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Abstract

In formulating mathematical models for dynamical systems, obtaining a high degree of qualitative correctness

(i.e. predictive capability) may not be the only objective. The model must be useful for its intended application, and models

of reduced complexity are attractive in many cases where time-consuming numerical procedures are required. This paper

discusses the derivation of discrete low-dimensional models for the nonlinear vibration analysis of thin cylindrical shells. In

order to understand the peculiarities inherent to this class of structural problems, the nonlinear vibrations and dynamic

stability of a circular cylindrical shell subjected to static and dynamic loads are analyzed. This choice is based on the fact

that cylindrical shells exhibit a highly nonlinear behavior under both static and dynamic loads. Geometric nonlinearities

due to finite-amplitude shell motions are considered by using Donnell’s nonlinear shallow-shell theory. A perturbation

procedure, validated in previous studies, is used to derive a general expression for the nonlinear vibration modes and the

discretized equations of motion are obtained by the Galerkin method using modal expansions for the displacements that

satisfy all the relevant boundary and symmetry conditions. Next, the model is analyzed via the Karhunen–Loève expansion

to investigate the relative importance of each mode obtained by the perturbation solution on the nonlinear response and

total energy of the system. The responses of several low-dimensional models are compared. It is shown that rather low-

dimensional but properly selected models can describe with good accuracy the response of the shell up to very large

vibration amplitudes.

r 2008 Elsevier Ltd. All rights reserved.
1. Introduction

Thin-walled cylindrical shells are one of the most common structural elements with applications in nearly all
engineering fields. Also, their static and dynamic behavior has been continuously studied since the early
twentieth century. In spite of this continuous interest, several aspects of their behavior are not well
understood. Among these topics, the nonlinear dynamic behavior of cylindrical shell is still an active research
ee front matter r 2008 Elsevier Ltd. All rights reserved.
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area in applied mechanics and engineering design. The study of the nonlinear vibrations of cylindrical shells
began in the middle of the last century with the works by Chu [1], Evensen [2], Dowell and Ventres [3], Atluri
[4], Chen and Babcock [5] and Ginsberg [6], among others. A detailed review of this subject, including more
than 350 papers, was published in 2003 by Amabili and Paı̈doussis [7]. Another review paper, including
relevant contributions from Eastern Europe, was published in 1998 by Kubenko and Koval’chuk [8].
However, only in recent years, due to the advances in theoretical and numerical tools in the field of nonlinear
dynamics, the complex nonlinear vibrations and bifurcations of cylindrical shells under various loading
conditions began to be understood.

To capture the nonlinear response of cylindrical shells, large numerical models are usually employed. These
analyses involving a large number of degrees of freedom are very expensive with respect to both storage and
CPU time. As a result, it is difficult, if not impossible, to deal with a number of situations such as:
continuation or homotopy methods for computing state solutions, in particular bifurcation diagrams under
dynamic loads, evolution and erosion of basins of attraction, feedback control, parametric studies of state
solutions and stability boundaries in control space. An attractive alternative is to derive consistent reduced-
order models that can capture the main characteristics of the shell behavior.

Recently, a lot of attention has been paid to reducing the cost of the nonlinear state solution by using
reduced-order models for the state. Particularly in solid and fluid mechanics this has become a very attractive
research field, enabling a deeper understanding of complex nonlinear systems. The most common approaches
are the use of nonlinear normal modes [9], which is based on the method of normal forms [10], proper
orthogonal decomposition based on Karhunen–Loève method [11] and centroidal Voronoi tessellations [12].
Recently, Rega and Troger [13], in an article that introduces a special issue of the journal Nonlinear Dynamics
on reduced-order models have analyzed the most common methods of dimension reduction in nonlinear
dynamics with emphasis on applications in mechanics. The aim of these methods is to choose a reduced basis
ui, i ¼ 1,y,n, where n is small compared to the usual number of functions used, for example, in a finite
element approximation or in a traditional Galerkin model. It is clear that the reduced basis should be chosen
so that it contains all the features, e.g., the dynamics of the states encountered during the simulation. It
requires some intuition about the states to be simulated. If the reduced-order model is properly selected, it
should work in an interpolatory setting, but it is not clear what happens in an extrapolatory setting. One
cannot hope to determine one reduced-order model capable of describing the response of a complex system for
all sets of parameters. So, depending on the complexity of the systems, various reduced-order models
optimized for different sets of parameters should be derived. However, one hopes that a single reduced basis
can be used for several state simulations or in several design settings.

Traditionally, low order models have been used to study the nonlinear vibrations of cylindrical shells.
Evensen [14] proposed a reduced-order model, considering both the basic linear vibration mode plus an
axi-symmetric mode, which described qualitatively the expected softening behavior of the shell observed in
experiments [15]. Later, Croll and Batista [16] and Hunt et al. [17], among others, have shown that these
modes are also essential for the correct description of the softening post-buckling path of cylindrical shells,
being responsible for the dominant quadratic nonlinearities in the discretized equations obtained by a
traditional Galerkin or Ritz approach. The essential modes to describe the nonlinear behavior of an infinitely
long cylindrical shell were derived by Gonc-alves and Batista [18], using a perturbation procedure, and a
reduced model, based on this general solution, was adopted to study the nonlinear vibration of a simply
supported, fluid-filled cylindrical shell. Recently, Gonc-alves and Del Prado [19,20] used this modal expansion
of the nonlinear displacement field to study the convergence of bifurcation diagrams, orbits in the
n-dimensional phase space and Poincaré maps up to very large deflections, identifying the relative importance
of the modes in the nonlinear analysis. Amabili et al. in a series of paper (see, for example, Refs. [21,22]), have
used a modal expansion composed of two trigonometric series to study several aspects of the nonlinear
dynamic response of empty and fluid-filled cylindrical shells, one containing axially asymmetric modes and the
other a series of axi-symmetric modes, capturing in this way the basic nonlinear modal interactions. Based on
this general solution, several reduced-order models were derived. Low order models have also been used by
Popov [23] and Jansen [24] to study the nonlinear vibrations of cylindrical shells.

Modal solutions used in traditional Galerkin or Ritz procedures may attain convergence up to very large
deflections using a rather large number of modes. However, this may contain redundant information in the
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sense that the dynamics of the shell can be well approximated by a set of functions of much lower dimension.
So, the problem is to extract a reduced basis of smaller dimension that contains all the essential information of
the basis of larger dimension. One promising way is the use of the proper orthogonal decomposition based on
the Karhunen–Loève method. It uses a series of snapshots of the phase space, obtained by numerical
simulation using a high-fidelity model or from experiments, in order to build the reduced subspace. The
method furnishes the best linear orthogonal basis, which decorrelates the signal components and maximizes
variance. This method was used by Amabili et al. [25,26] to study the nonlinear vibrations of cylindrical shells.
Recently, Amabili and Touzé [27,28] compared the efficiency of the proper orthogonal decomposition
and the nonlinear normal modes method to build reduced-order models of a water-filled cylindrical shell. They
point out the merits of each approach and conclude that for very large vibration amplitudes and a large range
of parameter variations, the proper orthogonal decomposition (POD) method performs better due to its
global nature.

In this paper an alternative procedure is used to obtain a precise solution for the nonlinear response of a
cylindrical shell, satisfying exactly the in-plane equilibrium equations and all the relevant boundary, continuity
and symmetry conditions. Based on this formulation, a low-dimensional model is derived by the use of
perturbation techniques together with the proper orthogonal decomposition procedure. The free and forced
response is analyzed. The results show that rather low-dimensional models can be employed to study the
response of the shell up to very large deflections. The present methodology, combining a perturbation
procedure with POD, can be easily extended to a series of structural elements such as beams, arches and plates
and other shell geometries. Once the linear vibration modes are obtained, the higher-order modes can be
derived by the perturbation procedure and, then, the POD method can be used to select the most important
modes.

2. Formulation of the problem

Consider a thin-walled, simply supported cylindrical shell of radius R, length L and thickness h.
A cylindrical coordinate system is adopted with the center at the lower end of the shell, as illustrated in Fig. 1.
The mid-surface displacements in the axial, circumferential and radial directions are denoted, respectively, by
u, v and w. The shell material is considered to be elastic, homogeneous and isotropic with Young’s modulus E,
Poisson ratio n and density r.
x (u)

z (w)

y (v)

L

R

h

Fig. 1. Circular cylindrical shell: geometry and coordinate system.



ARTICLE IN PRESS
P.B. Gonc-alves et al. / Journal of Sound and Vibration 315 (2008) 641–663644
The strain energy for a cylindrical shell, in accordance with the basic approximations of thin-shell theory, is
given by [29,30]

U ¼
1

2

Z Z Z
ðsx�x þ sy�y þ txygxyÞdxdydz (1)

where �x, �y and gxy are the extensional and shearing strain components at an arbitrary point of the shell, and
sx, sy and txy are the corresponding normal and shear stress components.

The generalized Hooke’s law for the stress components has the form

sx

sy

txy
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The strain components at any point through the shell thickness can be written in terms of the corresponding
middle surface quantities by

�x ¼ �x þ zwx

�y ¼ �y þ zwy

gxy ¼ gxy þ 2zwxy (3)

where ex, ey and gxy are the extensional and shearing strain components at a point on the middle surface, z is
the radial coordinate (�h/2pzp�h/2) and wx, wy and wxy are, respectively, the curvature changes and twist.

Based on Donnell shallow-shell theory, the middle surface kinematic relations are given, in terms of the
three displacement components by

�x ¼ u;x þ
1
2 w2

;x �y ¼ v;y þ
w
R
þ 1

2 w2
;y gxy ¼ v;x þ u;y þ w;xw;y

wx ¼ w;xx wy ¼ w;yy wxy ¼ w;xy
(4)

Considering both a lateral pressure p and an axial load P applied along the edges of the shell, the potential
energy of the applied loads can be written as

V ¼

Z Z
pwdxdyþ

I
Pdyjx¼L

x¼0 (5)

The kinetic energy of the shell, neglecting in-plane and rotary inertias, can be written as [30]

T ¼
1

2

Z Z Z
r _w2 dxdydz (6)

where _w ¼ qw=qt is the velocity in the radial direction.
The Rayleigh dissipation function is given by [31]

Re ¼
1

2

Z Z Z
2�ro0 _w

2 dxdydz (7)

where e is the viscous damping coefficient and o0 is the lowest natural frequency of the shell.
The total energy of the non-autonomous dissipative system at any time t40 is given by

P ¼ T þ Re � ðU þ V Þ (8)

By applying Hamilton’s principle, the nonlinear equations of motion for the cylindrical shell are given in
terms of the internal forces and moments by

Nx;x þNxy;y ¼ 0 (9.1)

Nxy;x þNy;y ¼ 0 (9.2)

Mx;xx þ 2Mxy;xy þMy;yy þ
Ny

R
þ ðNx þ PÞw;xx þNyw;yy þ 2Nxyw;xy þ 2�ro0h _w� p ¼ rh €w (9.3)
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where Nx, Ny and Nxy are in-plane normal and shearing forces intensities per unit length along the edge of a
shell element and Mx, My and Mxy are the bending and twisting moment intensities, which are related to the
internal stresses by the equations:

Nx ¼
R h=2
�h=2 sx dz Ny ¼

R h=2
�h=2 sy dz Nxy ¼

R h=2
�h=2 txy dz

Mx ¼
R h=2
�h=2 zsx dz My ¼

R h=2
�h=2 zsy dz Mxy ¼

R h=2
�h=2 ztxy dz

(10)

Considering a simply supported shell, the boundary conditions are

vð0; yÞ ¼ vðL; yÞ ¼ 0 (11.1)

wð0; yÞ ¼ wðL; yÞ ¼ 0 (11.2)

Mxð0; yÞ ¼MxðL; yÞ ¼ 0 (11.3)

Nxð0; yÞ ¼ NxðL; yÞ ¼ 0 (11.4)

The axial force is given in terms of the displacements by

Nx ¼
Eh

1� v2
u;x þ

1

2
w2
;x þ n v;y þ

w

R
þ

1

2
w2
;y

� �� �
(12)

So, Eq. (11.4) constitutes a nonlinear boundary condition in terms of the displacements.
The following symmetry and continuity conditions are also used in the analysis:

uðL=2; yÞ ¼ 0 (13.1)

vðx; 0Þ ¼ vðx; 2pRÞ (13.2)
2.1. General solution of the shell displacement field by a perturbation procedure

The nonlinear equations of motion for the undamped, unforced thin shell can be written in terms of its
displacement vector U ¼ {u, v, w}T as

LðUÞ �U;tt ¼ dD1ðUÞ þ d2D2ðUÞ (14)

where L(U) is the matrix of linear differential operators, d is an appropriate small perturbation parameter,
D1(U) is a vector of quadratic terms and D2(U) is a vector of cubic terms.

One assumes that the components of the displacement vector U can be expanded in terms of the
perturbation parameter d as

u ¼
X1
i¼0

diuiðx; y; tÞ v ¼
X1
i¼0

diviðx; y; tÞ w ¼
X1
i¼0

diwiðx; y; tÞ (15)

where d is a small perturbation parameter.
Substituting Eq. (15) into Eq. (14), collecting terms of the same order in d and equating these terms to zero,

one obtains the following set of linear systems of partial differential equations:

LðU0Þ �U0
;tt ¼ 0

LðU1Þ �U1
;tt ¼ D1ðU

0Þ

LðU2Þ �U2
;tt ¼ D1ðU

0;U1Þ þD2ðU
0Þ (16)

The solution of the first equation in Eq. (16) with the appropriate boundary conditions is simply the linear
vibration modes, U0, and corresponding natural frequencies of the shell.
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For a simply supported or infinitely long shell the vibration modes are given by

u0 ¼ U0hf ðtÞ cos ðnyÞ cos
mpx

L

� �
v0 ¼ V0hf ðtÞ sin ðnyÞ sin

mpx

L

� �
w0 ¼W 0hf ðtÞ cos ðnyÞ sin

mpx

L

� �
(17)

where U0;V0 and W̄ 0 are the modal amplitudes, n is the number of circumferential waves, m is the number of
axial half-waves in the axial direction and y ¼ y/R.

Substitution of Eq. (17) into the second equation in Eq. (16), leads to a system of non-homogeneous
differential equations, which is linear in U1. The particular solution of this system gives the second-order
modes in the expansion Eq. (15), which are

u1 ¼ f ðtÞ2h U1 sin
2mpx

L

� �
þU2 sin

2mpx

L

� �
cosð2nyÞ

� �

v1 ¼ f ðtÞ2h V1 sinð2nyÞ þ V2 cos
2mpx

L

� �
sinð2nyÞ

� �

w1 ¼ f ðtÞ2h W 1 cos
2mpx

L

� �
þW 2 cosð2nyÞ þW 3 cosð2nyÞ cos

2mpx

L

� �
þW 4

� �
(18)

These modes arise from the quadratic nonlinearity and are the main responsible for the in–out asymmetry
of the shell nonlinear displacement field.

Substituting U0 and U1 in the third equation in Eq. (16), one can obtain the third-order modes U2. They are

u2 ¼ f ðtÞ3h U3 cosðnyÞ cos
mpx

L

� �
þU4 cosðnyÞ

3mpx

L

� ��

þU5 cosð3nyÞ cos
mpx

L

� �
þU6 cosð3nyÞ cos

3mpx

L

� ��

v2 ¼ f ðtÞ3h V3 sinðnyÞ sin
mpx

L

� �h
þ V 4 sinðnyÞ sin

3mpx

L

� �

þ V5 sinð3nyÞ sin
mpx

L

� �
þ V 6 sinð3nyÞ sin

3mpx

L

� ��

w2 ¼ f ðtÞ3h W 5 cosðnyÞ sin
mpx

L

� �
þW 6 cosðnyÞ sin

3mpx

L

� ��

þW 7 cosð3nyÞ sin
mpx

L

� �
þW 8 cosð3nyÞ sin

3mpx

L

� ��
(19)

These equations have a well-defined pattern, in a way that one could continue developing higher-order
modes up to the desired order without difficulty.

Finally, by inspecting the solution for U1, U2, U3,y, UN, the general solution for the displacement field can
be written as

u ¼
X

i¼1;3;5

X
j¼1;3;5

UijðtÞh cosðinyÞ cos
jmpx

L

� �
þ
X

k¼0;2;4

X
l¼2;4

UklðtÞh cosðknyÞ sin
lmpx

L

� �

v ¼
X

i¼1;3;5

X
j¼1;3;5

V ijðtÞh sinðinyÞ sin
jmpx

L

� �
þ
X

k¼2;4;6

X
l¼0;2;4

VklðtÞh sinðknyÞ cos
lmpx

L

� �

w ¼
X

i¼1;3;5

X
j¼1;3;5

W ijðtÞh cosðinyÞ sin
jmpx

L

� �
þ
X

k¼0;2;4

X
l¼0;2;4

W klðtÞh cosðknyÞ cos
lmpx

L

� �
(20)

This is the solution for an infinitely long shell, since no boundary conditions were imposed during the
derivation of the higher-order modes. The powers of the perturbation parameter d and of the function f(t) are
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included in the time-dependent modal amplitudes, such that

Un / dnf ðtÞnþ1 þ higher order terms (21)

By imposing the out-of-plane boundary conditions Eqs. (11.2) and (11.3), the transversal displacement field
of a simply supported shell can be described by

w ¼
X1

i¼1;3;5

X1
j¼1;3;5

zijh cosðinyÞ sin
jmpx

L

� �
þ
X1

a¼0;2;4

X1
b¼0

zað2þ6bÞh
ð3þ 6bÞ
ð4þ 12bÞ

cosð6bmpxÞ
�

� cos ð2þ 6bÞ
mpx

L

� �
þ
ð1þ 6bÞ
ð4þ 12bÞ

cos ð4þ 6bÞ
mpx

L

� �	
cosðanyÞ (22)

By increasing the number of terms in Eq. (22), one can conclude that convergence can be attained up to
very large deflections (around two times the shell thickness) if all modes up to the fourth order are retained in
Eq. (22), i.e.,

w ¼ h z11ðtÞ cosðnyÞ sin
mpx

L

� �
þ z13ðtÞ cosðnyÞ sin

3mpx

L

� ��
þ z31ðtÞ cosð3nyÞ sin

mpx

L

� �

þ z33ðtÞ cosð3nyÞ sin
3mpx

L

� �
þ z02ðtÞ

3

4
� cos

2mpx

L

� �
þ

1

4
cos

4mpx

L

� �� �

þz22ðtÞ
3

4
� cos

2mpx

L

� �
þ

1

4
cos

4mpx

L

� �� �
cosð2nyÞ

�
(23)
2.2. Determination of the in-plane displacements u and v

The equations of motion Eq. (9) could be solved by substituting the modal expansions derived by the
perturbation procedure Eq. (20) and applying the Galerkin method as in Ref. [18]. However, the number of
unknowns can be drastically reduced by obtaining analytically the in-plane displacement components u and v

in terms of the modal amplitudes of w, in a procedure similar to that used in literature to obtain the stress
function when Donnell equations are written in terms of the transversal displacement w and a stress function
F. The number of terms in Eq. (20) to be retained for the in-plane displacement components u and v will
depend on the number of terms retained in the modal expansion of w. As shown by Gonc-alves and Batista
[18], since u and v depend nonlinearly on w, a much larger number of terms are required to satisfy the in-plane
equilibrium Eqs. (9.1) and (9.2). Here an alternative methodology is proposed to obtain the
in-plane displacement components in terms of the modal amplitudes of w, satisfying exactly both the
in-plane equilibrium equations and associated boundary, symmetry and continuity conditions. This
constitutes the first reduction in the dimension of the system.

Consider Eq. (9.2). By substituting the in-plane forces in terms of the displacements into Eq. (9.2), one can
write the partial derivative of the axial displacement u,xy as a function of v and w, i.e.,

u;xy ¼ �
1

1þ n
ð1� nÞðv;xx þ w;xxw;yÞ þ 2 v;yy þ w;yyw;y þ

1

R
w;y

� �� �
� w;xyw;x (24)

Deriving Eq. (24) twice with respect to x and twice with respect to y, one obtains respectively,

u;xxxy ¼ �
1

1þ n
ð1� nÞðv;xxxx þ w;xxxxw;y þ 2w;xxxw;xy þ w;xxwxxyÞ

�

þ 2 v;xxyy þ w;xxyw;yy þ 2w;xyw;xyy � w;yw;xxyy �
1

R
w;xxy

� ��
� w;xxxw;xy � 2w;xxw;xxy � w;xw;xxxy (25)
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u;xyyy ¼ �
1

1þ n
ð1� nÞðv;xxyy þ w;xxyyw;y þ 2w;xxyw;yy þ w;xxw;yyyÞ

�

þ 2 v;yyyy þ 3w;yyw;yyy þ w;yw;yyyy þ
1

R
w;yyy

� ��
� 3w;xyw;xyy � w;xw;xyyy (26)

Eq. (9.1) can be written in terms of the displacements as

2 u;xx þ w;xw;xx þ
n
R

w;x

� �
þ ð1� nÞðu;yy þ w;xw;yyÞ þ ð1þ nÞðv;xy þ w;xyw;yÞ ¼ 0 (27)

Derivation of Eq. (27) with respect to x and y and substitution of Eqs. (25) and (26) into the resulting
differential equation leads to

r4v ¼ � 2w;xxyyw;y � w;xxw;xxy þ nw;xxw;yyy � 2w;xyw;xxx

� 3w;yyw;yyy � ð2� nÞw;xxyw;yy �
ð2þ nÞ

R
w;xxy

� 2ð2þ nÞw;xyw;xyy � w;xxxxw;y �
1

R
w;yyy � w;yw;yyyy (28)

where r4 is the bi-harmonic operator given by

r4v ¼ v;xxxx þ 2v;xxyy þ v;yyyy (29)

By substituting the selected modal expansion for w into the right-hand side of Eq. (28), a non-homogeneous
linear partial differential equation in v is obtained. The solution for the circumferential displacement may be
written as v ¼ vh+vp, where vh is the homogeneous solution and vp is the particular solution. The homogeneous
solution is taken as zero in order to satisfy the continuity of the displacements in the circumferential direction.
The particular solution can be easily obtained by substituting the expansion for w, Eq. (23), into Eq. (28) and
equating the coefficients. So, the modal solution for v is obtained as a nonlinear function of the modal
displacements of w. The resulting solution satisfies the boundary condition (11.1) on the average:Z

vð0; yÞdy ¼

Z
vðL; yÞdy ¼ 0 (30)

Substituting the modal solution for v and w into Eq. (25), the partial derivative of u is obtained in terms of
the modal amplitudes of w. By integrating the resulting equation over the surface of the shell, one obtains:

u ¼

Z Z Z Z
�

1

1þ n
ð1� nÞðv;xxxx þ w;xxxxw;y þ 2w;xxxw;xy

�
þ w;xxwxxyÞ

�

þ 2 v;xxyy þ w;xxyw;yy þ 2w;xyw;xyy � w;yw;xxyy �
1

R
w;xxy

� ��

�w;xxxw;xy � 2w;xxw;xxy � w;xw;xxxy

	
dxdxdxdyþ F ðxÞ þ Gðx; yÞ (31)

So, a particular solution for the axial displacement is totally defined, but for the integration functions F(x)
and G(x,y).

By substituting Eq. (31) into Eq. (27), a non-homogeneous second-order ordinary differential equation in
F(x) is obtained. This equation can be written in a concise form as

F ðxÞ;xx ¼ gðxÞ (32)

Solving Eq. (32), one obtains:

F ðxÞ ¼

Z Z
gðxÞdxdxþ C1xþ C2 (33)

The integration constants C1 and C2 plus the function G(x,y) ¼ x2G1(y)+xG2(y)+G3(y) are obtained by
imposing the symmetry condition Eq. (13.1) and the nonlinear boundary condition Eq. (12) at x ¼ 0 and L.
From the two equations obtained by substituting the total displacement field into Eq. (12) and substituting
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x ¼ 0 and L in the resulting equation, the functions G1(y), G2(y) and C1 are obtained (G1(y) ¼ 0). Then, from
the symmetry condition Eq. (13.1), one obtains C2 and G3(y). Finally, substituting the resulting displacement
field into the original in-plane equilibrium equations and all boundary and symmetry conditions the
correctness of the present procedure is demonstrated.

It is important to notice that the harmonic terms in the modal expansion for u and v derived by this
procedure are similar to those derived by the perturbation procedure. However, the present methodology, by
solving analytically the in-plane equilibrium equations and boundary conditions has already established the
necessary number of modes in Eq. (20) and the correlation between the modal amplitudes so that the in-plane
equilibrium and boundary conditions are properly satisfied.

Finally, by substituting the adopted expansion for the transversal displacement w together with the obtained
expressions for u and v into the equation of motion Eq. (9.3) and by applying the standard Galerkin method, a
consistent discretized system of ordinary differential equations of motion are derived.

2.3. Reduction of the problem by Karhunen– Loève decomposition

Previous works [18–20] have shown that the displacement field derived by the perturbation procedure
identify all the modes that couple with the reference vibration mode through the quadratic and cubic
nonlinearities present in the equations of motion and that it is capable of describing the correct softening
behavior exhibited by cylindrical shells with a relatively small number of modes. It also gives some indication
of the relative importance of each mode in the nonlinear solution through the powers of the small perturbation
parameter. However, in order to construct a theoretically well-founded low-dimensional model, it is important
to identify the relative importance of each mode to the total energy of the system as a function of the vibration
amplitude and the participation of each term of the modal expansion Eq. (22) in the nonlinear vibration
modes. Also, the modal basis may contain redundant information in the sense that the dynamics of the system
can be approximated with accuracy by a set of functions of much lower dimension.

One way of solving this problem is to use the Karhunen–Loève method also known as POD. Various
applications of the POD method for the reduced-order modeling of complex systems can be found in literature
[11,13,26,32]. The POD method is based on the analysis of a series of snapshots of the system response
obtained from a high-fidelity solution of the mathematical model. Experimental data have also been used to
determine the snapshot sets.

In this work the snapshots are obtained from the solution of the discretized equations of motion.
A detailed mathematical formulation of the Karhunen–Loève method can be found, for example,

in Bellizzi and Sampaio [33] and Sirovich [34–36]. In this work, the so-called direct method is employed [32,33].
Now consider a real vector field, w*(x,y,t). This field can be decomposed into two parts: a mean time-

invariant part E[w*(x,y,t)]. and the state variables v�ðx; y; tÞ ¼ w�ðx; y; tÞ � E½w�ðx; y; tÞ�, adjusted so that its
mean value is zero.

In dynamic problems of mechanics, the displacement field is usually written in the space–time separated
form:

v�ðx; tÞ ¼
X1
k¼1

xkðtÞf kðxÞ (34)

If the functions fk(x) and/or xk(t) satisfy some orthogonal and optimality properties, expansion (34) is called
the POD and fk(x) and lk will be called proper orthogonal modes (POMs) and proper orthogonal values
(POVs), respectively [33]. The orthogonality properties are important for the construction of reduced-order
models.

The continuous displacement field at a certain instant is approximated by a discrete field. To obtain a vector
field representative of the shell displacements, the surface of the shell is discretized and the displacements are
evaluated at NT spatial points uniformly spaced along the x- and y-axis, as follows:

w�ðx; y; tÞ ¼ wðxi; yj ; tÞ;
xi ¼ iL=ðnx � 1Þ; i ¼ 0; . . . ; ðnx � 1Þ

yj ¼ j2pR=ðny � 1Þ; j ¼ 0; . . . ; ðny � 1Þ

(
(35)
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where w*(x,y,t) is the vector of the components of the transversal displacements measured at each point (xi, yj)
using Eq. (23). The modal time-dependent amplitudes zij(t) in Eq. (23) are obtained by the solution of the
discretized equations of motion of the shell. So, for each time interval a vector with nx� ny ¼ NT elements
ordered as w�1ðtÞ;w

�
2ðtÞ; . . . ;w

�
nT
ðtÞ is obtained. Taking M snapshots at tm ¼ mt (t1, t2, y, tm), where t is the

sampling period, which must be greater than the correlation time, the following ensemble matrix of dimension
M�NT is obtained:

W� ¼ w1 w2 . . . wNT

h i
¼

w1ðt1Þ w2ðt1Þ . . . wNT
ðt1Þ

w1ðt2Þ w2ðt2Þ . . . wNT
ðt2Þ

..

. ..
. . .

. ..
.

w1ðtM Þ w2ðtM Þ . . . wNT
ðtMÞ

2
666664

3
777775 (36)

where each column represents the temporal variation of the displacement at a certain point in space and each
row represents the displacement field at a certain instant tm.

Using the ergodicity hypothesis, the mean value of the field is obtained by summing all components of W*

and dividing the result by the number of rows M. The variation of the field with respect to the mean value of
each row is obtained by

V� ¼W� �
1

M

PM
i¼1

w1ðtiÞ
PM
i¼1

w2ðtiÞ . . .
PM
i¼1

wNT
ðtiÞ

..

. ..
. . .

. ..
.

PM
i¼1

w1ðtiÞ
PM
i¼1

w2ðtiÞ . . .
PM
i¼1

wNT
ðtiÞ

2
66666664

3
77777775

(37)

Finally, using again an ergodicity assumption, the spatial correlation matrix can be written as follows:

R ¼
1

M
ðV�ÞTðV�Þ (38)

where R is a symmetric, positive-definite matrix.
The eigenvectors of Eq. (38), which are orthogonal due to its symmetry, are the POMs and the associated

eigenvalues, the POVs. An eigenvalue (POV) has the interpretation of giving the mean energy of the system
projected on the associated eigenvector-axis in function space [34–36]. The mean energy of a flow should
therefore be equal to the sum of the eigenvalues.

Using the eigenvalues and eigenvectors of the spatial correlation matrix, the dynamics of the original system
can be reconstructed as

w�ðx; y; tÞ �
XK

k¼1

akðtÞjkðx; yÞ þ E½w�ðx; y; tÞ� (39)

where jk(x,y) is the kth eigenvector and ak(t) is the kth coefficient which is a function of the temporal
dependence and is defined as

akðtÞ ¼ hv
�ðx; y; tÞ;jkðx; yÞi (40)

In terms of this work, the main interest is to find a set of coherent structures which captures most of the
energy of the system. As a nominal criterion, we look for reduced models that capture, for example, at least
99% of the energy of the system.
3. Numerical results

Consider a cylindrical shell of radius R ¼ 0.2m, length L ¼ 0.4m and thickness h ¼ 0.002m. The shell
material has the following properties: E ¼ 2.1� 1011Nm�2, n ¼ 0.3 and r ¼ 7850 kgm�3. For this shell



ARTICLE IN PRESS
P.B. Gonc-alves et al. / Journal of Sound and Vibration 315 (2008) 641–663 651
geometry the lowest buckling load as well as the lowest natural frequency are obtained for m ¼ 1 and n ¼ 5
[20]. These values will be used throughout the present numerical analysis.

First the post-buckling analysis of the shell under axial compression is conducted. Fig. 2 shows the variation
of the non-dimensional static load parameter G0 ¼ P/Pcr, where P is the applied load and Pcr ¼ Eh2/
[R(3�3n2)�1/2] is the classical critical load of the axially loaded shell [29], as a function of the modal amplitude
z11, considering an increasing number of modes in the modal expansions for the transversal displacement w,
Eq. (23).

There is a qualitative change from hardening to softening, as already shown in previous papers [20], when
the axi-symmetric mode is added to the basic vibration mode. The use of all second-order modes, which are
proportional to the perturbation parameter (plus fourth-order modes due to the imposition of the out-of-plane
boundary conditions) leads to a noticeable increase in the softening behavior. The addition of the third-order
modes, which are proportional to the perturbation parameter squared (z13, z31, z33), does not change the
unstable post-buckling branch, being the corrections restricted to the large-deflection stable post-buckling
branch. This is in agreement with the relative importance of each mode in terms of the perturbation
parameter.

The Karhunen–Loève method is now employed to study the relative importance of each mode of the modal
expansion Eq. (23) on the post-buckling response of the shell. To obtain a vector field representative of the
shell deformed surface, the snapshots matrix Eq. (36) is obtained using the modal expansion Eq. (23) together
with the modal coefficients zij obtained from the solution of the nonlinear equilibrium equation of the post-
buckling response. All modes up to the fourth order in Eq. (20) are considered, which are enough to archive
convergence up to very large deflections, as shown in Fig. 2. The shell surface is discretized according to
Eq. (35) using nx ¼ ny ¼ 40. The snapshots in the Karhunen–Loève method are usually obtained as a function
of time. However, it can be employed in a static nonlinear analysis treating the displacements as a function of
the load parameter G0 instead of t. So W* in Eq. (36) is obtained for uniformly spaced steps of the applied
axial load.

Fig. 3 illustrates the four first POMs and the respective POVs used in the reconstruction of the shell
displacement field. They represent 99.999% of the total energy of the system. In fact, most of the energy is
concentrated in the two first modes (99.89%). From these results a consistent low-dimensional model can be
derived for the post-buckling analysis of the shell. Also, these results may help in identifying the relative
importance of each mode in Eq. (23).

To measure the relative importance of the modes in Eq. (23) in each POM, each POM is expanded in a
Fourier series, using Eq. (23). Table 1 shows the modal coefficients for each POM presented in Fig. 3. The two
main contributions to the first POM, which is responsible for 96.47% of the total energy, are the basic
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Fig. 2. Post-buckling behavior of the shell, considering different modal expansions for the transversal displacement w.
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buckling mode, z11, plus the axi-symmetric mode, z02. This confirms the importance of these two modes, as
claimed in previous works on the subject. The second POM also has significant contributions from these two
modes. This explains why approximate models using only these two modes are capable of describing, at least
qualitatively, the nonlinear response of the shell. The third POM is dominated by the second-order mode, z22.
The dominant amplitudes of the fourth POM are those of the third-order modes, z13, z31 and z33. These results
agree with the solution obtained by the perturbation procedure. This analysis show that the simultaneous use
of a perturbation procedure and the proper orthogonal decomposition may constitute an efficient and easily
implemented procedure for the derivation of theoretically well-founded low-dimensional models.

Now, the four first POMs are used to reconstruct the response of shell. Fig. 4 shows the excellent agreement
between the post-buckling response of the shell using the modal expansion (23) and using the first four modes
of the Karhunen–Loève expansion.
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Table 1

Participation of the modes used in the modal expansion on the first four POMs of the shell post-buckling path

POM POV (%) z11 z02 z22 z13 z31 z33

1 96.47 16.029 8.767 �3.029 �2.462 1.067 �0.455

2 3.42 17.622 �6.725 5.643 �4.271 �3.879 1.176

3 0.10 �1.592 3.194 14.537 1.437 9.631 0.503

4 0.01 4.878 �2.212 �2.888 17.025 13.139 �8.137

P.B. Gonc-alves et al. / Journal of Sound and Vibration 315 (2008) 641–663 653
Using the coefficients of Table 1, each POM can be described by a sum of harmonic functions
with unknown amplitudes and the Galerkin method employed to deduce reduced-order models
with increasing number of modes. The results are shown in Fig. 5 where the maximum normalized
deflection is plotted as a function of the axial load parameter, G0. Models considering two to five POMs are
compared with the convergent modal solution. All models capture the softening behavior of the shell.
However, the critical load is initially higher than the theoretical value but converges to the correct value
as the number of POMs increases. This occurs because the first POM is not the true buckling mode of the
shell but an approximation of the nonlinear buckling mode. The true mode is described by the eigenfunctions
Eq. (17). It is interesting to notice that the convergence of the large-deflection post-buckling behavior is much
faster.

3.1. Reduced reduced-order model

There is a basic difference between a truly multi-degree-of-freedom model with n independent coordinates
and the nonlinear solution Eq. (23). Taking as a seed mode the buckling mode (m, n), all higher-order modes
in Eq. (23) are due to modal coupling, as shown by the perturbation solution, leading to a modal
representation of the nonlinear buckling mode. This is different from the interaction of different nonlinear
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vibration modes, as shown by Gonc-alves and Del Prado [19]. So, the higher-order modal amplitudes can be
viewed as slave coordinates and written as a function of z11, i.e.

z02 ¼ f 1ðz11Þ

z22 ¼ f 2ðz11Þ

z13 ¼ f 3ðz11Þ

z31 ¼ f 4ðz11Þ

z33 ¼ f 5ðz11Þ (41)

where fi, i ¼ 1, y, 5, are polynomial functions of z11.
In this way, one can construct a reduced basis from an already reduced basis based on the simultaneous use

of perturbation techniques and POD. In this sense, this is a reduced reduced-order model for the shell.
To obtain the coefficients of the polynomial approximations, the modal amplitudes for increasing values of

load are obtained and projected onto the z11� zij plane and the best polynomial is obtained by the least-square
method, thus minimizing the errors. For the present problem the following expansions are obtained:

z02 ¼ 4:12� 10�2z211 � 1:33� 10�4z411 þ 2:67� 10�6z611
z22 ¼ 1:54� 10�2z211 � 7:37� 10�4z411 þ 4:05� 10�6z611
z13 ¼ �1:12� 10�2z311 þ 2:01� 10�4z511 � 1:03� 10�6z711
z31 ¼ 3:16� 10�4z311 � 1:72� 10�6z511 þ 1:02� 10�7z711
z33 ¼ 5:04� 10�4z311 � 1:65� 10�5z511 þ 8:89� 10�8z711 (42)

In agreement with the perturbation procedure, the best fitting polynomials for z02 and z22 begins with a
quadratic term in z11

2 (see Eqs. (15.2) and (17)) and include only even powers of z11, while the polynomials for
z13, z31 and z33 begins with a cubic term in z11 and includes only odd powers of z11 (see Eqs. (15.3) and (18)). Of
course these polynomials could be derived analytically solving the systems Eq. (15), but the results would be
rather cumbersome even using symbolic algebra.

Now, using Eq. (42), a single-degree-of-freedom (sdof) model is obtained for the shell. Fig. 6 shows a
comparison between the complete modal solution, Eq. (23), and the reduced reduced-order model, Eq. (42).
As observed, this simplified model can capture the basic nonlinear behavior of the shell up to very large
amplitudes. Such a reduced-order model may find applications in several types of analysis where repeated
computations are required such as in sensitivity analyses, feedback control and evolution of basins of
attraction.
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3.2. Free-vibration analysis

Now a similar procedure is used to derive low-dimensional models for the nonlinear free vibrations of the
shell. To obtain the frequency–amplitude relations, the discretized ordinary differential equations of motion
obtained by the Galerkin method, using the modal expansion Eq. (23), are solved by the multiple shooting
method to obtain periodic solutions of the initial boundary value problem [37,38]. So, no approximate
functions for the time-dependent amplitudes are required. The same shell used in the static analysis is
considered.

The first four POMs and the respective POVs are shown in Fig. 7. In this case, the snapshots in the
Karhunen–Loève method are obtained along one period of the shell response for increasing vibration
amplitudes. As in the static analysis, the first two POMs are responsible for most of the energy of the system
(99.99%). Again, each POM is expanded in a Fourier series, using Eq. (23). The results are shown in Table 2.
The dominant contribution of the first POM is the linear vibration mode, z11, as expected from the theoretical
foundations of Karhunen–Loève expansion. This is also the main contribution for the total energy of the shell.
The second POM is basically a combination of the two second-order modes with a predominance of the
axi-symmetric mode, z02. The two first POMs are responsible for 99.99% of the total energy of the system. The
third POM is dominated by the third-order mode z13. The contributions of the other modes are negligible in
this case. Again, the results are in agreement with the ones of the perturbation procedure and confirm the
accuracy of approximate models used by Evensen [14] and subsequent researchers in this field.

The frequency–amplitude relation (backbone curve) obtained by the shooting method and the reconstructed
response obtained by the Karhunen–Loève method are favorably compared in Fig. 8 up to large deflections
(two times the shell thickness). The backbone curve exhibits, as expected, a softening behavior. The softening
behavior exhibited by most cylindrical shell geometries are due mainly to the modal coupling between the
linear vibration mode and the second-order modes given by Eq. (18), leading to a strong negative quadratic
term in the discretized reduced model [18–20]. The degree of softening may very slightly, depending on the
adopted shell theory and discretization procedure.

Fig. 9 shows the variation of each modal coordinate along a period of the free-vibration response and the
results obtained by the reconstruction of the response using the orthogonal basis for O ¼ 0.98 and the
following set of initial conditions z11(0) ¼ 1.0, z02(0) ¼ 0.038, z22(0) ¼ 0.013, z13(0) ¼ �0.021, z31(0) ¼ 0.0007,
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Table 2

Participation of the modes used in the modal expansion on the first four POMs of the shell frequency–amplitude relation (backbone curve)

POM POV (%) z11(t) z02(t) z22(t) z13(t) z31(t) z33(t)

1 99.80 �24.395 �0.00011 �0.00001 0.282 �0.011 �0.003

2 0.19 �1.075 �10.997 �5.541 0.003 �0.0001 0.00006

3 0.007 0.298 �0.224 �0.102 24.374 �0.773 0.270

4 0.0001 0.726 �4.323 15.566 �0.350 0.012 �0.004

P.B. Gonc-alves et al. / Journal of Sound and Vibration 315 (2008) 641–663656
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z33(0) ¼ �0.0002, _z11ð0Þ ¼ _z02ð0Þ ¼ _z22ð0Þ ¼ _z13ð0Þ ¼ _z31ð0Þ ¼ _z33ð0Þ ¼ 0:0. These initial conditions are cine-
matically consistent since they are the result of the multiple shooting method for O ¼ 0.98. Again, an excellent
agreement is observed. The numerically obtained variation of the second- and third-order coordinates along
one period are in agreement with the powers of the time function of the linear vibration mode f(t) in Eq. (20).

The frequency–amplitude relation (backbone curve) obtained by the Galerkin method using two and three
POMs are compared with the convergent solution in Fig. 10. As expected, the use of the first two POMs,
including basically, as shown in Table 2, the contributions of the linear vibration and axi-symmetric mode
already describes the general nonlinear behavior of the shell. The inclusion of the third POM lead to a precise
solution up to very large deflections (two times the shell thickness).

3.3. Reduced reduced-order model for free-vibration analysis

For the frequency–amplitude relation, the slave coordinates can be approximated by the following
polynomial expansions of the seed coordinate z11(t):

z02ðtÞ ¼ 3:78� 10�2z211ðtÞ þ 8:82� 10�4z411ðtÞ þ 3:38� 10�5z611ðtÞ

z22ðtÞ ¼ 8:89� 10�3z211ðtÞ þ 5:19� 10�4z411ðtÞ � 6:92� 10�4z611ðtÞ

z13ðtÞ ¼ �2:17� 10�2z311ðtÞ þ 1:11� 10�3z511ðtÞ � 2:56� 10�4z711ðtÞ

z31ðtÞ ¼ 4:99� 10�4z311ðtÞ þ 2:58� 10�4z511ðtÞ � 4:56� 10�5z711ðtÞ

z33ðtÞ ¼ �2:33� 10�5z311ðtÞ � 2:45� 10�4z511ðtÞ þ 4:27� 10�5z711ðtÞ (43)

As in the static case, the best fitting polynomials are in agreement with the perturbation procedure.
Based on expressions Eq. (43) a reduced sdof model is obtained and the frequency–amplitude relation

derived from this model is compared with the response of the complete model in Fig. 11. This reduced
reduced-order model can capture the type and degree of nonlinearity of the shell up to large deflections.

It is expected that a properly derived reduced-order model will work in an interpolatory setting, but it is not
clear what happens in an extrapolatory setting. One cannot hope to determine one reduced-order model
capable of describing the response of a complex system for all sets of parameters. So, depending on the
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complexity of the systems, various reduced-order models optimized for different sets of parameters should be
derived. However, one hopes that a single reduced basis can be used for several state simulations or in several
design settings. So, its is expected that the derived reduced models for free-vibration analysis will also give
reliable results in the forced vibration analysis of the shell, since it captures the main nonlinearities of the
problem. Although a detailed forced vibration analysis is beyond the scope of the present work, a brief study
of the forced response of a shell under lateral harmonic pressure is undertaken to verify the quality of the
reduced models.
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The lateral pressure has the following distribution:

p ¼ Ph cosðnyÞ sin
mpx

L

� �
(44)

where P is the time-dependent amplitude in kNm�2.
In Fig. 12 the maximum radial deflection of the shell is plotted as a function of the forcing frequency for

selected values of the forcing magnitude parameter, G1 ¼ P=Pcr, where Pcr is the critical load of the shell under
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Fig. 12. Frequency–response curves (maximum lateral deflection versus excitation frequency) for increasing values of the magnitude

of the external lateral pressure, G1. e ¼ 0.001. Solid line: stable. Dashed line: unstable. (a) G1 ¼ 0.25, (b) G1 ¼ 0.50, (c) G1 ¼ 0.75, and

(d) G1 ¼ 1.00.
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lateral pressure, which is given by [29]

Pcr ¼
Eh

R

½ðpR=LÞ2 þ n2�2

n2

ðh=RÞ2

12ð1� n2Þ
þ

ðpR=LÞ4

n2½ðpR=LÞ2 þ n2�2

" #
(45)

These resonance curves were obtained using continuation techniques for the complete model and the
reduced-order sdof model deduced previously. The two solutions agree quite well for vibration amplitudes less
than two times the shell thickness and load level lower than the static critical load. The results are obtained
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considering a damping coefficient e ¼ 0.001. Considering the extreme case of G1 ¼ 1.0, Fig. 13 shows the
response for two different damping rations. Again a good comparison is observed.

In the forced vibration analysis of the perfect shell, the influence of the companion mode parti-
cipation is neglected. Amabili et al. [25,26] already studied POD reduction considering companion
mode participation. Their results show that the companion mode has an important influence on the
response in the resonance region. The present reduction procedure, based on a perturbation proce-
dure and POD, can also be employed considering the presence of the companion mode in the modal
expansion.
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Fig. 13. Frequency–response curves (maximum lateral deflection versus excitation frequency) for G1 ¼ 1.0 and two different values of the

damping ratio, e. Solid line: stable. Dashed line: unstable. (a) e ¼ 0.001 and (b) e ¼ 0.002.
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4. Conclusions

In this work, the construction of low-dimensional models for the nonlinear buckling and vibration analysis
of thin-walled cylindrical shell using both a perturbation procedure and proper orthogonal decomposition is
discussed in detail. First a consistent series solution, based on the perturbation procedure, which satisfy the
out-of-plane boundary conditions of a simply supported shell is proposed. Based on this solution, an
alternative methodology is presented to solve analytically the in-plane equilibrium equations together with the
corresponding boundary, symmetry and continuity conditions. In this way the in-plane displacements are
written as a function of the out-of-plane modal amplitudes, reducing considerably the number of unknowns of
the discretized system. It is shown that this leads to an efficient modal solution that can archive convergence
up to large deflections, around two times the shell thickness, with a relatively small number of modes. Then
using this modal solution, the proper orthogonal modes and respective proper orthogonal values are derived
to study the influence of each mode of the modal solution on the response and total energy of the system. The
results show excellent agreement with the ones obtained by the perturbation procedure and clarify the
influence of the modal couplings on the nonlinearity of the shell. Using the concept of slave coordinates a
reduced reduced-order model with one degree of freedom is derived. This model captures the degree and type
of nonlinearity of the shell and compare well with the more refined models. Finally, these models are used to
study the nonlinear forced response of the shell under harmonic lateral forcing. The present procedure,
combining a perturbation procedure with POD, can be easily extended to a series of structural elements such
as beams, arches and plates and other shell geometries. Once the linear vibration modes are obtained, the
higher-order nonlinear modes can be derived by the perturbation procedure and, then, the POD method can
be used to select the most important modes. It leads, as shown by the present results, to consistent low-
dimensional models which can be effectively used in time-consuming procedures such as continuation or
homotopy methods for computing state solutions, in particular bifurcation diagrams under dynamic loads,
evolution and erosion of basins of attraction, feedback control, parametric studies of state solutions and
identification of stability boundaries in control space.
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