18], where a similar model was employed, but where the membrane inertia was
neglected and the equations of motion were solved by the shooting method.

3.2. Parametric studies

In the previous section, close agreement between the results of the present approach and the published ones
was verified. The method is now applied to carry out parametric studies in non-linear, transient vibrations of
cylindrical, symmetrically laminated shallow shells with the goal of providing an insight into how the different
parameters affect the dynamic behaviour of the laminated shells.

The boundaries in all the ensuing examples are simply supported and immovable, that is u0(�a/2,y,
t) ¼ u0(a/2,y, t) ¼ u0 (x,�b/2, t) ¼ u0(x,b/2, t) ¼ 0; similar conditions hold for v0(x, y, t) and the moments
about the boundary axis are zero. The initial conditions are zero displacement and zero velocity. The material
properties employed are the ones given in Ref. [9] for a graphite-epoxy lamina: E1 ¼ 155GPa, E2 ¼ 8.1GPa,
G12 ¼ 4.6GPa, r ¼ 1550 kgm�3, v12 ¼ 0.22, a1 ¼ �0.07200� 10�6K�1 (�0.04� 10�6 F�1) and a2 ¼
3.00761� 10�5K�1 (1.67� 10�5 F�1). Here it was assumed that G13 ¼ G23 ¼ G12. The reference dimensions
of the panel are also from Ref. [9]: thickness h ¼ 0.0012192m (0.048 in) and quadrangular planform
a ¼ b ¼ 0.3048m (12 in), that is a/h ¼ 250. Thickness and curvature radius will change in some tests. The
damping parameter a is defined as a ¼ 0:01=o‘1 , where 0.01 is the value employed for a non-dimensional
damping coefficient of laminated shells in Ref. [30] and o‘1 is the first linear natural frequency. The excitation
amplitudes are selected so that the panels experience non-linear behaviour but, with few exceptions, the
displacement amplitudes remain within twice the panel thickness (2h). This is the widely accepted limit for Von
Kármán’s theory to remain valid, although Von Kármán relations have provided good results at larger
amplitudes [31]. The 2h boundary will only be passed in two cases, in order to show the evolution of the
dynamic behaviour with the specific parameter under consideration.

In the first example of this section, and to investigate the influence of the curvature on the response,
three relations between the initial curvature radius and the projected length are considered: b/R ¼ 0, 0.2
and 0.4. In the three cases the lamination sequence is [01/451/�451/901]s. The mechanical excitation is provided
by a suddenly applied distributed transverse load of finite duration t1 ¼ 0.05 s and amplitude
q0 ¼ �500Nm�2 (Fig. 4). The critical buckling temperature computed for the simply supported plate with
the present model is DT0 ¼ 10.89K, which is rather close to the value given in Ref. [9] (DT0 ¼ 10.95K). In the
case of shells b/R ¼ 0.2 and b/R ¼ 0.4, the critical buckling temperature is DT0 ¼ 38.93 and 69.74K,
respectively.

Fig. 5 shows the responses of these three panels at different temperatures. When DT0 ¼ �50K the plate
stiffens due to the induced tensional stresses and therefore experiences lower amplitude vibrations than in the
other cases. At DT0 ¼ �50 and 0K the plate experiences oscillations around the flat equilibrium
configuration, because these temperatures are below the critical buckling temperature. On the other hand,
shells b/R ¼ 0.2 and 0.4 oscillate around inwardly deformed configurations when DT0 ¼ �50K. This is due to
Table 3

Amplitude of vibration of a [451/�451/45] plate at point (x ¼ 0, Z ¼ 0) as a function of o=o‘1

HFEM, thin plate

theory [15]

FEM, thin plate

theory [29]

FSDT [18] po ¼ 4,

pi ¼ 8, py ¼ 6

Present, po ¼ 4,

pi ¼ 8, py ¼ 6

Wmax/h o=o‘1 Wmax/h o=o‘1 o=o‘1 o=o‘1

0.20163 0.73401 0.2000 0.7219 0.7268 0.7268

0.59965 1.00845 0.6000 1.0085 1.005 1.005
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the induced inward force FDT0
w , which contracts the shell decreasing its curvature. This force only exists on

shells as Eq. (15) shows. When DT0 ¼ 0K both shells experience very small amplitude oscillations. When
DT0 ¼ 50K, the plate oscillates around a non-flat equilibrium configuration, because the temperature is above
its critical buckling temperature. Unlike the plate, shells b/R ¼ 0.2 and 0.4 oscillate around outwardly
deformed configurations due to force FDT0

w , which in this case acts outwards. At the three temperatures
considered, shell b/R ¼ 0.4 experiences rather low-amplitude vibrations for two connected reasons: its critical
buckling temperature is above 50K and this shell is stiffer due to its larger initial curvature than the other
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panels; therefore, it does not deform so much under a similar mechanical force. Being stiffer and with more or
less the same mass as the other panels, shell b/R ¼ 0.4 has higher natural frequencies, and therefore undergoes
higher-frequency oscillations at the three temperatures.

Fig. 6 shows the transverse displacement of the central point of [0/y/�y/2y]s panels under rectangular
impulse, uniformly distributed, with �500Nm�2. Three uniform temperature fields defined by DT1 ¼ 0K and
DT0 ¼ �50, 0 or 50K are considered and the fibre orientation can be y ¼ 01, 301, 451 or 601. This example
demonstrates the large influence that the lay-up may have on the dynamic behaviour of a laminate, being
observable that the shell with all fibres in the same direction (y ¼ 01) experiences much larger amplitudes of
vibration than any of the other shells. Shell y ¼ 451 experiences the lowest vibration amplitudes, because this is
the more balanced lay-up in [0/y/�y/2y]s panels. Whichever the fibre orientation, if there is a temperature
change, force FDT0

w obliges the shells to oscillate around an equilibrium configuration which differs from the
original configuration. This force of thermal origin also exists after instant t ¼ 0.05 s, when the mechanical
force becomes zero, and in actual fact changes the geometry of the shell. Thus, one could consider that the
thermal force is causing an imperfection in the geometry, although in this case it is not a stress free
imperfection.

To examine the effect of the thickness on the response, another length to thickness ratio is considered here,
namely a/h ¼ 10. The amplitude of the excitation is defined as q0 ¼ �500 (250 a/h)3Nm�2, because the terms
of the bending stiffness matrix D involve the cube of the thickness. Fig. 7 shows that the thin shell is much
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more affected by the temperature changes than the thick one. In the latter, the dynamic response is only
marginally altered by temperature variations and the mechanical load is more important, hence the very
visible change in the response when the mechanical load becomes zero. The thick shell experiences oscillations
at higher frequencies, because its natural frequencies are higher than the ones of the thin shell.

Finally, we consider the case where DT1 6¼0K and therefore where the moments defined by Eqs. (18) and
(19) are not zero. Numerical tests are carried out on shell b/R ¼ 0.4, [01/451/�451/901]s, the mechanical
excitation is provided by an impulsive distributed force of �1000Nm�2, with duration 0.05 s. Fig. 8 shows the
responses when the temperature change in the inner surface of the shell, DTi, is smaller than or equal to than
the temperature change in the outer surface of the shell, DTe; the average temperature, DT0, is always 50K. It
results from these tests that the positive temperature variation with the coordinate z, which is linked to a
relative contraction of the inner layers with respect to the outer layers, has a stiffening effect. The inverse
phenomenon is observed in Fig. 9, where DTi4DTe.

4. Conclusions

A p-version shell finite element with hierarchic functions and that accounts for shear deformation
and rotary inertia was applied to study oscillations of laminated shallow shells under transverse
excitations and thermal fields. The model and computational code were validated by comparison with
published data.

The set of parametric studies carried out yielded information that may be useful to designers. One of the
immediate conclusions of interest is that, clearly, even rather moderate temperature changes strongly facilitate
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the appearance of large amplitude vibrations. In plates, the equilibrium configuration only changes when
thermally induced buckling occurs. In shells the equilibrium configuration is always transformed by
temperature changes altering the reference geometry, even if there is no buckling. It was also verified that the
fibre orientation has a strong influence on the thermomechanical behaviour of shells, being evident that the
limit case of shells where all fibres have the same direction experiences much larger amplitude oscillations than
other shells. The panel thickness is another parameter of paramount importance for the dynamics, as thick
shells are much less influenced by temperature changes than thinner ones. Finally, it was verified that different
temperature gradients through the thickness, with the same average temperature, cause quite different
vibration amplitudes.
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Appendix. Vectors Aa and Da

The vectors Aa and Da are, respectively, given by

Aax
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Aaxy
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9>=
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Xn
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hk�1
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where Qij are the transformed elastic coefficients referred to the (x, y, z) coordinate system, yk is the
angle between the fibre direction of the k lamina and the x-axis and a11 and a22 are the coefficients of
thermal expansion in the principal directions of each lamina. For further details the reader is invited to consult
Ref. [21].
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