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Abstract

In modern spacecraft with the requirement of increased accuracy of payloads, the on-orbit structural dynamic behavior

of spacecraft is increasingly influencing the design and performance of spacecraft. During the integrated spacecraft testing

of one of the satellites, a strong coupling between rotating momentum wheels and an earth sensor was detected. This

resulted in corruption of the earth sensor data at certain wheel speeds. This paper deals with the dynamic coupling problem

of a rotating momentum wheel with its support brackets affecting other subsystems of spacecraft. As part of this

investigation, extensive modal tests and vibration tests were carried out on the momentum wheel bracket assembly with

wheels in stationary and rotating conditions. It was found that the effects of gyroscopic forces arising out of rotating

wheels are significant and this aspect needs to be taken into account while designing the mounting brackets. Results of

analysis and tests were used to redesign the bracket leading to a significant reduction in the interaction and associated

problems. A procedure for design of a support structure using a low-order mathematical model is also shown.

r 2008 Elsevier Ltd. All rights reserved.
1. Introduction

The effects of on-orbit structural dynamics on the performance of sensitive payloads are becoming
increasingly important in the design of large, modern, complex, spacecraft. The source of vibratory
disturbance on a spacecraft and its effects are well documented (see, for example, Refs. [1–5]). Vibratory
disturbances can arise from rotating elements such as momentum wheels, reaction wheels, gyros, and solar
array drives. In addition, elements like antenna-pointing mechanisms, and cryo-coolers can also cause
disturbances. This paper focuses on the disturbances arising out of rotating components, in particular, those
arising from momentum wheels. A momentum wheel (MW) is used for spacecraft attitude control and consists
of a heavy rotating disk or wheel [6]. Even though the momentum wheels are very accurately balanced
statically and dynamically, the high speed of operation (� 4500–5400 rev/min), causes dynamic disturbances
ee front matter r 2008 Elsevier Ltd. All rights reserved.
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Fig. 1. Wheel with a large mounting interface diameter [14].
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to the spacecraft [8–12]. While the dynamic forces imparted to the spacecraft are insignificant in terms of
structural dynamic considerations, it is important from the point of view of disturbance to sensitive
instruments. Examples are scanning earth sensors, very high-resolution radiometers, and high-resolution
remote sensing cameras [7,12]. Some natural modes of these components may fall in the operating range of the
momentum wheel speeds. The interaction of the rotating wheel and the mounting bracket greatly alters the
nature of disturbances itself. The focus of this paper is on the dynamic coupling between the momentum wheel
and the supporting structure (bracket) which has not been adequately studied in the literature.

There are two common configurations of momentum and reaction wheels. In the first type, the rotating disk
or the flywheel is floating [14]. The mounting interface of the floating flywheel momentum wheel is on the
outer rim as shown in Fig. 1. The mounting area on the spacecraft in this case is large. In the second type, the
flywheel is attached to the base of the wheel assembly. This has a smaller mounting interface area as shown in
Fig. 2. This paper deals with the popular type 2 configuration shown in Fig. 2.

Extensive work has been reported on the mathematical modeling of wheel disturbances. These models are
either empirical or analytical [11–13,17]. Some of these models are derived from experimentally measured
forces transmitted by a momentum/reaction wheel at different rotational speeds. The forces and moments are
measured by using a force plate. Davis et al. [8] have proposed steady-state models of disturbances due to
reaction wheels in the Hubble Space Telescope. Masterson [14,15] has developed an empirical and analytical
disturbance model for a reaction wheel using measured data. These mathematical models are used in
spacecraft jitter analysis. In the work by Masterson [14,15], the configuration of an MW of the type shown in
Fig. 1 is used. The effect of coupling of the wheel rotation and the structural dynamics of wheel-housing
bracket is not brought out. Elias [18,19] has studied the interaction of the MW with the space structure, for the
configuration shown in Fig. 2, using impedance techniques including the gyroscopic terms. However, the
influence of gyroscopic terms on the structural dynamics of the MW mounting bracket is not brought out in
this case also.

The present work is based on the extensive experimental and theoretical studies done on MW brackets of a
geo-stationary spacecraft developed by the Indian Space Research Organization (ISRO). During integrated
spacecraft testing of the spacecraft, it was found that MW operations at certain speed ranges were significantly
affecting the earth sensor1 output. Extensive tests were conducted to understand the nature of modes of
spacecraft excited during the rotation of the MW. It was found that the frequencies measured with a
stationary MW did not match the results with a rotating MW, implying a significant coupling between the
rotating MW and the supporting brackets. The major contribution of this paper is the analysis of the coupling
between the MW and the bracket. Design of the bracket, based on the analysis, which resulted in the
disturbances being shifted beyond the operating range of the MW, is also of interest to spacecraft designers.
1The earth sensor gives the deviation of spacecraft with respect to earth in terms of roll and pitch angular rates. It consists of a scanning

mirror mounted on a flexure. The flexure has definite natural modes which are measured/estimated earlier.
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Fig. 2. Wheel with a smaller mounting interface diameter [16].
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Fig. 3. Schematic of spacecraft with an Earth sensor and an MW bracket.
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This paper is organized into five sections. In Section 2, the details of the configuration of the MW and the
experimental data are presented. In Section 3, details of the mathematical models and results of numerical
analysis are given. The effect of changing different parameters of the bracket is also studied. The use of the
results of analysis in Section 3 for design modifications of the bracket is discussed in Section 4. The
experimental results on the modified bracket are discussed in Section 4. Conclusions are given in Section 5.

2. Momentum wheel configuration and experimental studies

In a typical three-axis stabilized communication spacecraft, two-momentum wheels and one reaction wheel
are used for attitude control [23]. The MWs are attached to the spacecraft structure using brackets. In one of
the geo-stationary spacecraft developed by ISRO, the wheel mounting bracket consisted of an aluminum
honeycomb sandwich plate and a machined part, attached to the central thrust cylinder. A circumferential
stiffener positioned near the MW bracket attachment area [16] further stiffens the thrust cylinder locally. The
aluminum honeycomb sandwich plate and the machined bracket constituted the wheel mounting bracket
(see Figs. 3 and 4 for details).
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Fig. 5. Acceleration response near the earth sensor location.
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2.1. Tests and observations

During integrated spacecraft tests, large errors were observed in the roll rate of the scanning earth sensor.
These errors were seen only in specific speed ranges. To troubleshoot this problem, vibration responses were
measured near the earth sensor. Fig. 5 shows the acceleration response plot. Corresponding earth sensor rates
are given in Fig. 6 for wheel speeds from 3000 to 5400 rev/min with a speed variation at the rate of 6 rev/min/s.
The abscissa in Fig. 6 represents the time in minutes and the ordinate represents the error measured by the
earth sensor in degrees. This clearly indicates that, as the rev/min changes, the error detected by the earth
sensor changes and is in tune with that of the acceleration response of the momentum wheel bracket. This
gives the relation between the rev/min, momentum wheel bracket response, and error detected by the earth
sensor. It is clear from the plot (Fig. 5) that the maximum response at the earth sensor location occurs at
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Fig. 6. Error data (pitch and roll rates) from the earth sensor.
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Fig. 7. FRF from the modal test measured on the momentum wheel bracket.
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4320 rev/min (72Hz). A waterfall plot of the acceleration response near the earth sensor clearly showed a peak
response occurring at around 72Hz. As higher harmonics were not present, it was clear that the response was
due to the unbalance in the momentum wheels. A beating phenomenon was also observed, as the two wheels
were operating nearly at equal speeds. Earth sensor data also showed the effects on the roll error (see Fig. 6).
These observations clearly indicated that the disturbances from the wheel caused the error in the earth sensor
output.

In order to study the problem corresponding to a 72Hz frequency, the responses at various points on the
momentum wheel bracket were measured with only one wheel rotating (from 3000 to 5400 rev/min). The
responses obtained during these tests were similar to that obtained earlier for the two-wheel case.
Experimental modal analysis was performed, with excitation at several locations on the bracket/MW. Fig. 7
shows a typical plot of the frequency response function. It was very clear from these results that the mode
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corresponding to 72Hz was not excited in the modal tests. This was further confirmed by the experimental
modal analysis. The 72Hz mode appeared only when the MW was rotating, and was traced to whirling of the
MW/bracket. The whirling mode of the wheel and bracket was made clearly visible using a stroboscope
synchronized with the MW rotation speed. Originally, the wheel-mounting bracket was designed so that its
modes are away from the critical modes of the scanning earth sensor. However, the whirling effect altered the
modes of the bracket and made it coincide with one of the modes of the scanning earth sensor, leading to a
large error in the output of the earth sensor.

2.2. Results of experimental modal analysis

Experimental modal analysis (EMA) was carried out to validate the finite element model shown in Fig. 8.
For EMA, the MW bracket with MW is mounted on the spacecraft. The bracket is excited using an electro-
dynamic shaker. The frequency response functions are obtained by monitoring 12 locations along three
orthogonal directions on the MW bracket. The frequency response functions (FRF) are then processed with
the modal parameter estimation algorithm in I-DEASr Test software [21] to extract mode shapes. The first
two mode shapes are shown on the right-hand side of Fig. 9.

3. Analytical studies

To understand the effect of rotation of the momentum wheel on the structural dynamics, a finite element
model of the bracket with a wheel was generated using MSC NASTRANr. Fig. 8 gives the finite element
model of the bracket with the wheel. The wheel is modeled as a lumped mass and inertia placed at its center of
gravity linked to the mounting points on the bracket by rigid links. A special direct matrix abstraction
program (DMAP) [20] sequence is added to the MSC NASTRANr deck to include the effect of momentum
wheel rotation. The mounting bracket along with the momentum wheel is modeled and is clamped at the six
mounting interface points with the spacecraft. The mounting interface flexibility of the spacecraft’s main
structure is not taken into account in this analysis. The finite element model contains 560 elements (QUAD4,
lumped mass) and 4224 degrees of freedom. For the material properties for the face sheets, the honeycomb
core is taken from the material database. The wheel properties correspond to mass 8.1 kg,
Jx ¼ Jy ¼ 0:06972 kgm2, and Jz ¼ 0:12763 kgm2 [16]. The eigenvalue problem is solved first to obtain the
natural frequencies without the effect of the of the momentum wheel. The left-hand side of Fig. 9 gives the first
of two modes obtained from FEA, and, as observed by comparing the left and right sides of Fig. 9, there is a
reasonable match between the FEA and the EMA results. Although neglecting interface flexibility may affect
the modes involving the main structure, the basic structural dynamics arising out of local bracket
deformations is captured in the FE model.
Mass of MW
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Aluminium
Bracket
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Y

X

Fig. 8. Finite element model of the momentum wheel bracket.
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The mathematical model with wheel rotational effects is then studied. The complex eigenvalue analysis for
this case was carried for different rotational speeds. Whirling of the MW with the bracket is clearly seen from
the animated mode shapes. This confirmed that the gyroscopic forces generated by the rotating momentum
wheel affect the structural dynamics of the bracket. The Campbell diagram for this case is plotted to bring out
the change of natural frequency with respect to RPM. Fig. 10 shows the Campbell diagram obtained from the
complex eigenvalue analysis. The Campbell diagram shows that the first three modes of the MW and bracket
change with the rotation speed. A modal transient analysis (to obtain a response at the same location as
measured during the experiment) was carried out to identify the bracket mode excited due to the
counterclockwise rotation of the wheel. The lowest mode becomes gets excited due to rotation of the wheel
and imparts significant interface forces to the spacecraft. The nature of the transient response was found to be
very similar to that obtained from experiments on the spacecraft (see Fig. 5). A comparison of the frequencies
obtained from FEM and EMA is given in Table 1. The difference in the frequencies for the first three modes
between FEM and EMA is due to the difference in the boundary conditions used for FEM and EMA. During
experimental modal analysis, the MW bracket was fixed to the spacecraft. In the finite element analysis, the
stiffness contribution from spacecraft at the interface of the MW bracket with the spacecraft is not
incorporated. However, it is seen that the mode shapes match well as can be seen in Fig. 9.

It is thus clear that the rotation of the momentum wheel affects the amplitude of disturbance indicated by
the response of the wheel and bracket. This in turn causes a higher response at other spacecraft locations. At
critical speeds, the response of the spacecraft is high. The low damping in the bracket also contributes to the
higher response problem.
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Table 1

Comparison of frequencies

Node no. Freq (Hz) from FEM Freq (Hz) from EMA

1 67.69 52.94

2 76.58 63.32

3 130.4 80.12
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Fig. 10. Campbell diagram from FEM analysis of the momentum wheel bracket.
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3.1. Lower-order mathematical model of the bracket and momentum wheel

As discussed earlier, momentum wheel—earth sensor interaction can make the attitude rates erroneous and
the requirement is to minimize this interaction. Minimization of interaction can be done in many ways. One
approach is to make the stiffness of the bracket very low so as to make it behave as an isolator. Another
approach is to shift the whirling frequency of the bracket (during rotation of the momentum wheel) well above
the operating speed range of the wheel. The first option is structurally not feasible, as the wheel bracket has to
withstand the high launch loads. The second option requires a redesign of the bracket and is easily feasible.
We chose the second option.

In order to redesign the existing wheel bracket, a lower-order model, which captures the essential design
parameters and dynamic characteristics, is first derived. This is especially useful to avoid use of a large finite
element model of the wheel bracket for the iterative design process. This lower-order model is also useful for
the spacecraft-level studies.

The bracket consists of a honeycomb panel supported on two sides. It is connected to the central thrust
cylinder—one side is directly connected and the other side by a machined aluminum member. This bracket is
modelled as a six-degree-of-freedom spring connecting wheel with the spacecraft (shown in Figs. 3 and 4). For
this study the MW can be considered as a rigid mass, with specified static and dynamic unbalances. The wheel
is elastically supported at the six mounting interface points by linear springs. The mass of the mounting
bracket assembly is small compared to the wheel mass and hence is neglected. The three linear spring stiffness
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Fig. 11. Momentum wheel mounting bracket modeled as springs.
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are denoted by kxi
; kyi

; kzi
; i ¼ 1 . . . 6, and the rotational stiffnesses about three mutually perpendicular axes

are denoted by kmxi
; kmyi

; kmzi
; i ¼ 1 . . . 6. These are shown schematically in Fig. 11. The inertia properties are

the mass, m, and mass momentum of inertia, Jx; Jy; Jz, with respect to the reference axes and at the center of
mass. The angular speed of the wheel is denoted by o in rad/s. The static unbalance is caused by the offset of
the center of mass of the wheel from the axis of rotation and is modeled as mass, ms, located at a radius, rs.
Misalignment of the principal axes of inertia of the wheel with respect to the spin axis leads to dynamic
unbalance. This is modeled as two equal masses, md , placed diametrically opposite at a radial distance, rd , and
axial distance, h, from the wheel mass center.

The equation of motion of the wheel–bracket combination is derived using the Lagrange formulation and
this can be written in a compact form as

½M�f €xg þ ½G�f _xg þ ½K �fxg ¼ F (1)

where the 6� 1 vector x denotes the generalized variables corresponding to the six degrees of freedom
ðx; y; z; yx; yy; yzÞ

T, and the mass matrix and the gyroscopic matrix are given as follows:

½M� ¼

m 0 0 0 0 0

0 m 0 0 0 0

0 0 m 0 0 0

0 0 0 Jx 0 0

0 0 0 0 Jy 0

0 0 0 0 0 Jz

2
6666666664

3
7777777775

(2)

½G� ¼

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 �oJz 0

0 0 0 oJz 0 0

0 0 0 0 0 0

2
666666664

3
777777775

(3)
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The 6� 6 stiffness matrix ½K � is given byP
kxi

0 0 0
P

kzi
zi �

P
kxi

yi

0
P

kyi
0

P
kyi

zi 0 �
P

kyi
xi

0 0
P

kzi

P
kzi

yi �
P

kzi
xi 0

0 �
P

kyi
zi

P
kzi

yi ð�Þ1 �
P

kzi
xiyi �

P
kyi

xiziP
kxi

zi 0 �
P

kzi
xi �

P
kzi

xiyi ð�Þ2 �
P

kxi
yizi

�
P

kxi
yi

P
kyi

xi 0 �
P

kyi
xizi �

P
kxi

yizi ð�Þ3

2
6666666664

3
7777777775

(4)

where the summation is over i ¼ 1 to 6 and the terms ð�Þ1, ð�Þ2, and ð�Þ3 are given as
P
ðkyi

z2i þ kzi
y2

i þ kmxi
Þ,P

ðkzi
x2

i þ kxi
z2i þ kmyi

Þ, and
P
ðkxi

y2
i þ kyi

x2
i þ kmzi

Þ, respectively.
The right-hand side forcing term F is given by

F ¼

�msrso2 sinðotÞ

msrso2 cosðotÞ

0

mdrdho2 cosðotÞ

mdrdho2 sinðotÞ

0

8>>>>>>>><
>>>>>>>>:

9>>>>>>>>=
>>>>>>>>;

(5)

where msrs and mdrdh represent the static and dynamic unbalance, respectively, as explained earlier.
It is seen that the forcing terms on the right-hand side of the equations correspond to both the translations

and the rotations and are harmonic functions with a frequency equal to the wheel speed. It is also clear that the
matrix ½G� changes with the rotational speed.

3.2. Numerical analysis

In order to have a good initial estimate of the stiffness of each spring used in the lower-order model,
component mode synthesis [22] is adopted. The basis for this reduction method is the transformation matrix
known as Craig–Bampton coordinate transformation. This reduces the finite element stiffness matrix into an
assembly of an interface stiffness matrix and a diagonal modal stiffness matrix. The initial estimate for the
stiffness for each spring here is based on the interface stiffness matrix. A brief review of the component mode
synthesis following the approach by Craig and Bampton [22] and its application to arrive at the spring
stiffnesses in the lower-order model of the bracket is given here.

The equation of motion of a general dynamical system without damping is given by

½M�f €xg þ ½K �fxg ¼ F (6)

In the first step, the physical degrees of freedom are separated into a set of non-interface (interior)
coordinates xN and a set of interface degrees of freedom coordinates xI . The matrices and vectors in Eq. (6)
are then partitioned as

MNN MNI

MT
NI MII

" #
€xN

€xI

( )
þ

KNN KNI

KT
NI KII

" #
xN

xI

( )
¼

FN

FI

( )
(7)

where typically the non-interface forces FN are zero.
Let fNN denote the matrix of fixed-interface modes of the system normalized with respect to the mass

matrix. The modes are obtained using a standard eigenvalue solution process with interfaces fixed using the
fCN matrix to denote the matrix of constraint modes, i.e., the rigid body displacement vector. The physical
degrees of freedom x and modal degrees of freedom can be written as

x �
xN

xI

( )
¼

fNN fCN

0 I

� �
qN

xI

( )
(8)
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where qN are the modal degrees of freedom and the matrix

fNN fCN

0 I

� �

is known as the Craig–Bampton transformation matrix.
Using this transformation matrix in Eq. (7), leads to

I ~MNI

~M
T

NI
~MII

" #
€qN

€xI

( )
þ

O2
n 0

0 ~KII

" #
qN

xI

( )
¼

fT
NNFN

fT
CNFN þ FI

( )
(9)

where

fCN ¼ �K�1NNKNI

~KII ¼ KT
NIfCN þ KII

~MII ¼ fT
CN ½MNNfCN þMNI � þMNIfCN þMII

~MNI ¼ fT
NN ½MNNfCN þMNI �

with ~MNI being the coupling matrix and ~KII the interface stiffness matrix.
The MSC NASTRANr finite element analysis tool was used to perform the component mode synthesis.

The large matrices obtained from the finite element analysis were reduced to matrices ~KII , ~MII and ~MNI . As
there are six constraint points in the finite element model, the interface stiffness matrix KII is a 36� 36 fully
populated matrix. All the elements of this matrix are not used for the initial estimate of stiffnesses used in the
lower-order model. Coupled off-diagonal stiffness terms are neglected for simplicity. From the mode shapes of
the finite element analysis and experimental modal analysis, one observes that the first two modes are anti-
symmetric. The honeycomb panel is free to move in the lateral direction. It is clear, again from the FEM and
EMA, that the mode shape is primarily controlled by kzi

; i ¼ 1 . . . 6 and hence, only the stiffnesses in the Z

direction are chosen for the initial estimate for the lower-order model. The stiffness values used from the
interface stiffness matrix are given in Table 2. It may be noted that there is no unique way of deciding which
stiffnesses to retain. However, as observed in the extensive simulations (discussed later), the choice of retaining
only the Z components of the stiffnesses is adequate for this study.

Retaining only the kzi
’s in Eq. (1), it is observed that the set of six equations in the lower-order model further

reduce to only three equations. These are given as

m 0 0

0 Jx 0

0 0 Jy

2
664

3
775

€z

€yx

€yy

8>><
>>:

9>>=
>>;þ

0 0 0

0 0 �oJz

0 oJz 0

2
664

3
775

_z

_yx

_yy

8>><
>>:

9>>=
>>;
Table 2

Comparison of stiffness

Stiffness nomenclature Stiffness in N/m from component mode synthesis Stiffness in N/m after iterations

kz1 496 528 400 000

kz2 288 109 200 000

kz3 280 669 200 000

kz4 502 330 400 000

kz5 622 066 350 000

kz6 632 273 350 000
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þ

P6
i¼1

kzi

P6
i¼1

kzi
yi �

P6
i¼1

kzi
xi

P6
i¼1

kzi
yi

P6
i¼1

ðkyi
z2i þ kzi

y2
i þ kmxi

Þ �
P6
i¼1

kzi
xiyi

�
P6
i¼1

kzi
xi �

P6
i¼1

kzi
xiyi

P6
i¼1

ðkzi
x2

i þ kxi
z2i þ kmyi

Þ

2
6666666664

3
7777777775
¼

0

mdrdho2 cosðotÞ

mdrdho2 sinðotÞ

8>>>>><
>>>>>:

9>>>>>=
>>>>>;

(10)

Eq. (10) was solved for various values of kzi
; i ¼ 1; 2; . . . ; 6. For the values of kzi

; i ¼ 1; 2; . . . ; 6, shown in Table
2, it was found that the Campbell diagram obtained from simulation (see Fig. 12) is very close to the Campbell
diagram obtained from finite element analysis (see Fig. 11) and the experimentally obtained frequency values (see
Table 1). The numerical values used in the simulations are: mass of the wheel, m ¼ 8:1 kg, inertias
Jx ¼ Jy ¼ 0:06972 kgm2, Jz ¼ 0:12763 kgm2, the static unbalance msrs ¼ 0:000072 kgm, and the dynamic
unbalance mdrdh ¼ 3:01 kgm2 [16]. Eq. (10) and the parameters listed above constitute the lower-order model of the
momentum wheel and the bracket. This model has been used in redesign studies which is discussed in Section 4.

It may be noted that the six spring stiffness values listed in Table 2 are different from the component mode
synthesis values. This is expected as many spring stiffness terms were dropped in the simplified model. It may
be further noted that even with this very simple model, with only six stiffness terms, a reasonably accurate
prediction of the Campbell diagram was obtained.

Eigenvalue analysis of Eq. (10) gives three modes for different rotation speeds of wheel. This is plotted as a
Campbell diagram and the change of natural frequency with respect to the wheel speed is shown in Fig. 12. It
can be seen that the mode of the wheel splits into a negative whirl and a positive whirl. The maximum response
occurs when the wheel speed matches the whirl frequency. In the above condition it is seen that only one of the
whirling modes is excited. This greatly amplifies the response and imparts a large disturbance to the spacecraft,
which in turn affects the scanning earth sensor output.

4. Redesign of the mounting bracket

From Eq. (10), it is clear that only the yx and yy degrees of freedom influence the gyroscopic matrix. Hence,
to raise the whirling frequency beyond the operating range of speed of momentum wheel (45300 rev=min), the
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stiffness corresponding to these degrees of freedom should be increased.2 The stiffness that controls the yx and
yy degrees of freedom are kmxi

; kmyi
; i ¼ 1; . . . ; 6. Keeping the stiffness values kzi

; i ¼ 1; . . . ; 6 fixed, the values
corresponding to kmyi

; i ¼ 1; . . . ; 6, were varied to increase the whirl frequency from 4200 to 5600 rev/min.
The final values of stiffness, kzi

; kmyi
; i ¼ 1; . . . ; 6, which satisfy the requirement are as follows:

kz1 ¼ 400 000N=m; kz2 ¼ 200 000N=m; kz3 ¼ 200 000N=m,

kz4 ¼ 400 000N=m; kz5 ¼ 350 000N=m; kz6 ¼ 350 000N=m,

kmy1 ¼ 10 000N=m; kmy2 ¼ 0N=m; kmy3 ¼ 0N=m,

kmy4 ¼ 10 000N=m; kmy5 ¼ 10 000N=m; kmy6 ¼ 10000N=m.

The Campbell diagram corresponding to the above values of stiffnesses is shown in Fig. 13.
From the results of analysis of the lower-order model, it is clear that the gyroscopic forces play an important

role in the dynamics of a momentum wheel bracket especially when significant angular deformations are
present at the mounting interface. It is also clear that the gyroscopic forces will affect the modes of the bracket
causing whirling especially of those modes that involve significant angular motion, viz., the anti-symmetric
modes. Based on the results of the analysis, it was decided to fix additional plates on either side of the milled
bracket in such a way as to increase the stiffness kmyi

; i ¼ 1; . . . ; 6. Although the analysis of the lower-order
model and the values obtained for kmyi

; i ¼ 1; . . . ; 6 do not have one-to-one correspondence with the geometry
of the added plates, the lower-order model does indicate the role of stiffening by plates in increasing the critical
whirl frequency.

After the modifications, the whirling frequency was shifted to around 82Hz (4920 rev/min) although the
lower order model predicted it as 89Hz 5300 rev/min, as can be seen from the experimental data shown in Fig.
14. It was also observed that this reduced the response near the earth sensor location to less than 0.1 g in the
entire operating speed range of 3000–5100 rev/min compared to about 1.2 g before the modification.
2In this particular case, strengthening any other part of the bracket was difficult due to its design.
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Fig. 14. Response of the momentum wheel bracket after design modification.
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5. Conclusions

This paper deals with the structural dynamic coupling of a rotating momentum wheel with a mounting
bracket and its impact on the sensitive subsystems of a spacecraft. It is clearly brought out by the experiments,
finite element analysis and analysis using a lower-order model, that for the momentum wheel configuration
studied, wheel rotation changes the natural frequency of the mounting bracket altering the frequency and
amplitude of wheel disturbance itself. The influence of the rotational flexibility of the bracket is clearly
brought out as the main factor influencing the coupling. A simplified low-order mathematical model of the
wheel and bracket derived to study the influence of various stiffness terms is used for re-designing the bracket.
Finally, the changes on the bracket were finalized, and validated experimentally. The disturbing frequency was
found to be greater than 89Hz, well beyond the operating range of the momentum wheel. It must be stressed
that although similar analysis could have been done using a detailed finite element model, it would have been
time consuming and expensive. The lower-order model can also be used for simulating the wheel bracket
assembly in the integrated spacecraft.
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