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Abstract

We study small vibrations of a parallel array of microplates predeformed by an electric field. We derive closed-form

expressions for the array’s modal properties, including resonance frequencies, mode shapes, and modal dampings.

Determined expressions depend on the direct current voltage applied across adjacent microplates, on the number of

microplates comprising the array, on the boundary conditions imposed on each microplate, and on the geometry and

material properties of the array. We also propose a continuum approximation of the array, where the discrete set of

microplates’ deflections is replaced by a continuous field that represents the envelope of the microplates’ displacements. In

the continuum approximation, the set of partial differential equations describing the system’s dynamics is replaced by a

sole partial differential equation. Predictions of the continuum approximation are in very good agreement with the exact

solution and provide a new perspective in analyzing complex microsystems.

r 2008 Elsevier Ltd. All rights reserved.
1. Introduction

Electrostatically actuated microplates are extensively used as microelectromechanical systems (MEMS) in
different applications such as signal filtering, chemical sensing, and mass sensing, see for example Refs. [1–4].
An electrostatically actuated microplate is an elastic plate suspended above a stationary rigid plate. Both
plates are made of conductive materials, and a dielectric medium fills the gap between them. A direct current
(dc) voltage applied across the flexible microplate and the rigid plate deflects the movable microplate towards
the rigid plate. A superimposed small alternating current (ac) harmonic voltage forces the flexible microplate
to vibrate. The modal properties of the microplate are controlled by the dc voltage. The applied dc voltage has
an upper limit beyond which the electrostatic force is not balanced by the elastic restoring force in the
deformable microplate, the microplate spontaneously deflects towards the stationary rigid plate, and the
MEMS collapses. As the dc voltage increases, the overall system stiffness generally decreases, leading to a
drop in the fundamental vibration frequency. The structural instability of electrostatically actuated MEMS
due to the gradual increase of electrostatic pressure is usually referred to as the pull-in instability [1–4].
ee front matter r 2008 Elsevier Ltd. All rights reserved.
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In correspondence to the pull-in instability the fundamental resonance frequency of the MEMS vanishes, see
for example Refs. [5,6].

Vibrations and pull-in instability of electrostatically actuated microplates have been extensively studied in
the technical literature. Linear elastic microplates are considered in Refs. [5,7]. Empirical reduced-order
models for pull-in extraction are presented in Ref. [8]. The significance of membrane stretching on pull-in
instability of rectangular and circular microplates are discussed in Refs. [6,9] and Ref. [10], respectively.
Vibrations and pull-in instability of microplates of varying cross sections are considered in Ref. [11].
Multilayered microplates are studied in Ref. [12]. The effect of fringing fields on pull-in instability and
vibration modes is analyzed in Refs. [13,14]. Pull-in instability analysis of microplates using linear membrane
theory is presented in Refs. [15,16]. The influence of Casimir force on pull-in instability of microplates is
discussed in Refs. [17–19]. The effect of Van der Waals force on pull-in instability of microplates is studied in
Refs. [20,21]. Nonlinear oscillations of microplates due to moderately large applied ac voltages are analyzed in
Refs. [22–24]. Accurate analyses of thermoelastic and squeeze-film damping are presented in Refs. [25,26].

Recently, MEMS incorporating arrays of microplates have been proposed for comb-drive actuators [27],
chemical detectors [28], resonant microsensors [29], mass sensors [30], tunable filters [31], and cell stiffness
measurement systems [32]. MEMS arrays offer great advantages versus single device systems, for their ability
to provide distributed sensing and multiple measurements. Pull-in instability of a parallel array of
electrostatically actuated microplates is studied in Refs. [33,34]. In Refs. [33,34], numerical results are
presented for a lumped system, where the array is modeled as a spring-mass chain, and interactions among
adjacent masses are possible through nonlinear springs that lump the surface forces in the array.

In this paper, we analyze vibrations of a parallel array of identical electrostatically actuated microplates.
Specifically, we study small oscillations of a parallel array of microplates about static equilibrium
configurations determined by a constant dc voltage evenly applied across any two adjacent microplates of
the array. We model each element of the array as an arbitrarily shaped thin plate. We derive exact expressions
for the resonance frequencies, mode shapes, and modal dampings of the array. We show that as the applied dc
voltage increases, the fundamental resonance frequency decreases and eventually vanishes in correspondence
to the pull-in instability. We derive an exact expression for the pull-in voltage that is consistent with the
numerical findings of Refs. [33,34]. We show that in correspondence to the pull-in instability, the microplates’
array deforms in an antisymmetric way, similar to a ‘‘saw-tooth’’ shape. This means that if a microplate is
moving upward, the two neighboring ones move downward. The maximum displacement is attained at the
midspan of the array. We also present a continuum approximation [35] of the array, where the discrete set of
microplates’ deflections are replaced by a continuous field. The continuous field represents the envelope of the
microplates’ displacements. In the continuum approximation, the finite set of partial differential equations
governing the vibrations of the microplates’ array is replaced by a single partial differential equation for the
continuous field. The pull-in instability problem for the continuous model is similar to the classical buckling
problem of columns [36]. Predictions of the continuum approximation are in very good agreement with the
exact solution and provide a new perspective in analyzing complex microsystems.

The rest of the paper is organized as follows. In Section 2, we describe the MEMS under consideration, and
we present the fundamental equations describing small vibrations of the system. In Section 3, we derive exact
closed-form expressions for the modal properties of the system, including resonance frequencies, mode shapes,
and modal dampings. We also compute the pull-in voltage and analyze the resulting deformations in the array.
In Section 4, we illustrate our findings through the analysis of a representative sample problem. In Section 5,
we present the continuum approximation and compare its predictions with the exact solution. Section 6 is left
for conclusions.

2. Electromechanical model

We consider a parallel array of N identical thin microplates in a dielectric medium of dielectric constant �, as
shown in Fig. 1(a). Microplates are equally spaced by a gap g0, and have a constant thickness h. Microplates
are isotropic and homogeneous. We assume that the microplates are sufficiently close, that is, g05a, where a is
some characteristic microplate dimension, see Fig. 1(b). Each microplate is modelled as a Kirchhoff–Love
plate [37], implying that only small deflections are considered. Residual stress, if present, is assumed equal for
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Fig. 1. (a) Sketch of a parallel array of cantilever microplates; (b) sketch of a single microplate illustrating the key variables used in the

analysis.
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every microplate in the array. We note that rectangular microplates which are free on two opposite edges and
are subjected to symmetric loadings can be assimilated to wide microbeams undergoing plane deformations,
see for example Ref. [6].

Microplates in the array are labeled through an index i that ranges from 1 to N and increases in the upward
direction, as illustrated in Fig. 1(a). The deflection field of the ith microplate is wiðx; tÞ, where x 2 O is a
common in-plane coordinate for all the microplates and t is the time variable, see Fig. 1(b). The equation of
motion for the ith microplate is

L½wiðx; tÞ� þ rh €wiðx; tÞ ¼ piðx; tÞ þ cð _wiþ1ðx; tÞ � 2 _wiðx; tÞ þ _wi�1ðx; tÞÞ, (1)

where r is the microplates’ mass per unit volume; c is a coefficient quantifying viscous damping, see for
example Ref. [23]; and pi is the distributed electrostatic load per unit surface area acting on the ith microplate.
The linear differential operator L in Eq. (1) is defined by

L½w� ¼ BDDw� hdivðsrwÞ, (2)

where B ¼ Eh3=ð12ð1� n2ÞÞ is the bending stiffness of a microplate; E and n are the Young’s modulus and
Poisson’s ratio of the material comprising the microplates; s is the residual in-plane stress tensor; and D, div,
and r are the Laplace, divergence, and gradient operators, respectively. Boundary conditions need also to be
specified to assure that the linear operator L is self-adjoint and positive definite in the space of admissible
solutions, see for example Ref. [38]. We consider only homogeneous boundary conditions, and, for ease of
illustration, we further assume that the eigenvalues of L are all distinct. We note that through Eq. (2)
micromembranes can be considered as microplates of negligible bending stiffness, see for example Ref. [18].

The gap between the ith and the ði þ 1Þth microplates at position x and time t is defined through

gi;iþ1ðx; tÞ ¼ g0 þ wiþ1ðx; tÞ � wiðx; tÞ. (3)
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We eliminate edge-effects from our analysis by assuming that two rigid electrodes are present on the bottom
and top of the array at a distance g0 from the first and the last microplate, respectively. The gap between the
bottom rigid electrode and the first microplate is

g0;1ðx; tÞ ¼ g0 þ w1ðx; tÞ, (4)

while the gap between the top rigid electrode and the last microplate is

gN ;Nþ1ðx; tÞ ¼ g0 � wNðx; tÞ. (5)

If the bottom and top rigid electrodes were not present, the following results have to be considered
approximately valid for any microplate with the exception of those at the ends of the array, where edge-effects
are localized as shown in Ref. [33].

We neglect fringing fields in the array, that is, we assume that every microplate in the array interacts
exclusively with the two neighboring microplates. In addition, we use the parallel plate approximation for the
electrostatic force, that is, we regard a curved electrode as a superimposition of infinitesimally small parallel
plates, see for example Ref. [1]. Within these approximations, the electrostatic load pi on the ith microplate, at
position x and time t, for i ¼ 1; . . . ;N, depends exclusively on the gaps gi;iþ1ðx; tÞ and gi�1;iðx; tÞ in the
following way:

piðx; tÞ ¼
�V2

2

1

g2
i;iþ1ðx; tÞ

�
1

g2
i�1;iðx; tÞ

 !
, (6)

where V is the dc voltage applied across any pair of adjacent microplates, and the gaps are defined through
Eqs. (3)–(5).

The parallel plate approximation is consistent with the linear elastic model of the microplates, and it is
accurate for small gaps. For relatively large gaps, more accurate representations can be developed by
accounting for the slope and curvature of the microplates [39,40].

We study small vibrations in the neighborhood of the reference configuration, where all the deflection fields
wi’s are zero. We note that the reference configuration is an equilibrium configuration, that is, it is a solution
of Eq. (1), since it corresponds to vanishing electrostatic loads according to Eq. (6). By linearizing the
electrostatic load in Eq. (6) in the neighborhood of the reference configuration, and by using the gap’s
definition in Eqs. (3)–(5), we obtain the equations of motion for the plates located at the ends of the array

L½w1ðx; tÞ� þ rh €w1ðx; tÞ ¼ gð�w2ðx; tÞ þ 2w1ðx; tÞÞ þ cð _w2ðx; tÞ � 2 _w1ðx; tÞÞ, (7a)

L½wN ðx; tÞ� þ rh €wN ðx; tÞ ¼ gð2wNðx; tÞ � wN�1ðx; tÞÞ þ cð�2 _wNðx; tÞ þ _wN�1ðx; tÞÞ, (7b)

and the equation of motion below for the ith microplate with i ¼ 2; . . . ;N � 1

L½wiðx; tÞ� þ rh €wiðx; tÞ ¼ gð�wiþ1ðx; tÞ þ 2wiðx; tÞ � wi�1ðx; tÞÞ

þ cð _wiþ1ðx; tÞ � 2 _wiðx; tÞ þ _wi�1ðx; tÞÞ. (8)

In Eqs. (7) and (8), we introduced the positive parameter

g ¼
�V 2

g3
0

, (9)

to quantify the coupling strength between adjacent microplates due to the electrostatic interaction. We note
that nonlinear behaviors such as parametric resonances, see for example Ref. [31], cannot be described by the
present model due to its linearized characteristics.

By introducing the N �N matrix D ¼ ½Dij � defined by

Dij ¼

2 if i ¼ j;

�1 if ji � jj ¼ 1;

0 otherwise;

8><
>: (10)
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Eqs. (7) and (8) can be compactly rewritten as

L½wiðx; tÞ� þ rh €wiðx; tÞ ¼
XN

j¼1

Dijðgwjðx; tÞ � c _wjðx; tÞÞ; i ¼ 1; . . . ;N. (11)

We note that the matrix D in Eq. (10) is symmetric and positive definite, and it corresponds to a finite
difference scheme of the negative second-order derivative with homogenous boundary conditions, see for
example Ref. [41]. We denote with fdðiÞgNi¼1 the eigenvalues of D ordered so that dðiÞodðiþ1Þ, for
i ¼ 1; . . . ;N � 1. Following Ref. [41], the ith eigenvalue of D can be explicitly computed as

dðiÞ ¼ 4 sin2
ip

2ðN þ 1Þ

� �
(12)

and the corresponding eigenvector vðiÞ can be compactly written as

vðiÞ ¼ sin
ip

N þ 1

� �
; sin

2ip
N þ 1

� �
; . . . ; sin

Nip
N þ 1

� �� �T
, (13)

where we used the superscript T for matrix transposition. We use this notation for matrix transposition
throughout the manuscript, and we further indicate the jth component of an N dimensional column vector
with a subscript j.

We also introduce the mode shapes of an individual microplate. We say that W 0ðxÞ is a mode shape of an
individual microplate with resonance radian frequency o0, if it satisfies

L½W 0ðxÞ� � o2
0rhW 0ðxÞ ¼ 0, (14)

along with the appropriate boundary conditions. We order the resonance radian frequencies foðaÞ0 g
1
a¼1 and the

corresponding mode shapes fW
ðaÞ
0 ðxÞg

1
a¼1 to have oðaÞ0 ooðaþ1Þ0 , for a positive integer. In addition, we normalize

the mode shapes to have

rh

Z
O

W
ðaÞ
0 ðxÞW

ðbÞ
0 ðxÞdO ¼ dab, (15)

where dab is the Kronecker delta.
3. Modal analysis

In this section, we analyze the modal properties of the microplates’ array in terms of the modal properties of
an individual microplate and of the coupling strength g, that measures the electrostatic interaction, see Eq. (9).
3.1. Undamped microplates’ array

We say that a column vector function WðxÞ is a mode shape of the microplates’ array with resonance radian
frequency o, if, for i ¼ 1; . . . ;N,

L½W iðxÞ� � o2rhW iðxÞ ¼ g
XN

j¼1

DijW jðxÞ, (16)

along with the prescribed boundary conditions, that are evenly imposed on each vector element. Eq. (16) is
derived from Eq. (11) by discarding viscous damping and by looking for harmonic solutions of Eq. (11).

The components of the vector WðxÞ can be expressed in terms of the individual microplate mode shapes
fW
ðaÞ
0 ðxÞg

1
a¼1 through

W iðxÞ ¼
X1
a¼1

xðaÞi W
ðaÞ
0 ðxÞ; i ¼ 1; . . . ;N, (17)
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where xðaÞi is a real constant. By substituting Eq. (17) into Eq. (16) and by using Eqs. (14) and (15), we find

ððoðaÞ0 Þ
2
� o2ÞxðaÞi ¼

g
rh

XN

j¼1

Dijx
ðaÞ
j . (18)

We note that Eq. (18) implies that the vector nðaÞ ¼ ½xðaÞ1 ; . . . ; x
ðaÞ
N �

T is an eigenvector of the matrix D with
eigenvalue (rh=gÞððoðaÞ0 Þ

2
� o2Þ.

We use the double index ðaiÞ to identify mode shapes of the array. From Eqs. (13), (17), and (18), we find
that the ðaiÞth mode shape of the microplates’ array, say WðaiÞðxÞ, is given by

WðaiÞðxÞ ¼W
ðaÞ
0 ðxÞv

ðiÞ. (19)

Therefore, the ðaiÞth mode shape of the microplates’ array corresponds to the ath mode of vibration of an
isolated microplate weighted throughout the array by the eigenvector vðiÞ.

In addition, from Eq. (12) we find that the corresponding resonance radian frequency oðaiÞ is given by

ðoðaiÞÞ
2
¼ ðoðaÞ0 Þ

2
�

g
rh

dðiÞ. (20)

We note that if the coupling strength g is zero, oðaiÞ ¼ oðaÞ0 for every i ¼ 1; . . . ;N. That is, the ath resonance
frequency of an individual microplate is a resonance frequency for the entire array with multiplicity equal to
N. For g40, the resonance radian frequencies foðaiÞgNi¼1 vary and each of them corresponds to a specific mode
shape. In particular, microplates’ electrostatic interactions introduce a softening effect on the overall system
stiffness, since oðaNÞo � � �ooða1ÞooðaÞ0 . This is consistent with the experimental results of Ref. [31].

3.2. Pull-in instability

The (1N)th mode is the fundamental mode of the microplates’ array, since it corresponds to the lowest
resonance frequency. From Eqs. (12) and (20), the fundamental resonance radian frequency oð1NÞ can be
written as

oð1NÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðoð1Þ0 Þ

2
�

g
rh

dðNÞ
r

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðoð1Þ0 Þ

2
� 4

g
rh

sin2
Np

2ðN þ 1Þ

� �s
. (21)

Moreover, from Eqs. (13) and (19), the fundamental mode shape is

Wð1NÞðxÞ ¼W
ð1Þ
0 ðxÞv

ðNÞ

¼W
ð1Þ
0 ðxÞ sin

Np
N þ 1

� �
; sin

2Np
N þ 1

� �
; . . . ; sin

N2p
N þ 1

� �� �T
. (22)

Fig. 2(a) shows the dependence of dðNÞ on the array size N. From Fig. 2(a), we evince that dðNÞ is always less
than 4 and quickly converges to 4 as N increases. Therefore, as N increases the fundamental radian frequency

approaches

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðoð1Þ0 Þ

2
� 4ðg=ðrhÞÞ

q
. Fig. 2(b) shows the vector vðNÞ for N ¼ 20 and clarifies the behavior of the

fundamental mode shapeWð1NÞ. In general,WðaNÞðxÞ describes a configuration where two adjacent microplates
deflect in opposite directions and where microplates located at the midspan of the array deflect more than
microplates in the vicinity of the array’s ends.

As the coupling strength g increases, the fundamental resonance frequency in Eq. (21) decreases until it
vanishes for the critical coupling strength g�, given by

g� ¼
rhðoð1Þ0 Þ

2

dðNÞ
¼

rhðoð1Þ0 Þ
2

4 sin2ðNp=ð2ðN þ 1ÞÞÞ
. (23)

For values of g lower than the threshold value g�, the microplates’ array has only one equilibrium
configuration corresponding to the reference configuration. This equilibrium configuration is stable, since all
the resonance frequencies are positive. As g approaches the critical value g�, the system’s overall stiffness
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Fig. 2. (a) dðNÞ as a function of N; (b) components of the last eigenvector of D for N ¼ 20.

M. Porfiri / Journal of Sound and Vibration 315 (2008) 1071–1085 1077
reduces and vanishes for g ¼ g�. For g ¼ g�, the reference configuration becomes unstable, and a new
equilibrium configuration corresponding to the fundamental mode shape, see Eq. (22), arises. The problem is
similar to the classical column buckling problem. Eq. (22) states that each microplate deflects along its
fundamental mode shape with an amplitude that increases as approaching the array midspan. In addition,
adjacent microplates deflect in opposite directions in a ‘‘saw-tooth’’ shape. We also notice that by increasing
the size of the array smaller coupling strengths are required to reach the instability, see Eq. (23) and Fig. 2(a).

The pull-in voltage V� can be derived from Eqs. (9) and (23) as

V� ¼ oð1Þ0

ffiffiffiffiffiffiffiffiffiffi
g3
0rh

�dðNÞ

s
¼ oð1Þ0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g3
0rh

� 4sin2ðNp=ð2ðN þ 1ÞÞÞ

s
. (24)

For a large number of microplates, that is, for N !1, the pull-in voltage V� converges to (oð1Þ0 =2Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g3
0rh=�

q
.

This limit value is consistent with the numerical results derived in Refs. [33,34] for a variety of boundary
conditions imposed on individual microplates.
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3.3. Damped microplates’ array

In this section, we analyze damped vibrations of the microplates’ array governed by Eq. (11) using the
modal properties determined in Section 3.1. We rewrite the deflection of the ith microplate in terms of the
array’s mode shapes in Eq. (19) as

wiðx; tÞ ¼
X1
a¼1

XN

k¼1

qðakÞðtÞW
ðakÞ
i ðxÞ, (25)

where fqðaiÞðtÞg1;Na¼1;i¼1 are the modal coefficients. By replacing Eq. (25) into Eq. (11) and by using Eq. (19), we
find

X1
a¼1

XN

k¼1

qðaiÞðtÞL½W
ðaÞ
0 ðxÞ�v

ðkÞ
i þ rh

X1
a¼1

XN

k¼1

€qðaiÞðtÞW
ðaÞ
0 ðxÞv

ðkÞ
i

¼
XN

j¼1

Dij g
X1
a¼1

XN

k¼1

qðakÞðtÞW
ðaÞ
0 ðxÞv

ðkÞ
j � c

X1
a¼1

XN

k¼1

_qðakÞðtÞW
ðaÞ
0 ðxÞv

ðkÞ
j

 !
. (26)

By using the facts that W
ðaÞ
0 is a mode shape for an individual microplate and that vðkÞ is an eigenvector of D,

from Eq. (27), we derive

rh
X1
a¼1

XN

k¼1

ð €qðaiÞðtÞ þ ðoðaÞ0 Þ
2qðaiÞðtÞÞW

ðaÞ
0 ðxÞv

ðkÞ
i

¼ g
X1
a¼1

XN

k¼1

qðakÞðtÞW
ðaÞ
0 ðxÞd

ðkÞv
ðkÞ
i � c

X1
a¼1

XN

k¼1

_qðakÞðtÞW
ðaÞ
0 ðxÞd

ðkÞv
ðkÞ
i . (27)

By exploiting the orthogonality of the mode shapes W
ðaÞ
0 and of the eigenvectors vðkÞ, from Eqs. (20) and (27),

we conclude that

€qðaiÞðtÞ þ ðoðaiÞÞ
2qðaiÞðtÞ þ

cdðiÞ

rh
_qðaiÞðtÞ ¼ 0. (28)

The modal damping for the ðaiÞth mode can be computed from Eq. (28) as

zðaiÞ
¼

cdðiÞ

2oðaiÞrh
. (29)

As the coupling strength g increases the modal damping zðaiÞ increases. In particular, even for small viscous
damping, the fundamental vibration mode can be made over-damped by increasing the coupling strength g,
that is by increasing the dc voltage V.
4. Sample problem

We consider an array of N ¼ 20 rectangular cantilever microplates of dimensions a� b, with abb, and we
further assume that the residual stress is zero. The first five resonance frequencies of an individual microplate
are reported in Table 1.

The resonance radian frequencies of the microplates’ array are given by Eq. (20), that can be rearranged into

oðaiÞ

oð1Þ0
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðoðaÞ0 Þ

2

ðoð1Þ0 Þ
2
� ~gdðiÞ

vuut , (30)

where we defined the nondimensional coupling strength ~g ¼ g=ðrhðoð1Þ0 Þ
2
Þ. We recall that the parameters dðiÞ’s

are defined in Eq. (12). The modal damping of the ðaiÞth mode of the microplates’ array in Eq. (29) can be
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Table 1

Natural radian frequency of an individual microplate

a ¼ 1 a ¼ 2 a ¼ 3 a ¼ 4 a ¼ 5

ffiffiffiffiffiffi
o0
p

a

ffiffiffiffiffiffi
rh

B

4

r
1:875104 4:694091 7:854757 10:995540 14:137168
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Fig. 3. (a) oð1iÞ=oð1Þ0 as a function of ~g, dashed line refers to the fundamental mode; (b) zð1iÞ=~c as a function of ~g, dashed line refers to the

fundamental mode.
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rewritten as

zðaiÞ
¼ ~c

dðiÞoð1Þ0
2oðaiÞ

, (31)

where we defined the nondimensional viscous damping ~c ¼ c=ðrhoð1Þ0 Þ.
In Fig. 3(a), we report the nondimensional resonance radian frequencies oð1iÞ=oð1Þ0 defined in Eq. (30) in

terms of the nondimensional coupling strength ~g. In Fig. 3(b), we report the scaled modal dampings zð1iÞ=~c
defined in Eq. (31) in terms of the nondimensional coupling strength ~g. From Fig. 3(a), we note that as ~g
increases the fundamental resonance frequency decreases until it vanishes for ~g ¼ 0:2514. In correspondence of
~g ¼ 0:2514, a new equilibrium configuration corresponding to the fundamental mode shape, see Eq. (22),
arises. In Fig. 4, we report the critical deflection profile resulting at the pull-in instability, that is computed
according to Eq. (22). In Fig. 5(a), we report the first five nondimensional resonance frequencies oðaiÞ=oð1Þ0
computed from Eq. (30) in terms of the nondimensional coupling strength ~g. In Fig. 5(b), we report the first
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Fig. 4. Front view of critical deflection for the array of cantilever microplates.
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five scaled modal damping zðaiÞ=~c computed from Eq. (31) in terms of the nondimensional coupling strength ~g.
Fig. 5(a) shows that as the parameter ~g increases, the ordering of the radian frequencies oðaiÞ changes.
Therefore, all the modal properties of the microplates’ array, including resonance frequencies, mode shapes,
and modal dampings, can be tuned by properly controlling the coupling strength g, that is, through a fine
adjustment of the dc voltage applied across adjacent microplates.
5. Approximate solution through continuum modeling

For a relatively large number of microplates in the array, we can describe the electromechanical system
using a continuum approximation. Within this framework, the system of linear partial differential equations in
Eq. (11) can be replaced with a single linear partial differential equation. The continuum approximation is
valid if the envelope of microplates’ deflections is smooth. Continuum approximations have been extensively
used to study oscillations of periodic chains of linear [42,43] and nonlinear oscillators [44–47].

Motivated by the discrete analysis conducted above, see for example Eqs. (13) and (19) and Figs. 2(b) and 4,
we look for mode shapes such that the microplates’ array predominantly deflects in a ‘‘saw-tooth’’ form. To
this aim, we introduce the staggered transformation uiðx; tÞ ¼ ð�1Þ

iwiðx; tÞ, see for example Ref. [47], through
which Eq. (11) becomes

L½uiðx; tÞ� þ rh €uiðx; tÞ ¼ 4guiðx; tÞ � 4c _uiðx; tÞ �
XN

i¼1

Dijðgujðx; tÞ � c _ujðx; tÞÞ; i ¼ 1; . . . ;N, (32)

where u0ðxÞ and uNþ1ðxÞ are the vanishing staggered displacements of the bottom and top electrodes,
respectively.

We define a vertical abscissa z along the direction of the microplates’ deflection. The interspacing between
the mid-surfaces of adjacent microplates is e ¼ g0 þ h. The vertical extension of the array, including the
bottom and top rigid electrodes, is L ¼ ðN þ 1Þe. The midsurface of the ith microplate is identified by z ¼ ie.
The staggered displacements can be viewed as discrete samples of a continuous function of the abscissa z, that
we call uðx; z; tÞ, that is, uiðx; tÞ ¼ uðx; z; tÞ. In addition, by assuming that the staggered displacement field is a
smooth function of the vertical abscissa z, ui�1ðx; tÞ can be expressed using a McLaurin expansion as

ui�1ðx; tÞ ¼ uðx; z� e; tÞ ¼ uðx; z; tÞ � e
quðx; z; tÞ

qz
þ

e2

2

q2uðx; z; tÞ

qz2
þ � � � . (33)
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M. Porfiri / Journal of Sound and Vibration 315 (2008) 1071–1085 1081
Eq. (33) can be formally rewritten using the pseudo-differential operator expð�eðq=qzÞÞ as

ui�1ðx; tÞ ¼ exp �e
q
qz

� �
½uðx; z; tÞ�. (34)

Therefore, by accounting for the definition of D in Eq. (10), Eq. (32) can be replaced by the following equation
that is valid for z 2 ð0;LÞ:

L½uðx; z; tÞ� þ rh €uðx; z; tÞ ¼ 4guðx; z; tÞ � 4c _uðx; z; tÞ þD½guðx; z; tÞ � c _uðx; z; tÞ�. (35)

Here, we introduced the pseudo-differential operator D defined by

D ¼ �4 sin2
Ie
2

q
qz

� �
, (36)

where I is the imaginary unit.
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Different continuous models for the electrostatically actuated array of microplates can be obtained by
properly approximating the pseudo-differential operator in Eq. (36). Using the McLaurin expansion suggested
in Ref. [43], we can express D as

D ¼ e2
q2

qz2
þ

e4

12

q4

qz4
þ

e6

360

q6

qz6
. . . . (37)

Therefore, we find the following general form for a class of continuous models

L½uðx; z; tÞ� þ rh €uðx; z; tÞ ¼ 4guðx; z; tÞ � 4c _uðx; z; tÞ þDo½guðx; z; tÞ � c _uðx; z; tÞ�, (38)

whereDo is a differential operator of order 2o constructed by retaining the first o summands in Eq. (37), with o

positive integer. Following Ref. [43], we impose homogenous boundary conditions at z ¼ 0 and L of the form

q2d

qz2d
uðx; 0; tÞ ¼

q2d

qz2d
uðx;L; tÞ; d ¼ 0; . . . ; o. (39)

We note that alternative continuous models can be derived by using one or two-points Pade’s approximations
of D, as discussed in Ref. [43].

We say that a function Uðx; zÞ is a mode shape for the continuous model in Eq. (38) with radian resonance
frequency o, if it satisfies the following equation:

L½Uðx; zÞ� � o2rhUðx; zÞ � 4gUðx; zÞ � gDo½Uðx; zÞ� ¼ 0, (40)

along with the proper boundary conditions. Eq. (40) is obtained from Eq. (38) by discarding the viscous
damping c and by looking for harmonic solutions of Eq. (38). By using the separation of variables, the mode
shapes can be expressed as the product between the mode shapes of an individual microplate in Eq. (14) and
the eigenfunctions of the differential operator �Do with the boundary conditions in Eq. (39). The eigenvalues
flðbÞg1b¼1 and the corresponding eigenfunctions fuðbÞðzÞg1b¼1 of �Do can be expressed as

lðbÞ ¼ �2
bp
L

� �2

� e4
1

12

bp
L

� �4

þ e6
1

360

bp
L

� �6

þ � � � þ oðe2oÞ. (41a)

uðbÞðzÞ ¼

ffiffiffiffi
2

L

r
sin b

pz

L

� �
, (41b)

Therefore, the ðabÞth mode shape of the continuum approximation can be written as

U ðabÞðx; zÞ ¼W
ðaÞ
0 ðxÞu

ðbÞðzÞ, (42)

where W
ðaÞ
0 ðxÞ is defined in Eq. (14) and uðbÞðzÞ is defined in Eq. (41b). By substituting Eq. (42) into Eq. (40), we

determine the resonance radian frequencies of the microplates’ array within the continuum approximation

oðabÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðoðaÞ0 Þ

2
�

g
rh
ð4� lðbÞÞ

r
. (43)

Since the continuum approximation describes a finite array of N microplates, only the values of b ranging
from 1 to N are physically admissible. With this in mind, lðbÞ defined in Eq. (41b) is positive and the
fundamental resonance radian frequency is oð11Þ. The critical coupling strength is determined by setting
oð11Þ ¼ 0, that is,

g�cont ¼
rhðoðaÞ0 Þ

2

4� lð1Þ
, (44)

where we used the subscript ‘‘cont’’ to clearly refer to continuum modeling. Consequently, the critical
deflection corresponds to the lowest structural mode U ð11Þ. Comparing the critical deflection computed in the
discrete case and the critical deflection derived in the continuum limit, we note that they yield the same result.
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On the other hand, we note that the critical values of g, reported in Eqs. (23) and (14), are equal only in the
limit of N !1. In order to quantify the error in the estimation of the critical coupling strength of the
continuum model of order o, we introduce the quantity roðNÞ defined as

roðNÞ ¼ 100
g� � g�cont

g�
. (45)

The function roðNÞ is plotted in Fig. 6 for o ¼ 1; 2; 3. We note that as the order of the truncation o increases,
the accuracy of the continuum model improves. For o ¼ 3, the predictions of the continuum model are barely
distinguishable from the exact solution. This indicates that for a limited number of microplates, high-order
approximations of the pseudo-differential operator D defined in Eq. (36) are needed. On the other hand, for a
considerably large number of microplates, low-order approximations of D are sufficient to accurately describe
electrostatic coupling in the continuum approximation.
6. Conclusions

We investigated small vibrations of a parallel array of identical microplates predeformed by an electric field.
We derived closed-form expressions for the modal properties and pull-in instability of the array. We showed
that the modal properties of the array, including resonance frequencies and modal dampings can be adjusted
by changing the coupling among the microplates. That is, the vibrational properties of the array can be tuned
by properly selecting the dc voltage applied across adjacent microplates.

We also proposed a new continuum approximation to accurately describe the microplates’ array. In this
framework the array is regarded as a continuous medium and a single displacement field is used to describe the
configuration of the array. A single partial differential equation is sufficient to study vibrations and pull-in
instability. The continuum approximation is validated using the exact solution.
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