
ARTICLE IN PRESS
JOURNAL OF
SOUND AND
VIBRATION
0022-460X/$ - s

doi:10.1016/j.js

�Tel.: +31 1

E-mail addr
Journal of Sound and Vibration 315 (2008) 1035–1046

www.elsevier.com/locate/jsvi
The effect of static loading and imperfections on the nonlinear
vibrations of laminated cylindrical shells

E.L. Jansen�

Faculty of Aerospace Engineering, Delft University of Technology, Kluyverweg 1, 2629 HS Delft, The Netherlands

Received 21 May 2007; received in revised form 5 February 2008; accepted 6 February 2008

Handling Editor: C.L. Morfey

Available online 18 April 2008
Abstract

The effect of static loading and imperfections on the nonlinear vibration behaviour of cylindrical shells is studied. The

two analytical–numerical models (denoted as Level-1 and Level-2 Analysis) that are used for this purpose are based on

Donnell-type governing equations and have different levels of complexity. Parametric studies have been performed for a

specific laminated shell. The axial compressive loading and different imperfection shapes can significantly influence the

linearized vibration behaviour and also affect the nonlinear vibration behaviour. Results show that certain axisymmetric

imperfections, satisfying a strong-coupling condition with the asymmetric vibration mode, reduce the linearized vibration

frequencies and make the nonlinearity less softening, while the static compressive axial loading makes the nonlinearity

more softening.

r 2008 Elsevier Ltd. All rights reserved.
1. Introduction

Shell structures are widely used in mechanical and aerospace engineering. It is well known that these thin-
walled structures are prone to buckling instabilities under static and dynamic compressive loading. Moreover,
they may be directly or parametrically excited into resonance at their natural frequencies by dynamic loads,
and they may experience flutter in a flow.

The important problem of the nonlinear vibration behaviour of cylindrical shells has been studied since the
beginning of the space age (about 1960). Traditionally, investigations of nonlinear vibrations of cylindrical
shells have been analysed using analytical–numerical approaches. The spatial dependence was very often taken
care of by means of a Galerkin-type discretization (e.g. Refs. [1,2]) or via an analytical approach (e.g.
Refs. [3,4]). During the mid-1990s a finite element approach was presented by Ganapathi and Varadan [5,6].

The topic has received a considerable amount of attention to date, and several important effects are
understood reasonably well, including ‘‘secondary’’ modes (axisymmetric modes and modes with the double
number of full waves in the circumferential direction of the shell) and modal interactions [1,3,4,7–9]. Pellicano
et al. [8] presented multimode Galerkin-type solutions for simply supported boundary conditions. The effect of
ee front matter r 2008 Elsevier Ltd. All rights reserved.
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imperfections was included by Amabili in Ref. [10]. Amabili [11] also investigated the effect of different
boundary conditions. An extensive review on nonlinear vibrations of circular cylindrical shells can be found in
Ref. [12].

In Ref. [9] several analytical–numerical models with different levels of accuracy and complexity (denoted as
Level-1 and Level-2 Analysis) have been presented which can be used to study the influence of important
parameters on shell vibrations, such as geometric imperfections, static loading (axial compression, radial
pressure and torsion) and boundary conditions. Nonlinear Donnell-type governing equations are adopted in
combination with classical lamination theory. In Ref. [9], these models have been compared for the nonlinear
vibration analysis of isotropic and orthotropic shells. In Ref. [13] laminated shells were studied, while in
Ref. [14] the effect of imperfections on the linearized vibrations of shells was investigated, and in Ref. [15] the
effect of boundary conditions on the nonlinear vibrations.

In his review on the early developments in the field of nonlinear vibrations of shells [16], Evensen
already remarked that the effect of static loading can make the nonlinear effects much more
pronounced. However, the effect of static loading on nonlinear shell vibrations did not yet receive much
attention in the literature. The aim of the present work is to investigate the effects of axial compression
and imperfections on the nonlinear vibration behaviour of cylindrical shells. In particular, the behaviour
of a laminated shell earlier used in static and vibration analyses [13–15] will be studied in the present paper. In
the next sections, the underlying theory and analysis models earlier described in Ref. [9] will first be
recapitulated.
2. Governing equations

The shell geometry and the applied loading are defined in Fig. 1. The shell geometry is characterized by its
length L, radius R and thickness h. Assuming that the radial displacement W is positive inward (see Fig. 1) and
introducing an Airy stress function F as Nx ¼ F ;yy, Ny ¼ F ;xx and Nxy ¼ �F ;xy, where Nx, Ny and Nxy are
the usual stress resultants, then the Donnell-type nonlinear imperfect shell equations (neglecting in-plane
inertia) for a general anisotropic material can be written as

LA� ðF Þ � LB� ðW Þ ¼ �
1

R
W ;xx �

1

2
LNLðW ;W þ 2W̄ Þ (1)

LB� ðF Þ þ LD� ðW Þ ¼
1

R
F ;xx þ LNLðF ;W þ W̄ Þ þ p� r̄hW ;tt (2)

where the variables W and F depend on the time t, R is the shell radius, W̄ is an initial radial imperfection, r̄ is
the (averaged) specific mass of the laminate, h is the (reference) shell thickness, p is the (effective) radial
θk
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Fig. 1. Shell geometry, coordinate system and applied loading.
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pressure (positive inward), and r̄hW ;tt is the radial inertia term. The fourth-order linear differential operators

LA� ðÞ ¼ A�22ðÞ;xxxx � 2A�26ðÞ;xxxy þ ð2A�12 þ A�66ÞðÞ;xxyy � 2A�16ðÞ;xyyy þ A�11ðÞ;yyyy (3)

LB� ðÞ ¼ B�21ðÞ;xxxx þ ð2B�26 � B�61ÞðÞ;xxxy þ ðB
�
11 þ B�22 � 2B�66ÞðÞ;xxyy þ ð2B�16 � B�62ÞðÞ;xyyy þ B�12ðÞ;yyyy (4)

LD� ðÞ ¼ D�11ðÞ;xxxx þ 4D�16ðÞ;xxxy þ 2ðD�12 þ 2D�66ÞðÞ;xxyy þ 4D�26ðÞ;xyyy þD�22ðÞ;yyyy (5)

depend on the stiffness properties of the laminate. The stiffness parameters A�ij, B�ij , and D�ij are coefficients of
the partially inverted ABD-matrix from classical lamination theory and can be found in Ref. [9]. The nonlinear
operator defined by

LNLðS;TÞ ¼ S;xxT ;yy � 2S;xyT ;xy þ S;yyT ;xx (6)

reflects the geometric nonlinearity.
The shell can be loaded by axial compression P, radial pressure p and counter-clockwise torsion T (Fig. 1),

both statically ( ~P, ~p, ~T) and dynamically (P̂, p̂, T̂). The equations governing the nonlinear dynamic behaviour
of a cylindrical shell vibrating about a nonlinear static state will be derived, by expressing both the
displacement W and the stress function F as a superposition of two states

W ¼ ~W þ Ŵ (7)

F ¼ ~F þ F̂ (8)

where ~W and ~F are the radial displacement and stress function of the static, geometrically nonlinear state
which develops under the application of a static load on the imperfect shell, while Ŵ and F̂ are the radial
displacement and stress function of the dynamic state corresponding to the large amplitude vibration about
the static state.

The Donnell-type equations governing the nonlinear dynamic state can be written as

LA� ðF̂ Þ � LB� ðŴ Þ ¼ �
1

R
Ŵ ;xx �

1

2
LNLð ~W ; Ŵ Þ �

1

2
LNLðŴ ; ~W þ 2W̄ Þ �

1

2
LNLðŴ ; Ŵ Þ (9)

LB� ðF̂ Þ þ LD� ðŴ Þ ¼
1

R
F̂ ;xx þ LNLð ~F ; Ŵ Þ þ LNLðF̂ ; ~W þ W̄ Þ þ LNLðF̂ ; Ŵ Þ þ p̂� r̄hŴ ;tt (10)

where p̂ is the dynamic radial loading. It is noted that the coefficients of the dynamic state equations depend
on the solution of the static state problem.

The Donnell-type equations for the nonlinear dynamic state of a perfect shell can be deduced from Eqs. (9)
and (10) [9].

3. Simplified Analysis

At the modelling level denoted as Level-1 Analysis or Simplified Analysis, the vibration behaviour is
modelled via a Galerkin procedure or variational method. The Level-1 model that will be used to investigate
the nonlinear vibrations of statically loaded, imperfect laminated (anisotropic) cylindrical shells is
characterized by the following deflection function:

Ŵ ðtÞ=h ¼
‘2

4R
AðtÞ sin

mpx

L

h i2
þ AðtÞ sin

mpx

L
cos

‘

R
ðy� tK xÞ (11)

where m denotes the number of half waves in the axial direction, ‘ is the number of full waves in the
circumferential direction, and tK is a skewedness parameter, introduced to account for a possible skewedness
of the asymmetric modes. The expression contains one generalized coordinate, AðtÞ, the amplitude of the
‘‘primary’’, ‘‘driven’’ mode. The corresponding model will be referred to as Evensen’s approach [1]. Galerkin’s
procedure is applied in order to eliminate the spatial dependence. Using Eq. (11), and applying the method of
averaging to eliminate the time dependence, results in a nonlinear equation for the average vibration
amplitude Ā

ða10 � a10O2ÞĀþ ða31 � a31O2ÞĀ
3
þ a50Ā

5
¼ Gm‘t (12)
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where aij and aij are constant coefficients depending on the shell properties, imperfection, vibration mode, and
applied loading, and where Gm‘t is the generalized dynamic excitation. The coefficients are listed in Ref. [17].
The normalized frequency parameter O is defined by O ¼ o=olin, where olin ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a10=a10

p
is the small

amplitude (‘‘linearized’’) frequency for the given parameters. Eq. (12) can be used to calculate
amplitude–frequency curves for nonlinear single-mode free or forced vibrations of statically loaded, imperfect
anisotropic cylindrical shells.

4. Extended Analysis

At the second level of modelling, Level-2 Analysis (Extended Analysis), the boundary conditions at the shell
edges can be taken into account accurately [13,15]. A Fourier decomposition of the solution is used in the
circumferential direction of the shell, in order to eliminate the dependence on the circumferential coordinate.
Subsequently, the resulting boundary value problem for ordinary differential equations in the axial direction is
solved numerically by means of the parallel shooting method [18]. A perturbation method is used to assess the
influence of large vibration amplitudes, geometric imperfections, and a static deformation on the vibration
behaviour [19,20].

4.1. Perturbation expansion

For the static state the following perturbation expansion is assumed:

~W ¼ ~W
ð0Þ
þ xs

~W
ð1Þ
þ x2s ~W

ð2Þ
þ � � � (13)

~F ¼ ~F
ð0Þ
þ xs

~F
ð1Þ
þ x2s ~F

ð2Þ
þ � � � (14)

where xs is a measure of the displacement amplitude of the static ‘‘asymmetric’’ (non-axisymmetric) mode. In
the case of free vibrations, the dynamic lateral excitation is equal to zero (p̂ ¼ 0). Considering the case of
‘‘single mode’’ vibrations, i.e. that a single ‘‘primary’’ vibration mode is associated with the (linear) natural
frequency oc, the following perturbation expansion for the frequency o is used,

o
oc

� �2

¼ 1þ adxv þ bdx
2
v þ � � � þ ðb110xt þ b101x̄Þ þ ðb210xt þ b201x̄Þxv þ � � �

þ ðb120x
2
t þ b111xtx̄þ b102x̄

2
Þ þ � � � (15)

and the corresponding solution is assumed as

Ŵ ¼ xvŴ
ð1Þ
þ x2vŴ

ð2Þ
þ � � � þ xtxvŴ

ð11Þ
þ xtx

2
vŴ
ð12Þ
þ � � � þ x2t xvŴ

ð21Þ
þ x2t x

2
vŴ
ð22Þ
þ � � � þ � � � (16)

F̂ ¼ xvF̂
ð1Þ
þ x2v F̂

ð2Þ
þ � � � þ xtxvF̂

ð11Þ
þ xtx

2
v F̂
ð12Þ
þ � � � þ x2t xvF̂

ð21Þ
þ x2t x

2
v F̂
ð22Þ
þ � � � þ � � � . (17)

In these expansions xt ¼ xs þ x̄, where x̄ is the amplitude of an ‘‘asymmetric’’ imperfection, and xv is a

measure of the displacement amplitude; Ŵ
ð1Þ

will be normalized with respect to the shell thickness h and Ŵ
ð2Þ

is orthogonal to Ŵ
ð1Þ

in an appropriate sense [17]. A formal substitution of these expansions into the nonlinear
governing equations for the perfect shell yields a sequence of equations for the functions appearing in the
expansions.

4.2. First-order state

The equations governing the first-order dynamic state are given by

LA� ðF̂
ð1Þ
Þ � LB� ðŴ

ð1Þ
Þ ¼ �

1

R
Ŵ ;ð1Þxx � Ŵ ;ð1Þyy ð

~W ;ð0Þxx þ hw̄0;xxÞ (18)



ARTICLE IN PRESS
E.L. Jansen / Journal of Sound and Vibration 315 (2008) 1035–1046 1039
LB� ðF̂
ð1Þ
Þ þ LD� ðŴ

ð1Þ
Þ ¼

1

R
F̂ ;ð1Þxx þ

~F ;ð0ÞxxŴ ;ð1Þyy � 2 ~F ;ð0Þxy Ŵ ;ð1Þxy þ
~F ;ð0Þyy Ŵ ;ð1Þxx

þ F̂ ;ð1Þyy ð
~W ;ð0Þxx þ hw̄0;xxÞ þ p̂� r̄hŴ ;ð1Þtt . (19)

Note that the coefficients of these equations depend on the solution of the fundamental state problem
( ~W
ð0Þ
; ~F
ð0Þ
) and initial axisymmetric imperfection W̄ ¼ hw̄0ðxÞ. The corresponding equations for the static

first-order state ( ~W
ð1Þ
; ~F
ð1Þ
) are similar, but do not include the inertia term. The dynamic first-order state

equations admit separable solutions of the form

Ŵ
ð1Þ
¼ hfŵ1ðxÞ cos nyþ ŵ2ðxÞ sin nyg cosot (20)

F̂
ð1Þ
¼

ERh2

c
ff̂ 1ðxÞ cos nyþ f̂ 2ðxÞ sin nyg cosot (21)

where y ¼ y=R, and n is the number of circumferential waves.

4.3. Second-order states

To determine the initial nonlinearity of the large amplitude vibrations, the equations of the dynamic second-
order state (x2v-terms) have to be solved. The equations governing the dynamic second-order state can be
written as

LA� ðF̂
ð2Þ
Þ � LB� ðŴ

ð2Þ
Þ ¼ �

1

R
Ŵ ;ð2Þxx � Ŵ ;ð2Þyy ð

~W ;ð0Þxx þ hw̄0;xxÞ þ Ŵ ;ð1Þ2xy � Ŵ ;ð1ÞxxŴ ;ð1Þyy (22)

LB� ðF̂
ð2Þ
Þ þ LD� ðŴ

ð2Þ
Þ ¼

1

R
F̂ ;ð2Þxx þ F̂ ;ð1ÞxxŴ ;ð1Þyy � 2F̂ ;ð1Þxy Ŵ ;ð1Þxy þ F̂ ;ð1Þyy Ŵ ;ð1Þxx þ F̂ ;ð0ÞxxŴ ;ð2Þyy � 2F̂ ;ð0Þxy Ŵ ;ð2Þxy þ F̂ ;ð0Þyy Ŵ ;ð2Þxx

þ F̂ ;ð2Þyy ð
~W ;ð0Þxx þ hw̄0;xxÞ � r̄hŴ ;ð2Þtt þ ado2

c r̄hŴ
ð1Þ
. (23)

These equations admit separable solutions of the form

Ŵ
ð2Þ
¼ hðW ð20Þ

n þW
ð20Þ
t Þ þ hðW ð22Þ

n þW
ð22Þ
t Þ cos 2ot

þ hfŵa;20ðxÞ þ ŵb;20ðxÞ cos 2nyþ ŵg;20ðxÞ sin 2nyg

þ hfŵa;22ðxÞ þ ŵb;22ðxÞ cos 2nyþ ŵg;22ðxÞ sin 2nyg cos 2ot (24)

F̂
ð2Þ
¼

Eh2

cR
�
1

2
lð20Þy2 � t̄ð20Þxy

� �
þ

Eh2

cR
�
1

2
lð22Þy2 � t̄ð22Þxy

� �
cos 2ot

þ
ERh2

c
ff̂ a;20ðxÞ þ f̂ b;20ðxÞ cos 2nyþ f̂ g;20ðxÞ sin 2nyg

þ
ERh2

c
ff̂ a;22ðxÞ þ f̂ b;22ðxÞ cos 2nyþ f̂ g;22ðxÞ sin 2nyg cos 2ot. (25)

Details of these equations and the numerical solution procedure can be found in Ref. [17].
The nonlinearity coefficient ad is equal to zero, and the ‘‘dynamic b-factor’’ bd becomes [17]

bd ¼
1

o2
cDd

f2F̂
ð1Þ
� ðŴ

ð2Þ
; Ŵ
ð1Þ
Þ þ F̂

ð2Þ
� ðŴ

ð1Þ
; Ŵ
ð1Þ
Þg (26)

where

Dd ¼

Z 2p

0

Z 2pR

0

Z L

0

r̄hŴ
ð1Þ2

dxdydt (27)
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and t ¼ ot, and where the shorthand notation

A � ðB;CÞ ¼

Z 2p

0

Z 2pR

0

Z L

0

fA;xxB;yC;y þ A;yyB;xC;x � A;xyðB;xC;y þ B;yC;xÞgdxdydt (28)

is used.

5. Results and discussion

The Level-1 Analyses and the Level-2 Analysis have been implemented in FORTRAN programs. The shells
that will be used in the numerical calculations are denoted as follows:

Booton’s shell: an anisotropic shell used earlier in static stability and vibration investigations [21,14,15]. The
data are given in Table 1. For this anisotropic shell, E ¼ E11 and n ¼ n12 will be used as reference values for
Young’s modulus and Poisson’s ratio, respectively.

ES2-shell: isotropic shell used by Evensen [1]. The vibration mode is characterized by m axial half-waves and
‘ circumferential full waves. The following data are used: � ¼ ð‘2h=RÞ2 ¼ 0:01, x ¼ ðpR=‘Þ=ðL=mÞ ¼ 0:1,
n ¼ 0:3.

The (normalized) frequency parameters which will be used in the description of the results are given
in Table 2.

5.1. Simplified Analysis

The Simplified Analysis is used for parameter studies on a specific laminated shell. The effect of axial
loading on the frequency of the mode corresponding to the lowest natural frequency of the perfect shell
(‘‘lowest vibration mode’’) will be analysed. The shell is subjected to static axial pre-vibration loading
l ¼ ~N0=Ncl, where Ncl ¼ ðEh2

Þ=ðcRÞ, N0 ¼ �Nxðx ¼ LÞ, and c ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ð1� n2Þ

p
, and the quantities E ¼ E11 and

n ¼ n12 are reference values. The variation of the frequency with the loading will be shown up to the load at
which the frequency becomes zero.
Table 1

Booton’s anisotropic shell

Shell geometry R ¼ 67:8mm

L ¼ 95:87mm

Laminate geometry 3 layers

(numbering from outside)

h1 ¼ h2 ¼ h3 ¼ 0:226mm

y1 ¼ 30�; y2 ¼ 0�; y3 ¼ �30� (Fig. 1)

Layer properties Glass-epoxy

E11 ¼ 4:02� 104 MPa

E22 ¼ 1:67� 104 MPa

n12 ¼ 0:363

G12 ¼ 4:61� 103 MPa

Table 2

Normalized frequencies

O ¼ o=olin (Simplified Analysis), o=oc (Extended Analysis).

o=om‘t om‘t ¼ olin evaluated for unloaded perfect shell, Eq. (12).

o=oref oref ¼
E

2r̄R2 (E ¼ E11 is a reference value for Young’s modulus).

ō ¼ R
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðr̄h=A22Þ

p
o (where A22 is an element of the ABD-matrix).
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Fig. 2. Influence of axial load on linearized frequency of imperfect anisotropic shell; Booton’s shell (L=R ¼ 1:414, R=h ¼ 100, ‘ ¼ 6,

Table 1), lowest vibration mode: (a) axisymmetric imperfection and (b) asymmetric imperfection. Simplified Analysis.
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In Figs. 2a and b the effect of the imperfection amplitude on the load versus frequency curves are given. In
Fig. 2a, the curves are plotted for various values of the axisymmetric imperfection amplitude x̄1, where

W̄=h ¼ x̄1 cos
2px

L
(29)

and in Fig. 2b for various values of the asymmetric imperfection amplitude x̄2, where

W̄=h ¼ x̄2 sin
px

L
cos

6

R
ðy� tK xÞ

with tK ¼ �0:002. The frequency has been normalized with respect to om‘t, the frequency of the unloaded
perfect shell of the asymmetric mode considered. The effect of axisymmetric imperfections on the frequency is
significant also at zero loading [14]. In the case of asymmetric imperfections, the behaviour becomes strongly
nonlinear when the axial load reaches the limit-point load.

In Figs. 3a and b the effect of the vibration amplitude on the load versus frequency curves are given.
In Fig. 3a, the curves are plotted for various values of the vibration amplitude for a perfect shell, in Fig. 3b for
a shell with a relatively large axisymmetric imperfection. Backbone curves (amplitude–frequency curves) for
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Fig. 3. Influence of axial load on nonlinear frequency of anisotropic shell for finite vibration amplitudes; Booton’s shell (L=R ¼ 1:414,
R=h ¼ 100, ‘ ¼ 6, Table 1), lowest vibration mode: (a) perfect shell, (b) axisymmetric imperfection, x̄1 ¼ �0:25. Simplified Analysis.
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specific values of axial loading (l ¼ 0 and 0:25) and axisymmetric imperfection (x̄1 ¼ 0 and �0:25) are shown
in Fig. 4. The severity of the nonlinearity is conveniently represented by the ‘dynamic b-factor’ introduced in
the Extended Analysis. The dynamic b-factor under axial loading corresponding to the Simplified Analysis is
given for Booton’s shell with axisymmetric imperfections in Fig. 5, for several values of the imperfection
amplitude.

It must be noted that at l ¼ lm‘t ¼ 0:40691, the lowest buckling load of this shell occurs for the mode
m ¼ 3, ‘ ¼ 5, and tK ¼ �1:56 (‘‘lowest buckling mode’’), and the frequency corresponding to this mode
becomes zero. Above this load level, the static state is unstable. This is illustrated in Fig. 6, where the
frequency of the loaded shell is plotted both for the lowest vibration mode and for the lowest buckling mode.
The frequency has been normalized with respect to oref ¼ E=2r̄R2, where E ¼ E11. Moreover, the effect of an
initial imperfection, affine to the vibration or buckling mode, is shown. The imperfection amplitudes used are
x̄1 ¼ �0:04 and x̄2 ¼ �0:05. Note that since the lowest buckling mode has a stable postbuckling behaviour,
the frequency of the imperfect shell does not become zero when the load is increased, but it reaches a minimum
below the buckling load of the perfect shell and then starts to increase again.

5.2. Extended Analysis

The Simplified Analysis in many cases can reveal the main characteristics of the problem and is suited for
parametric studies. The classical ‘‘simply supported’’ boundary conditions (Nx ¼ v ¼W ¼Mx ¼ 0) are
satisfied only approximately in the Simplified Analysis, and the number of modes that is included in the
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assumed deflection function might not be sufficient. In the Extended Analysis the boundary conditions are
satisfied rigorously, the corresponding ‘secondary’ modes are included, the nonlinear fundamental state is
taken into account, and the change of vibration mode during static pre-loading is captured [15].

Backbone curves for a perfect isotropic shell (ES2-shell), and for a perfect anisotropic shell (Booton’s shell)
are shown in Fig. 7, and in Fig. 8 the dynamic b-factors obtained via the two approaches are shown for the
ES2 shell and for Booton’s anisotropic shell with an axisymmetric imperfection of the form

W̄=h ¼ x̄1 cos
2px

L
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In these cases, there is a very good agreement for the ES2 shell, while for Booton’s anisotropic shell a larger
difference can be observed. For Booton’s shell, the double harmonic in the circumferential direction of the
shell plays a significant role in the response [13]. For increasing axisymmetric imperfection amplitude (with a
negative sign), the nonlinearity becomes less softening, i.e. the dynamic b-factor bd becomes less negative.

In Fig. 9 the influence of an axisymmetric imperfection and axial loading on the natural frequencies of
Booton’s anisotropic shell is illustrated. Fig. 10 shows the influence of these factors on the nonlinear behaviour
of the shell. A static compressive axial loading has a pronounced effect on the nonlinearity and makes the
behaviour more softening. It should be noted that the dynamic b-factor is defined with respect to oc, the
linearized frequency of the loaded shell with axisymmetric imperfections. The Simplied Analysis (Fig. 5) is able
to capture the main trend, but to obtain more accurate results one should use the Extended Analysis.

6. Concluding remarks

In the present paper, the effect of static loading and imperfections on the nonlinear vibration behaviour of
cylindrical shells has been studied. Parametric studies have been performed for a specific laminated shell. The
strong influence of axial compressive loading and different types of imperfection shapes and amplitudes on the
nonlinear vibration behaviour has been shown. For unloaded shells, asymmetric imperfections mainly
influence the linearized vibration behaviour, while their effect on the nonlinear vibration behaviour is small.
Certain axisymmetric imperfections, satisfying a strong-coupling condition with the asymmetric vibration
mode, reduce the linearized vibration frequencies and make the character of the nonlinearity less softening,
while the static compressive axial loading makes the nonlinearity more softening.

The two analytical–numerical models (denoted as Level-1 and Level-2 Analysis) that have been used in the
present study are typically suitable for initial investigations and parameter studies on the effects of static
loading, imperfections, boundary conditions, and geometry and material parameters. They can provide
reference solutions for detailed finite element calculations on the vibration behaviour of practical shell
structures.
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