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Abstract

In this paper energy transfer in a dissipative mechanical system is analysed. Such system is composed of a linear and a
nonlinear oscillator with a nonlinearizable cubic stiffness. Depending on initial conditions, we find energy transfer either
from linear to nonlinear oscillator (energy pumping) or from nonlinear to linear. Such results are valid for two different
potentials. However, under resonance and absence of external excitation, if the mass of the nonlinear oscillator is
adequately small then the linear oscillator always loses energy. Our approach uses rigorous Regular Perturbation Theory.
Besides, we have included the case of two linear oscillators under linear or cubic interactions. Comparisons with the earlier
case are made.
© 2008 Elsevier Ltd. All rights reserved.

1. Introduction

This work concerns energy transfer between oscillators. This is a natural way to study the vibration
isolation in a mechanical system. Indeed, it would be interesting to know if there is an energy transfer from a
linear oscillator to another one. The case of one of the oscillators having an essential cubic nonlinearity has
been intensively investigated in several papers such as Refs. [1-6]. Indeed, in some of these papers the main
idea is to study the dynamics of the undamped, but perturbed system, and from this study, we obtain results
about the energy pumping of the damped system. In this line of research, the study of nonlinear normal modes
(NNM), see Refs. [7,8], of the undamped system is a natural goal.

The approach presented here is very different from the ones used in the mentioned papers. In all cases
treated in this work there are two oscillators for the unperturbed system. We are interested in the oscillations of
the energy of each oscillator calculated on the orbits of the perturbed system. The energies of these oscillators are
denoted by E;| and E,. A precise definition of this idea is given in the next section, see Eq. (3). Such oscillations
occur in a transient regime.

It should be noticed that the main mechanical system investigated here is a spring—mass system weakly
damped with two degrees of freedom. In a mathematically rigorous way, expansions of E; and E, are

*Corresponding author. Tel./fax: + 553432394114,
E-mail address: marcio@ufu.br (M.J.H. Dantas).

0022-460X/$ - see front matter © 2008 Elsevier Ltd. All rights reserved.
doi:10.1016/j.jsv.2008.02.033


www.elsevier.com/locate/jsvi
dx.doi.org/10.1016/j.jsv.2008.02.033
mailto:marcio@ufu.br

1048 M.J.H. Dantas, J.M. Balthazar | Journal of Sound and Vibration 315 (2008) 1047-1070

obtained in several important cases in Sections 3 and 4. All conclusions come from these expansions. The
novelty of the results presented here is that they have been derived within a uniform theoretical framework
based on Regular Perturbation Theory.

This paper is organized as follows: Section 2 gives a precise meaning of our interpretation of the energy
transfer in the vibrating system given by Eq. (1). In Section 2.1 a particular spring—mass system is given.
The study of this system, under particular interactions and couplings, constitutes the bulk of the paper. In
Section 3, it is assumed that one of the anchor springs has a nonlinearizable cubic stiffness. This case has been
implemented in a mechanical array in Ref. [4]. Here, the use of a special change of variables allows the use of
Regular Perturbation Theory in a rigorous way. This approach permits one to see how the phenomenon of
resonance appears here. Under the linear interaction and non-resonance condition, it is proved in Section 3.1
that there is no energy transfer between the oscillators. But in the presence of resonances and absence of
external excitation, there is a more complex situation than the usual pumping considered in the current
literature. Here, depending on the initial conditions, there is energy transfer from linear to nonlinear oscillator,
and from nonlinear to linear oscillator. Moreover, there are initial conditions in which both oscillators lose
energy. In all cases, precise regions of the phase space where such initial conditions occur are given by
inequalities. We would like to emphasize that in an adequate two-dimensional projection of the phase space,
there is a partition in regions where each situation of energy transfer from an oscillator to another one is
shown. And, by gathering this information, the plot given in Fig. 2 is obtained. A useful consequence of the
analysis in Section 3.1.2 is an estimate of the mass m, in order to get always a decreasing energy of the linear
oscillator. These results show that the use of expansions given by Eq. (34) can give much information. Besides,
Section 3.1.3 shows a relationship between the resonance condition and the nonlinear modes of the
unperturbed system, with initial conditions given by Eq. (43). In Section 3.2 some comments are made on the
case of cubic interactions, where analogous results can be obtained. Here, unlike in Section 3.1.2, detailed
computations were not made. In Section 4, some additional computations are made about the linear case, i.e.,
when the anchor springs are linear. Particularly, there is energy transfer if resonance occurs. Similar to the
results in Section 3.1.2, Figs. 3 and 4 are obtained. Under non-resonance condition, there is no energy transfer.
Finally, there is an Appendix about elliptic functions.

Anyway, the results presented in this paper take into account a more general dynamic phenomenon than
energy pumping. Here, energy pumping is understood as energy transfer from a linear oscillator to a nonlinear
one.

2. A definition of energy transfer
Consider the following system:
. 0H,
41 = W(‘h’l’l) + eRi1(4y, P15 92, P25 1, €),
1

. 0H,
P = _W(ql:pl) +&Ra(qy, P15 925 P25 1,€),
1

1)
. O0H, (

0 = 5, (D2, P2) + eR3(q1. 15 42, P2, 1,2),

P2
. 0H,
Py = =75 42:02) + eRa(41, D1, 02, P2, 1,);
q>

where H;,i=1,2 and R;, j =1,...,5 are functions adequately smooth defined on open sets of R? and RS,

respectively. It is assumed that each open set contains the origin and each R; is 7-periodic in the variable .
Note that Eq. (1) is not necessarily a Hamiltonian system, because it eventually contains a dissipative term in
the perturbation. Define

E b,c,d)=H
{ l(t"g’a? 5, C, ) 1(Q1([,8),p1(1,8)), (2)

Ex(t,e,a,b,c,d) = Hy(q,(t,¢), p-(2, €)),
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where (QI(la 8),[71([, 8)3 qZ(t, 8)9p2(la 8)) is the solution of Eq (1) such that (ql(o, 8)7pl(0: 8): (12(0» 8)3p2(0a 8)) =
(a,b,c,d).
It is said that there is a transfer of energy, from the oscillator 1 to oscillator 2, at the point (a, b, ¢, d) of the
phase space of the system given by Eq. (1), if the following condition is satisfied.
There is Ty = To(a, b, c,d)=0 such that for all finite time interval [T, T], with T'; =T, there exists gy =
go(a,b,c,d, T)>0 such that
El([7 8’ a’ b’ C’ d)<El(0’ 87 a’ b’ c’ d)’
Ex(t,¢,a,b,¢,d)>E>(0,¢,a,b,¢,d), (3)
for all t € [T, T] and ¢ € (0, &).

Moreover, it follows from Eq. (2) that

E(0,¢,a,b,¢,d) = Hi(a, D),

Ex(0,¢,a,b,¢,d) = Hx(c,d).
Note that E(t,¢,a,b,c,d) and E5(t,¢,a,b, c,d) are the energies of the unperturbed oscillators, obtained from
Eq. (1) making ¢ = 0, computed on the perturbed trajectories. Additionally, in order to use correctly the

Regular Perturbation Theory, it is necessary to work in a finite time interval. So, this restriction was included
in the above definition.

2.1. A particular case: the spring—mass system with two degree of freedom

Consider the classical vibrating system in Fig. 1.
Assuming that an external excitation has been just applied on the body 1, the governing equations of this
system are given by

X"+ f(x)+e (cox/ + %—z(x, )+ A sin(a)t)> =0,

oV 4)
my" +g(y)+e (COJ/ + a(x, y)) =0,

where ¢ is the coefficient of the viscous damping . It is assumed that the bodies 1 and 2 have masses equal to 1
and m, respectively. Here x is the displacement of the body 1 from its equilibrium position and y is the
displacement of the body 2. Besides, V' is the potential energy associated with the coupling spring, 4 and w,
are, respectively, the amplitude and frequency of the external excitation. It is assumed that V(0,0) = 0.
Making the following change of variables:

G=x. p=x, @=y, p=Yy, (5)

Eq. (4) can be written as a time-dependent perturbation of a Hamiltonian system whose energy is given by
2 2

H(qyp12:02) =5+ Flg) + 22+ Glan) + V(41 ). (6)

where F,G are such that F'(x) = f(x), F(0) =0,G'(y) = g(y), G(0) = 0. Clearly, in this case Hi(q;,p;) =
P1/2+ F(q,) and Hy(q,,p,) = p3/2 + G(g,). For the cases F(q,) = q}/2, G(¢,) = ¢3/4 and V is given by
Eqgs. (7) and (8) and 4 = 0, such models have been intensively investigated in Refs. [1,9] under the following

Anchor Spring Coupling Spring Anchor Spring
Body 1 —/\/\/\/— Body 2

Fig. 1. A vibrating system.
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potentials:

_ 2
Viggn = 122" )

and

V(q1,9)) = {q} — 44192 + 64165 — 44,43). (8)

Natural questions are the following ones: What happens with the energies of the system, defined by Eq. (2),
in a finite time interval? Which energy increases or decreases? It would be interesting to know if there exists a
transfer (pumping) of energy between the oscillators 1 and 2 in the sense of Eq. (3).

3. The energy transfer between a linear and a nonlinear oscillator with essential stiffness nonlinearity

In the remainder of this section, it is assumed that /(x) = wix, g(y) = y* in Eq. (4). It follows from Egs. (5)
and (4) that

4, =P
oV .
P = —w%ql - s<cop1 +$+Asm(wt)),
1
. 9
4> = D2 ( )
. 1, 1 < +6V>
=—q;—¢—|c — .
P2 m1q2 poy 0P2 3¢
Hence, the unperturbed energies are given by
2 22
p1t+wiq
Hi(qy,p1) = %,
P B (10
H ==4 =
2(q2,p2) > +4m1

Consider the elliptic Jacobian functions defined in the Appendix. For more details see Ref. [10]. Write
en(t) = cn[l,\/%],sn(t) =sn[t,%],dn(l) = dn[t,%]. The function cn(f) is periodic and satisfies the following
differential equation cn”(z) + (cn(1))* = 0 (see Appendix, Eq. (63)). Its period is equal to 4K = 4K(1/+/2) (see
Appendix, Eq. (62)). Moreover, its Fourier expansion is given by

o m+%
cn <2K t) = Z @qicos((bn + 1)1)

T —~ K 1+ g¥n]
o0
=Y amcos((2m+ 1)), (11)
m=0

where ¢ is the only one solution in the interval (0, 1) of the equation

25°%° gy’ ! R
1+ 227ioql2 2

(see Appendix, Egs. (64) and (65)). Furthermore, it follows from the definition of «,,, given in Eq. (11), that

0<a,, <const.g™' for all m>0. (12)

Now, take into account the following change of variables:

121 .
q, = w—sm@, P =V 2w1cos0,
1

g, = JmyJeng, p, = —JmiJ snp dng = JmyJ cn' . (13)
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Remark 1. A canonical transformation can be used, instead of foregoing change of variables. But Eq. (13), is
easier, from an algebraic point of view.

It therefore follows, from Egs. (10) and (13), that
J
E] =I, E2 :le. (14)

For the remainder of this paper, b;(z,e;,a, e, f) will denote a bounded function, where 0<t<oo and
(e1, 2, ez, f) belongs to a bounded region of R*.
Substituting Eq. (13) into Eq. (9), one obtains

—2¢olcos?0 — cos 0y | — 2:(,/ Ism() Jm Jcn(p)
1

. ] 0) oV
1 0 co(sin 0)(cos 0) + (sin ( sin 0, \/miJcn )
N o(5in 0)eos 0) e - 12 sin O, i Jeng
1
| = +¢ coJcn’((p)2 1 cn'(p)oV /
J o ~ vi 6(12 sm@ JmiJeng
b J N
cocn(p)en' (@) 1 cn(p)0V /7
- + \/73 2 6q2 sin 0, ./mJcng
—A,y /g(cos 0)(sin w?)
w1
(sin 0)(sin wt)
0
0

Now, this system is in an adequate form in order to apply the Regular Perturbation Theory with success.
Note that the use of Regular Perturbation Theory directly into Eq. (9) leads to a solution involving circular
and elliptic functions in the zeroth approximation. But in the computation of the first-order approximation
one has to deal with great analytical difficulties. A way to skirt them is to use the change of variables given by
Eq. (13).

Take the following initial conditions for Eq. (15):

10)=e, 00)=0a JO)=e, ¢@0)=4. (16)
It follows from Eq. (16) that the corresponding initial conditions of the system given in Eq. (9) are given by

_ 2e; . _ 2eq
q:1(0) =4/ o sina, p(0)= ”a)l cosa,

0:(0) = /miezenf,  py(0) = /miesen' . (17)
From the basic theorem on the Differentiability of the Flow [11], given T >0, there is g >0 such that
1 Iy I,
0 0o 0,
st el |t 0(?) (18)
¢ Do b1

holds for all £ € [0, 7] and 0<e<gg. Of course, all 1;,0;,J;, ¢, depend on ey, a, e, f.
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The substitution of Egs. (18), (16) in Eq. (15) yields

and
I
0
Ji
o

Io 0 1o(0)
b | o 00(0)
o |=o ] |70
o Jo ®0(0)
0 0 0 0 I,
00 0 O 01
1o o o0 o]/
0 01 0 @y
co(51n90)(00590)—i-\/maq1
+ coJocn'(¢g)
cocn(wo)cn/((po) cn(@g) oV
mi Im J26q2
21
—A,/ (cos@o)(smwt)
Aw
+ «/2(()110 ’
0
0
1,(0) 0
0:(0) B 0
JiO) | o
¢1(0) 0

Due to Eq. (14), it is only interesting to compute

21, 21
—2¢olycos*0y — cos Oy 2;/( “Osin 0o, /M Jocn(p0>
1
(sin 0o) aV(M sin 0y, ./m chnqoo>
2 .
_m (@) 6V<1 /21 sin 0y, «/m Jocn(p0>
m Im 3o 0g;

(1/ sin Oy, /m chnq)o)

J(t,er, 0 e, B,8) = Jo(t, er, o, e, B) + &J1(t, e1,0, €2, B) + O(E?).

{ I(t,e1,0, e, B,¢) = Lo(t,e1,0, €2, f) + &l (1, €1, 0, €2, B) + O(&?),

Hence, it is necessary to calculate Iy,Jo,11,J.

(19)

(20)
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Eqgs. (19), (20) lead to

Iy(t,e1,0,e2, B) = ey,
0o(t,er,0, e, f) = w1t + a,
Jo(t,e1,0,e2, ) = e,
polt,er,o,e, ) = et +f

and

Ii(t,e1,0,e2, )
6’081

\/7(005(6015 + ))
_/ 6q <\/‘ sin(w;s + o), ,/miexcn(ess + /5)) ds
0 1

+4 \/2—71(cos(w1s + a))(sin ws)
! 1)

+b1(t, e1,0, 2, B),
Ji(t,er, 0, e, f)

e / (el (exs + B))* ds
cn/((ezs + )

\/7/ <\/_ sin(wys + o), /myexcn(ers + ﬁ))
6q2

ds.

So

I(t,e1,0, e, B,¢) = e1 + el (1, e1,0, €2, f) + O(&?),

22
J(tser, 500, B,) = €2 + 61 (1, 1,9, e, f) + O(), 2)

where 1,,J; are given by Eq. (21). By using Egs. (22), (14), (16) and (13), the following ones are obtained:

26’1 . 26’1
E, (t,s,q/—smoc, ——cos ac,«/mlegcnﬁﬂ/mlegcn/ﬁ
()] w1

= e+ 11(t,e1,0 €2, fle + O(e?),

2e; . 2e
E, <t, €, A /—lsm o /—lcos o, /miexenf, ./mlegcn’ﬁ)

= ml +m1€2J1(1 er,a, e, f)e + O(e?). (23)

4

26’1 . 261
E; (0, &, 4/ ——sino, y/—cos a, /mieycnf, ./mleﬁcn’ﬁ =ey,
(] (O]
Pe; . e, el
E, (O,s, ——sina, —cosoc,a/mlezcnﬁ,«/mlegcn/ﬁ :mlzz.
(0] ()

Now, Eq. (21) will be rewritten in a more adequate form for the computations that will be made in the next
sections.

Clearly
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It follows from Eq. (11)

t

1

—cper / (cr'(exs + B))*ds = — 3 coerkt + ba(t, 1,0, €2, B), (24)
0

where
o0
k= Z(Zm + 1)2a,2n.
m=0

Using the change of variables (2K /n)u = exs + ff and Eq. (24) into Eq. (21), it follows that

Ii(t,e1,a, e, )

coel 2K [2¢ /%(ezt-i—/ﬁ)
= - /7= x
2 ey \ g B
2K

2K
cos( wlu — w_1ﬁ+ a)
ey (5]
2
ﬂsin (—Zleu — 60_1[3 + oc),
oV w1 er )]
X du
0 2K
@ Jmieyen <7u>
+A4 (cos (Zleu — w—lﬂ + a>> <sin <2Kwu - /3w>>
e (5] Y1) ()
+bi(t, e1,0, €2, B),
Ji(t, er, o, e, B)
Coezk 2K 1
= om = ne? [ 3
1 2 ml
,(21( >
. cen' | —u
ﬁ(ezt-ﬁ-ﬁ) T
) /fﬂ v/ 2 2K 2K du
2K Xa_qz( a%sin( nei)lu—we—lf—i—oc),a/mlezcn(?u))
+ ba(t,e1,0, €2, B). (25)

It is emphasized that Eqgs. (23) and (25) are the main formulae in this section. All results in the next subsections
are going to be deduced from them.
Next, two cases will be considered: a linear interaction and a cubic one.

3.1. Linear interaction
If V, in Eq. (25), is replaced by Eq. (7), we obtain

Ii(t,e1, 2, €2, )

el n 2_K 2mi ey

2 T w1
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@D K 2K 24K 2
x/ cos( @1 —w—lﬂ+ ) ( u>du— e
T

p e e e w
7L 2 2 2 1

§(€2t+ﬁ) 2K 2K
x/ (cos< wlu—a)l/;—i—oc)) (sin< “y ﬁw)) du + b3(t,e1,2, €2, ).
% 1) () e €

But it follows from Eq. (11)

/2mlel /—K“Z’”” <2Kw1 o p ) (21( )
u———+o|en| —u | du
np ey e s
/ S+l [ cos 2leu +
' _
21/}1161 ey e du

X dm cos((2m + 1)u)

§£ 2m1€1 a__lﬁ)
=0 T
= nes cos 2+2m+1> )
(t+—) &)
x/ , du
+ cos 2—+2 —i—l) )

x© 2K 2m

Z—,/ amsm oc—w—lﬁ)

m=0 T

_ —s1n<<2—+2m+1> )
”"(z+—) 2
2K

X fnﬁ |

= ——sm(( 2—+2m+1> )
2 e

ney ﬁ 1 K
fn,, (i) cos 2ﬂ+2m+1 u) | du
ey
7[(2 ﬁ 1 K
(1)) o
ney ﬁ 1
fnﬂ (t+ )<§Sln<<—2?1 + 2m + 1)u>> dl/l
2

are valid for all m, ¢, o, f, where Dy is a positive constant that depends only on e, and w;. From Egs. (12) and
(26) it is not difficult to verify that

2K 2 ﬁ(“”’ﬁ) 2K 2K
mlel/ ( wlu—w—l[f—ka)cn(—u) du
B Ter %) s
d,y, COS <<x — a)1ﬁ>
2K 2]’7[161 > €

= ot £y /1 K
T O =0 X fnh’K(H_ ? (zcos < (—2ﬂ + 2m + 1> u)) du
2K Te;

+ b4(ls e]a OC, 629 ﬁ)

du

Moreover, the inequalities

<l

S|

(26)

<Dy,
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Hence

Co€1
Ii(t,e1, 0,62, ) = — T[

aycos| o ———
L 2K e ©
TV o = w+h) 1 K,
m= xf,,,, ~cos| [ —2——+2m+1|u)du
2 ne;
2K
os( wlu—w—lﬁ—i->

C
24K [2e; %(L’zf-*-ﬁ) Tey e
ey A
mer Vo Jag X (sin (—wu — ﬁ_w))

V[15) €

+ bs(t,e1,a, e, B). (27

Besides, Egs. (7) and (25) yield

k 2K 2
Ji(t,er, o, e, ) = _coez \/ °
nez /m
2K(‘52f+ﬁ) 2K
x/ cn( u)s' ( wlu—w—lﬁ—i-oc)du
% i ey e

+ be(t, e1, 0, €2, ). (28)

Moreover, using an argument similar to that utilized in the proof of Eq. (27), we obtain
2 —K(sz-‘r[f) 2K
”e/ cn( )s' ( o1 —w—llg—i-oz)d
7'(62 / e (%)
cos (——ﬂ + )
e 2K . 2K
X il’f( “P o ( u) (sm( wlu)) du
2K 1 [2e K T e
= —S7—\/"
”ez,/m{’ 1 +Sin<__lﬁ+ )
2K 2K
fZK(eZHﬁ) ’( u) (cos( wlu)) du
T )
11 2
R Y TV (_w_llﬁr )
62 /m? (O]]

2m + ay,
o0

e 2K
S e (pe - 2))

en

+ by(t, e1, 0, €2, f).
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So

2K 1 2e1 2K(e?t+ﬁ) . (2Kw;  of
T n u sin e u——ez +a
2 /m
2e < w1 p )
\/ — ot
92,/

(2m + Dap,

[0
e 2K
X Z fzK( ) cos 2m+1— =2 ) ) du
m=0 2 e,

+ by(t, e1, 0, €2, B).

Upon substituting Eq. (29) in Eq. (28), one obtains

coerk
Tit e, 0,00, ) = — 2

2m1

ez\/—\/j (__+ )

2m + Day,

V(1)

o0
e 2K
X,;::o fi,’f( ZHB)( cos((2m+1— wl)u))du

+ bg(t, e1,0, €2, ).

1057

(29)

(30)

In Egs. (27) and (30) if the term —2(Kw; /me2) + 2m + 1 is zero for some m, after integration, an unbounded
term is obtained and this has consequences for the energy transfer. This case is called internal resonance. If
w; = w in Eq. (27), there is another unbounded term, and we have the external resonance. In the next

subsections, these cases, non-resonant and resonant, will be considered.

3.1.1. The non-resonant case
Here we assume

2K
(a) eﬁéi forallme N,

2m+ D=
(b) w #w.

From Eqgs. (23), (27), (30) and (31) one obtains that

2 2
E, <t, €\ /ﬂ sin o, | /ﬂcos o, /miexenf, /mi e%cn’[i)

=e + (——l~|—b9(l e, o, ez,ﬁ))F + 0((" )

E, <t g, \/751 no, \/7cosoc Jmiexen, /nescn’ ﬂ)

ek
+m1 z< coe2 H-blo(l ey, ez,ﬁ)>8+ O(%).

_ml

4 2m

(31

(32)
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Then, for all t € [T}, T], T adequately big,

k
Ll P bo(t,e1,0, €2, $) <0, e
2 2my

And taking e<gy = g(+/(2e1/w1)sina, /(2e; /w1) cos a, /miercnp, Jm_legcn’ﬂ, T), where ¢, >0 is adequately
small, it follows from Eq. (32) that E|<e; = E1(0) and E;<mjel/4 = E»(0). Hence, the condition given in
Eq. (3) is not satisfied. So, there is no energy transfer in the point (e, «, e, ) of the phase space, since the
condition given by Eq. (31) is satisfied.

l+ b]()(t) 61,0(, 629 ﬂ)<0

3.1.2. The resonant case
In view of Eq. (31), there are three possible cases for resonance. Here we consider only one. It is assumed
that for some my € N, the following condition is satisfied:
@) 2K
ep=——,
27T Qmy + D (33)
(b) w; = w.

Remark 2. If there is no external excitation, condition (33); means that the unperturbed system, obtained
making ¢ =0 at Eq. (9), has a periodic solution. Indeed, the above condition can be interpreted as a
(2mg + 1):1 internal resonance of the unperturbed system in order to get a periodic motion. Note that in this
system there are two oscillators, a linear one and a nonlinear one. For each oscillator there are periodic
solutions given by x = Asint,y = Bcn(Bt). In order to get ¢ — (x(¢), y(¢)) to be periodic, the condition given
at Eq. (33) is sufficient. If my = 0 and o« = n/2, = 0 in Eq. (16) then that periodic solution is a nonlinear
normal mode in the sense of Rosenberg [8].

From Egs. (27), (30), (23) and (33), one obtains

ey . 2 ,
E; (l, g, ﬁsm o, ﬁcos o, /mexcnp, «/mleécn ﬁ)
w1 w1
(—%—i—amoez mcos(oc—w—ﬁ) + A4 e—lsinzx)t
—e + 2 V 2w e \ 2w e+ 0(),

+by(t,e1,0, €2, p)

261 . 261
E, (l, €4/ ——sina, /——cos oc,./mlezcnﬁ,./mlegcn’ﬁ
()] ()]

coerk ( wﬁ) @2my + Dray, | 2e
- —cos|a—— AL
2my 4Ker omy ) e+ O@). (34)

4
3

e
2
= m -+ mie €2

+bg(t, e1,0, e, B)

From now on, in this subsection, it is assumed that 4 = 0. So, in Eq. (34), w is replaced by w;.

As earlier, using similar steps as the ones used in the argument of the Section 3.1.1, the problem of energy
transfer reduces itself to the analysis of the signal of the coefficients of 7 in Eq. (34). So, there are four cases to
be considered. The computation of the details will only be made in the next item. The computation of the
other cases are analogous.

(a) The linear oscillator loses energy and the energy of the nonlinear one increases.
A sufficient condition for this is obtained in the following way. Suppose that

o€l miey (1
———+aye cos oc——ﬁ <0,
2 20)1 e
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>0. (35)

coerk w1\ (2Cmgy + Dray, | 2e
- —cos| o ——
2my e 4Ke, wlm?

Then, there is T>0, such that if 7> T, and ¢ € [T, T] then

coel me; wf
— —— )t
( U apyeny [ cos<oc eZ)) "

+b7(t,e1,0, €2, f)

coexk of\(2my + Dra,, |2e
- —cos|oa—— t
2my e 4Ke, wm? >0.

+bs(t,e1,0, e, B)

Hence, there is & >0, ¢ = e(\/(2¢e1/w1)sina, \/(2e; /w)) cosa, /mie; cnﬁ,A/mlegcn/ﬂ, T) such that if

0<e<egy then Ey <ey = E1(0) and E;>mj e} /4 = E»(0). So from the definition given in Eq. (3) there is an
energy transfer from the linear oscillator to the nonlinear one, in the point (1/(2e;/w;)sina,
V(21 /wy) cosa, Jmiercnp, Jmiesen’ ) of the phase space of the Eq. (9) when A = 0. Besides, from
Eq. (33),, it is obtained that Eq. (35) is equivalent to
cos <oc - w—lﬁ> < - dcokK” 23w1m1 . (36)
€ w3 2my + 1)’ ap, /€1

This case can be interpreted exactly as energy pumping.
(b) The linear oscillator gains energy and the nonlinear loses energy.
This happens if the following condition holds:

coel mie wif
— =+ aper cos (zx ——2)>0,

2 20)1 €
coerk o1\ 2my + Dnay,, | 2e
— — - 0.
2m1 cos (OC (%) ) 4K€2 wlm? =
Hence, from Eq. (33),
2 1) /2
cos <a - a)1ﬁ> >nCO( mo + 1) eron 37
e 4a,,, K m

(c) It follows from Eq. (34) that it is not possible for both oscillators to gain energy. Obviously, this is in
accordance with our physical intuition.
(d) Both oscillators lose energy.

Then
—%—l-a e mle'cos oc—w—lﬁ <0
2 o2 2(01 (5] ’
coerk w1 p\ 2my + Dray,,, | 2e
— — - 0.
217’11 cos (OC € ) 4K€2 wlm? =
Or
4eok K32 2 ) 2
< ;Olml < cos (oc — w_1ﬁ> <nc0( mo + 1) elwl. (38)
3 ©2my + 1) am, /1 e 4Kayy, mi
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In this case, the loss of energy of both oscillators is due to the dissipative effect that is modelled by the term
cox" in Eq. (4).

Let
8cok K> 2 D /1
_ 8« \/’7:1 , A= neo(2mg + 1) i (39)
w3 2my + 1) ay, 4a,,, K my

From Eq. (17), it follows that relations (36), (38) and (37) can, respectively, be written as
pl(O)cos< ﬁ) +q1(0)sm< 1ﬁ> - T,

~r<pOcos(0) 4 g, 0sin(22F) <A@ 0 + 0
picos( 28 4 g, 0rsin(2F) > 40,0 + 0,00

Taking 4 = cos(w;f/e2), B = sin(w;f/e;) and after some algebraic manipulation, the above relations define
three regions in the plane of the phase variables ¢,(0), p,(0):
Region 1: 4p,(0) + Bq,(0)< — I
Region 2: —I"< Ap,(0) + Bg,(0) and

B\’ AN? [ 1)\?
(611(0)—ﬂ> + <P1(0)—ﬂ) ><ﬂ> ) (40)
2 2 1 2
me&@@—%)+@@—§)<@ﬂ.

And, in this plane, Fig. 2 is obtained

Region 3:
Linear Oscillator gets energy,
Non Linear Oscillator loses energy.

(q,(0) - (B/2A))? + (p,(0) - (A12A))* < (1/2A))?

Region 2:

Dissipative region, both oscillators lose energy
-I'<B q;(0) + A p;(0)

and

(1(0) - (B2A))* + (p1(0) - (A2A))* > (1/2A))*

(B/2A, A/2A)

eay!

Y

q;(0)

Region 1:
Linear Oscillator loses energy,
Non Linear Oscillator gets energy .|
B q;(0)+Ap(0)<-T"

B q;(0) + Apy(0)=-T

Fig. 2. Energy transfer regions in the presence of nonlinear spring.
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In Region 1 there is energy transfer from the linear oscillator to the nonlinear one. In Region 2, both oscillators
lose energy. Note that if ¢g = 0 then I' = A4 = 0 and Region 2 collapses. So, that is the dissipative region. And, in
Region 3, the energy transfer happens from the nonlinear to the linear one. Obviously, Fig. 2 is the projection of
the four-dimensional phase space, with coordinates (¢, p;, ¢, p,), onto the two-dimensional phase space, with
coordinates (¢, p;). From a mechanical point of view, an interpretation of Fig. 2 is the following one: given the
initial state (¢,(0), p,(0)) = (/miez cnp, /my e3cn’ B) of the nonlinear oscillator, three regions are obtained, in the
phase plane of the initial conditions of the linear oscillator, which are the above Regions 1, 2 and 3.

Note that, if one wants to get energy transfer from the linear to the non linear oscillator, or at least, to
assure its loss of energy, a reasonable aim is to shrink Region 3. This can be done taking 4> 1. From Eq. (39)
there are two ways to get this:

(I) The nonlinear oscillator has a very small mass, or, m; <1.
In this case we also have I' < 1. So, except for a very small disc in the plane of the parameters ¢;(0), p,(0),
for all points in this plane the linear oscillator loses energy. Essentially, this plane is divided by Regions 1
and 2. In one of them the nonlinear oscillator absorbs energy. In the other, both oscillators lose energy
due to dissipation.
(IT) There is a very high resonance, or, ny> 1.
From Eq. (12) it follows that

lim M:

oo, lim (2mg+ 1)’a,, =0.
my— o0 my— 00

al"‘l()

Hence, besides 4> 1, I'> 1. So, the straight line Ap,(0) + Bg,(0) = —I" will be placed far from the origin. Then,
near the origin, except for a very small disc, that is Region 3, both oscillators lose energy due to dissipation.

Another interesting consequence of the above analysis is that if

2 1)4/2
M<7wo( my + 1)+/2e10; @1)
4Kayy,

then the linear oscillator always loses energy due to energy transfer or dissipation. Analogous inequalities are
valid in other situations, as for example 4#0 and « = 0.

3.1.3. Resonance condition and nonlinear normal modes
Again, in this subsection it is assumed that 4 = 0 and besides m; = 1.
The unperturbed system is given by

X"+ x=0, 0
y// +y3 = 0. ( )

Consider the following initial conditions:
x(0) = e; sina, X'(0) = ey cos o, (0) = excn(B), y'(0) = escn' . (43)

Then the curve (x(), y(¢)), where x(¢) = e sin(t + a), y(f) = eacn(eat + f), is the solution of Egs. (42) and (43).
Since all real zeros of c¢n(¢) are given by (2p + 1)K, p € Z, the conditions

2K
(a) e = —m, m,n € N,m,n#0,
o

44)
w1 B Q2p + Dan (
®)o-———=pn——7——p €Z
e 2m
are necessary for (x(7), y(¢)) to be a nonlinear normal mode in the sense of Rosenberg [8].
So, if e, does not satisfy Eq. (33), then there is no energy transfer. If e, satisfies Eq. (33),, it follows from Eq.
(44) that cos(a — (w1f/e2)) = 0. Hence, it is concluded in case (d) that there is no energy transfer again.



1062 M.J.H. Dantas, J.M. Balthazar | Journal of Sound and Vibration 315 (2008) 1047-1070

Anyway, it is obtained that for perturbations of nonlinear normal modes of the unperturbed system, there is no
transfer of energy at all.

3.2. Comments on cubic interaction

If the potential V' is given by Eq. (8), similar results can be obtained by using exactly the earlier approach.
The nonresonance condition is given by

A for all m € N,
n(2m+ 1) (45)

(b) w; #w.

(@) ex#

There are several possibilities for resonances. Particularly, if Eq. (45), does not hold then there is 1y € N such
that e; = (6Kw;/n(2mq + 1)). Then, one has to consider the cases ged(2mg + 1,3) = 1 or ged(2mg + 1,3) = 3.
Anyway, although the computations are very long, the results are similar to those in Section 3.1.2. Moreover,
figure analogous to Fig. 2 can be obtained and it involves cubic curves.

4. On linear anchor springs

Assume that f(x) = w’x, g(y) = w3y, A = 0 and m; = 1 in Eq. (4). From Egs. (5) and (4) we have
I 3

4 = D1
. 2 aV
Dy = —o1q, — &l copy +a ,
1
) 46
9 =D (46)
b, = —w3q, — & copy + o
Py = 242 — €| CoP2 3g,)
In this case, the unperturbed energies are given by
2 202
+ o
Hi(qy,p1) =w,
2 20 (47)
+ o
H>(q,,p5) = I%
Now, consider the following change of variables (action-angle variables)
21 .
1=/ sin 0, p; =+2w1cos0,
: (48)

2J .
g = w—sm @, Dy = +/2w2J cos .
2

From this it follows, using Eqs. (47), (48) and (2), that E| = w1, E; = w,J. Using Eq. (48) in Eq. (46), it yields

that
—200100320—,/—1 G)Gq(,/ ,/ s1nq)>
1
0 sinf Vv [/ [2I RJ
¢ sin00059+——( —sin@, —sin >
| @ + ’ 10q, ¢
L) P e
—2¢oJcos?p — sin ¢
w7 a‘12
sin g cos ¢ + sing OV sinH —sin
cvsingcoso+ e (orint i

(49)

S~ D~
o
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In this case, taking the initial conditions given in Eq. (16) and using the Regular Perturbation Theory as it
was applied in the earlier section, terms 7;,J, in Eq. (22), can be obtained:

Ii(t,e1,0, e, B)
—2cpejcos*(ms + )

t A /&(cos(wls + )
=/ o) ds,
o | -
(,/ sin(w; s + ), ,/ sm(sz—i-ﬁ))
6q1
J](t,e],ix,ez,ﬂ)

—2¢pe2c08%(wys + ff)

1 \/ &(cos(wgs + )
_ / [0 ds.
o | =
6q (1 =L sin(ewys + o), \ / s1n(w2s + ,3))
2

Under the potentials given in Egs. (7) and (8) and assuming the non-resonance condition
W1 # w2, (50)
it can be proved that there is no energy transfer in the sense of Eq. (3). This proof can be obtained by using

steps similar to those used in the Section 3.1.1.
Now, assume the quadratic potential in Eq. (7) and the resonance condition

W] = Wy = Wy. (51)
Similarly to Section 3, we have
281 . 262 .
E |t ¢, w—sm o, \/ 2mpeq Cos a, w—sm B, \/2wpes cos i
0 0
< coe; + — sm( oc~|—/3)>
=wo| e +¢
+bo(t,e1,0, 82,/3)
+ 0@,
2e; . 2e, .
E>| te, w—sm o, \/ 2wpeq cos o, w—sm B, \/2wpe; cos ff
0 0
Jeier .
= wo (62 +eé ( (—Coez - wl 2 sin(—o + ﬁ)) t+ bio(t,e1,0, e, ﬁ)))
0
(52)

+ 0(e%),

The following conclusions are obtained using an argument similar to the one used earlier in

Subsection 3.1.2.

(a) The oscillator 1 loses energy and the oscillator 2 gains energy.
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Then
—cper + Tsin(—u + p) <0,
—coey — \/(ifzsin(—oc + £)>0,
or

sin(—a + )< — wocoy /2.
el

(b) Both oscillators lose energy.

Then
—coer + Tsin(—a + p)<0,
—cpep — \/ffisin(—oc + p)<0,
or

le ) e
— <o e—2< sin(—o + /3)<a)0c0\/;.
1 2

(c) The oscillator 2 loses energy and the oscillator 1 gains energy.
Then

—coer + 7“262 sin(—o + f)>0,
0

A/ €1€2

_Coez . S——
o

sin(—a 4+ ) <0,

or

sin(—a + ) > woco \/a.
€

(53)

(54)

(55)

Clearly, an explicit solution of Eq. (46), with potential given by Eq. (7), can be obtained. But the above

approach was chosen in order to use the same method in all this work.

Let B = —p,(0), A = ¢,(0). From Eqgs. (48) and (16) it follows that the above results determine the following

regions in the phase plane of the parameters ¢,(0), p;(0)

Region 1: Ap(0) + Bg,(0) < — 2¢per o,

Region 2: —2cpes0 < Ap,(0) + Bq,(0) <2cpe;w,

Region 3: Ap,(0) + Bg,(0)>2cpe o,
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\

\
p;(0)

Region 3:

Linear Oscillator 1 gets energy,
Linear Oscillator 2 loses energy.
B q,(0) + Ap;(0) >2¢c,e,00

Region 2:
Dissipative region, both oscillators lose eng
-2¢ye,0<B q(0)+Ap(0)<2cye; @

gy

Region 1:

Linear Oscillator 1 loses energy,
Linear Oscillator 2 gets energy.
B q,(0) + Ap(0)<-2¢ye,m

\ 4,(0)

Fig. 3. Energy transfer regions in the presence of linear anchor spring and linear interaction.

and we note Region 1 corresponds to Case (a) above, Region 2 to Case (b) and Region 3 to Case (c). And this
information is gathered in Fig. 3.

As earlier, the existence of Region 2 is due to dissipation.

If Vis given by Eq. (8), the general approach is analogous to the earlier one.

Assume that 4 =0. It comes from the analysis of the perturbation expansion that there are three
resonances: w; : w, = 1:1,1:3 and 3:1. Moreover, far from the resonances there is no energy transfer. In this
paper only the 1:1 resonance will be taken into account. In this case, Eq. (51), an analogous equation to

Eq. (52) is given by

261 . 262 .
E| t,e, ([——sino, \/2mge; cos a, | |—sin fi, 1/ 2mge; cos B
(o)) @

—coe
erex(sin(—=2p + 2a))
ceve| |3\ ovem vt ) || 4o,
2 w}
+bu(t,er, 0, €2, f)

261 . 262 .
Ey| 1,6,/ ——sina, \/2mpe; cosa, [ —sin fi, 1/ 2wpez cos
o o
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)

=e)+¢ 3(

erex(sin(—2p + 2a))
Jeeer + ex)(sin(—f + a))) Z + 0(£?),

2

2
Wy

+b]2(la €1, «, e, ﬁ)

This expansion yields the following:

(a) The oscillator 1 loses energy and the oscillator 2 gains energy.

A

erex(sin(—2p + 2a))
—Jeiex(er + ex)(sin(—f + o))

)

A

7
Wy

erex(sin(—=2p + 2u))
—Jerexer + ex)(sin(—f + o))

)

Then
—Cp€l
2
—Cp€2
2
or

éelez(sin(—Zﬂ + 25()) -

7
Wy

2

(b) Both oscillators lose energy.

A

Wy

erex(sin(=2p + 2a))
—Jeiex(er + er)(sin(—f + o))

Jerexer + e)(sin(—f + 0‘))< _
2

)

A

3
Wy

erex(sin(—2p + 2a))
—Jeiexer + er)(sin(—pf + o))

)

Then
—Cp€q
3
—Cp€r
3
or

A

3
Wy

erex(sin(—=2p + 2a))
—Jereer + e)(sin(—f + o))

)

—Coer <<
2

2
120}

(c) The oscillator 2 loses energy and the oscillator 1 gains energy.

<0,

>0,

<0,

<0,

<c(o€q.

Co€r.

(56)

(57)



M.J.H. Dantas, J.M. Balthazar | Journal of Sound and Vibration 315 (2008) 1047-1070 1067

Then
—C0€1
erex(sin(—=2p + 2u))
3\ —vereer + e)(sin(—f + o))

2
2 on

>0,

—Cpe2

<€1 e (sin(—2p + 2u)) >
3

<0,

—Jerexe + ex)(sin(—pf + )

2
2 on

or

<elez(sin(—2ﬁ + 20)) )
3

—Jerex(e; + ex)(sin(—pf + o))
E P >Cpeq. (58)
0

As earlier, there are three regions in the phase plane of the parameters ¢,(0), p;(0). Using Egs. (48) and (16)
inequalities at Egs. (56), (57) and (58) can be written, respectively, as

(Ap1(0) + B4, (0) + C)p,(0) + Dq,(0) + E<F,
F<(4p,(0) + Bq,(0) + C)p,(0) + Dgq,(0) + E<G, (59)
(Ap1(0) + Bq,(0) + C)p,(0) + Dgq,(0) + E> G,

where

. _¢:(0)p,(0) B— _—P2(0)2 + woez
woferer woere

c= DO t+e) o pO)e+er)
24/6’162 ’ 24/616’2 ’

£ VanOp0) o 205/

Ja 3Jer

G = Zw%coﬁ

3Jer

Now, assuming B#0 and making the following change of variables u = 4p,;(0) + Bq,(0) + C — (4D/B), v =
p,(0)+ (D/B) in Eq. (59), we obtain, respectively

AD* CD

N

AD> CD
F<uv+?——+E<G,

uv +

B

AD> CD
- —4+E>G.

WEtTp T g

Define

AD* CD AD* CD
The Regions 1,2,3 have the same meaning as in the earlier case. When Uy <0 and V>0, the division of phase
plane depicted in Fig. 4 is obtained.
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A
Region 3:
Region 1: v Linear Oscillator 1 gets energy,
Linear Oscillator 1 loses energy, Linear Oscillator 2 loses energy.
Linear Oscillator 2 gets energy. Vo<uv
uv<U,

Region 3:
Linear Oscillator 1 gets energy,
Linear Oscillator 2 loses energy.
Vo<uv

Region 1:
Linear Oscillator 1 loses energy,
Linear Oscillator 2 gets energy.
uv<U,

Region 2:

Dissipative Region

Both Oscillators lose energy
Uyg<uv<V,

Fig. 4. Energy transfer regions in the presence of linear anchor spring and nonlinear interaction.

5. Conclusions

In this work, the problem of energy transfer in a dissipative mechanical system is analyzed. The approach
presented here has been based on rigorous Regular Perturbation Theory. The definition of energy transfer,
given in Section 2, was discussed through some examples. The main results can be summarized as follows:

(a) There is no energy transfer between the oscillators, if non-resonance conditions, such as Eqgs. (31) and (45), hold.

(b) If resonance conditions such as Eqgs. (36) and (37) hold, there is energy transfer between the oscillators.
Regions on the phase space are obtained where such phenomenon happens, see for example, Egs. (36) and
(37) and Figs. 2-4.

(c) For perturbations of nonlinear normal modes of the system given by Eq. (42), there is no energy transfer.

(d) First-order approximation formulae are obtained giving explicity dependence of the energies £ and E, on
the initial conditions, the mass m;, the amplitude and the frequency of the external excitation. See for
example, Egs. (23) and (29).

In (a)—(c) absence of external excitation is assumed. In view of (d), similar results in the presence of external
excitation can be obtained.

Of course, if one desires to make the best choice for a mechanical setting to obtain the energy loss of the
linear oscillator 1, the best choice is the case given in Fig. 2, because the set of the initial conditions such that
the nonlinear oscillator loses energy is a compact one. In all other cases, including the complete linear
situation, such set is non compact, see Figs. 3 and 4. In fact, the nonlinearity of the spring acts as a
compactification of Region 3.
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Appendix

Consider the following initial value problem:
7= (1= = k),
»(0) =0,

where k, 0<k <1, is a parameter. The solution of Eq. (60) is a Jacobian elliptic function, which is denoted by
sn[t, k]. Moreover, consider the following functions:

(en[t,k])* = 1 — (sn[t,k])?, en[0,k] =1,

(60)

61
(dn[t, k) = 1 — K*(sn[t,k])>, dn[0,k] = 1. 1)
They are called Jacobian functions too. Let
1
K(k) = / (1 — )21 — K222 de. (62)
0

It can be proved, [10], that sn[z, k], cn[t, k] and dn[t, k] are periodic functions whose periods are 4K (k), 4K (k)
and 2K(k), respectively. Moreover, these functions are differentiable and

su'[t, k] = en[t,k]dn[t, k], cn'[t, k] = —sn[t, k]dn[t, k],
dn'[t, k] = —k? sn[t, klen[t, k).

From this, we obtain

en'[t, k) = (=1 + 2k en[t, k] — 2k (en[t, k])°. (63)
Further, the Fourier expansion of cn[t, k] is given by
2K X on gmh

where ¢ is the only one solution in the interval (0, 1) of the following equation:
4

0o (1))
22[:0‘1 — k2, (65)

1+23° 24"
Ref. [10] pp. 511, 480, respectively.
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