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Abstract

Based on the two-dimensional viscoelastic differential constitutive relation, the differential equation of motion of the

axially moving viscoelastic rectangular plate constituted by the Kelvin–Voigt model with parabolically varying thickness in

the y-direction is derived. The dimensionless complex frequencies of axially moving viscoelastic plate with different

boundary conditions versus the dimensionless moving speed for various aspect ratio, thickness parameter and the

dimensionless delay time are analyzed by the differential quadrature method. The effects of various parameters such as

aspect ratio, thickness parameter, the dimensionless moving speed and the dimensionless delay time on the vibration

characteristics of the axially moving viscoelastic rectangular plate with parabolically varying thickness are discussed.

r 2008 Elsevier Ltd. All rights reserved.
1. Introduction

Varying thickness plates are widely used in aerospace structures in order to economize on the plate materials
or lighten the plates. Therefore, it is of great importance to study vibration characteristics of plates with
varying thickness. Compared to the large amount of research studies on rectangular plates with linearly
varying thickness [1–4], the published works on parabolically varying thickness plates are limited [5,6].
Because the governing equation of the plate with parabolically varying thickness is four-order variable
coefficients partial differential equation, it makes the computation of the natural frequencies more
complicated than those of uniform-thickness plates. Differential quadrature method (DQM) as an efficient
alternative numerical tool for structural analysis has been widely used for static and free vibration analysis of
beams and plates. In application to such problems it was concluded that DQM procedures offer comparable
accuracy with less computation with those of Rayleigh–Ritz method, finite difference and finite element
methods (FEM).

Thus, the purposes of this paper are to discuss the transverse vibration of the axially moving viscoelastic
rectangular thin plate constituted by the Kelvin–Voigt model with parabolically varying thickness in the y-
ee front matter r 2008 Elsevier Ltd. All rights reserved.
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direction by DQM, and to investigate the effects of the aspect ratio, thickness parameter, the dimensionless
moving speed and the dimensionless delay time of the material on the dynamic behaviors and stability of the
moving viscoelastic plate with parabolically varying thickness.
2. Governing equations

Fig. 1 shows a viscoelastic rectangular thin plate with parabolically varying thickness in the y-direction and
moving with constant speed v in the x-direction. The plate has the length a in the x-direction, width b in the
y-direction, thickness h1 and h2 on y ¼ b/2 and y ¼ 0, b, respectively. The thickness is assumed to vary in
the y-direction according to the relation hðyÞ ¼ h1fh2=h1 þ 4ð1� h2=h1Þ½y=b� ðy=bÞ2�g as shown in Fig. 1. The
density of the material is r.

Assuming elastic behavior in dilatation and the Kelvin–Voigt law for distortion, the constitutive equations
are as follows [7]:

sij ¼ 2Geij þ 2Z_eij

sii ¼ 3K�ii

(
(1)

where G is shear elastic modulus, K is bulk elastic modulus, and Z is viscosity coefficient.
According to the thin plate theory and the constitutive equations of the viscoelastic material in Laplace

domain [8], the differential equation of motion of axially moving viscoelastic rectangular plate with
parabolically varying thickness constituted by the Kelvin–Voigt model in time domain is
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where wðx; y; tÞ is deflection function of the plate, A1 ¼ 3K þ 4G; A2 ¼ 4Z; A3 ¼ 2Gð6K þ 2GÞ;A4 ¼

8GZþ 12KZ; A5 ¼ 4Z2; A6 ¼ 2Gð3K � 2GÞ, A7 ¼ 6KZ� 8GZ; G ¼ E=2ð1þ mÞ; K ¼ E=3ð1� 2mÞ, m is Pois-
son’s ratio.

r4w̄ ¼ q4w=qx4 þ 2ðq4w=qx2qy2Þ þ q4w=qy4; r2w ¼ q2w=qx2 þ q2w=qy2.

It is convenient to introduce the dimensionless variables and parameters
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Fig. 1. Axially moving viscoelastic plate with parabolically varying thickness.
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Substituting Eq. (3) into Eq. (2), the dimensionless differential equation of motion for the axially moving
viscoelastic plate with parabolically varying thickness constituted by the Kelvin–Viogt model is written as
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where t is dimensionless time, c is dimensionless axially moving speed, H is dimensionless delay time of material,
a1 ¼

4
3
ð2� mÞð1þ mÞ, a2 ¼

4
3
ð1� 2mÞð1þ mÞ2, a3 ¼ m, a4 ¼

2
3
ð1þ mÞð5m� 1Þ, a5 ¼ 4ð1� 2mÞð1þ mÞ=3ð1� mÞ,

r4W ¼ q4W=qx4 þ 2l2ðq4W=qx2qc2
Þ þ l4ðq4W=qc4

Þ; r2W ¼ q2W=qx2 þ l2ðq2W=qc2
Þ.

Let Eq. (4) has a solution of the form:

W ðx;c; tÞ ¼W ðx;cÞ ejot (5)

Then the dimensionless form of Eq. (4) becomes
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where j ¼
ffiffiffiffiffiffiffi
�1
p

, o is the dimensionless complex frequency of the transverse vibration of the viscoelastic plate.
D1 ¼ 1þ a1Hjoþ a2H

2j2o2, D2 ¼ a3 þ a4Hjo� a2H
2j2o2, D3 ¼ 1þ a5Hjo,

r4W ¼ q4W=qx4 þ 2l2ðq4W=qx2qc2
Þ þ l4ðq4W=qc4

Þ; r2W ¼ q2W=qx2 þ l2ðq2W=qc2
Þ.

The boundary conditions of the plate with four edges simply supported are

x ¼ 0; 1 : W ðx;cÞ ¼
q2W

qx2
¼ 0

c ¼ 0; 1 : W ðx;cÞ ¼
q2W

qc2
¼ 0

8>>>><
>>>>:

(7)

The boundary conditions of the plate with two opposite edges simply supported and other edges clamped
are

x ¼ 0; 1 : W ðx;cÞ ¼
qW

qx
¼ 0

c ¼ 0; 1 : W ðx;cÞ ¼
q2W

qc2
¼ 0

8>>><
>>>:

(8)

3. Differential quadrature analogs

The basic idea of the DQ method is to approximate the partial derivatives of a function with respect to a
spatial variable at any discrete point as the weighted linear sum of the function values at all the discrete points
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chosen in the solution domain of spatial variable [9]. Consider smooth function f(x, y) in region 0pxpa,
0pypb, the partial derivative of the rth order with respect to x of it at the point (xi, yi), the partial derivative
of the sth order with respect to y, the mixed partial derivative of the sth order with respect to y and the rth
order with respect to x are defined as follows, respectively [10]:
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where N and M are the number of grid points in x and y-directions, respectively, A
ðrÞ
ik and A
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coefficients, and they are defined by
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In the case of r ¼ 2; 3; . . . ;N � 1; s ¼ 2; 3; . . . ;M � 1,
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There are two key points in the successful application of the differential quadrature method, one is how to
determine the weighting coefficients and the other is how to select the grid points. The natural and simplest
choice of the grid points is equally spaced points in the direction of the coordinate axes of the computational
domain. It was demonstrated that non-uniform grid points gives a better results with the same number of
equally spaced grid points [11]. In this paper, we choose these set of grid points in terms of natural coordinate
directions x and c for the plate with four edges simply supported and the plate with two opposite edges simply
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supported and other edges clamped, respectively as
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To formulate the eigenvalue equations, the governing differential equations with their associated boundary
conditions are transformed into algebraic equations via DQM:
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W 1j ¼W Nj ¼W i1 ¼W iN ¼ 0 i; j ¼ 1; 2; . . . ;NPN
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Eq. (18) and boundary conditions (19) or (20) can be written into matrix form

ðo3½Q� þ o2½R� þ o½G� þ ½K �ÞfW kjg ¼ f0g (21)

where the matrices ½Q�; ½R�; ½G�; ½K � involve parameters such as dimensionless delay time H, dimensionless
axially moving speed c, thickness parameter and aspect ratio of the plate. Eq. (21) is a generalized eigenvalue
problem, it can be solved by using standard eigenvalue routine for a complex general matrix, then natural
frequencies as well as mode shapes can be obtained. In this work, Matlab software has been employed for the
solution procedure.

4. Numerical examples and discussion

If H ¼ 0, c ¼ 0, thickness parameter h2/h1 ¼ 1, Eq. (6) is reduced to transverse free vibration of uniform-
thickness elastic plate. In order to verify the DQM, the first three-order natural frequencies of the transverse
free vibration of elastic plate with two different boundary conditions are calculated firstly, the results in this
paper are in good agreement with those in Ref. [12], which can be seen from Table 1.

Now, the dynamic behaviors and stability of the axially moving viscoelastic rectangular plate constituted by
the Kelvin–Voigt model with parabolically varying thickness are calculated and analyzed.

4.1. The plate with four edges simply supported

Fig. 2 shows the variation of the first three-order dimensionless complex frequencies of the plate with
dimensionless axially moving speed for l ¼ 1, h2/h1 ¼ 1, H ¼ 10�5. It can be seen that, when dimensionless
moving speed c ¼ 0, dimensionless complex frequency o is a real number. With the increase of axially moving
speed, the real part of o decreases, while its imaginary part remains zero. When moving speed increases to
critical value c ¼ 6.31, the real part of o in the first mode becomes zero, subsequently, Re(o) ¼ 0 but
Im(o)40 and Im(o)o0 occur, this shows that the plate behaves divergent instability. When moving speed
further increases to c ¼ 7.81, the plate regains stability in the first-order mode. After the plate gains restability,
in the case of c ¼ 8.31, Re(o)6¼0 and the imaginary part of o has two branches with positive and negative
value, it indicates that the first-order mode couples the second-order mode, that is the plate undergoes
coupled-mode flutter.

Fig. 3 gives the variation of the first three-order dimensionless complex frequencies of the plate with
dimensionless axially moving speed for l ¼ 1, h2/h1 ¼ 1, H ¼ 10�3. In comparison with Fig. 2, because of the
increase of the dimensionless delay time, the imaginary part of the dimensionless complex frequency o does
not remain zero, but are positive value, and it increase with the increase of mode order. The increase of the
dimensionless delay time does not have effect on the critical divergence speed of the first-order mode, but the
first-order mode does not couple the second-order mode.
Table 1

The first three order natural frequencies of the transverse free vibration of the elastic plate with different boundary conditions (c ¼ 0)

Aspect ratio l 0.5 1

The solution in this paper SSSS 12.3370 19.7401 31.8919 19.7392 49.3519 78.9647

CSCS 23.8184 28.9567 38.9379 28.9559 54.7467 69.3392

Exact solution [12] SSSS 12.33 19.73 32.07 19.73 49.35 78.96

CSCS 23.82 28.95 39.09 28.95 54.74 69.33
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Fig. 2. Dimensionless complex frequency versus the dimensionless axially moving speed for SSSS plate for H ¼ 10�5; l ¼ 1; h2=h1 ¼ 1.

Fig. 3. Dimensionless complex frequency versus the dimensionless axially moving speed for SSSS plate for H ¼ 10�3; l ¼ 1; h2=h1 ¼ 1.
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Fig. 4 shows the variation of the first three-order dimensionless complex frequencies of the plate with
dimensionless axially moving speed for l ¼ 1, h2/h1 ¼ 0.5, H ¼ 10�5. By contrast with Fig. 2, when
dimensionless moving speed c ¼ 0, dimensionless complex frequency o is a complex number and the real part
of it decreases evidently in comparison with the case of h2/h1 ¼ 1. With the increase of axially moving speed,
the real part of o decreases, and its imaginary part remains a positive number. The critical divergence speed of
the first-order mode and the critical speed of the first-order mode coupling the second-order mode decrease.

Fig. 5 gives the variation of the first three-order dimensionless complex frequencies of the plate with
dimensionless axially moving speed for H ¼ 10�3, l ¼ 1, h2/h1 ¼ 0.5. In comparison with Fig. 4, the increase
of the dimensionless delay time does not have effect on the critical divergence speed of the first-order mode,
but the plate does not undergo coupled-mode flutter.

Fig. 6 shows the variation of the first three-order dimensionless complex frequencies of the plate with
dimensionless axially moving speed for H ¼ 10�5, l ¼ 0.5, h2/h1 ¼ 1. By contrast with Fig. 2, when
dimensionless moving speed c ¼ 0, dimensionless complex frequency o is also a real number, but it decreases
evidently in comparison with the case of l ¼ 1. With the increase of axially moving speed, the real part of o
decreases, and its imaginary part remains zero too. The critical divergence speed of the first-order mode
reduces to c ¼ 4, subsequently, the plate behaves divergent instability in second-order mode at the speed
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Fig. 4. Dimensionless complex frequency versus the dimensionless axially moving speed for SSSS plate for H ¼ 10�5; l ¼ 1; h2=h1 ¼ 0:5.

Fig. 5. Dimensionless complex frequency versus the dimensionless axially moving speed for SSSS plate for H ¼ 10�3; l ¼ 1; h2=h1 ¼ 0:5.
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c ¼ 6.31. The critical speed of the plate undergoing coupled-mode flutter decrease to c ¼ 6.96, and the modes
in which the plate undergoes coupled-mode flutter is different from Fig. 2. When the moving speed increases to
c ¼ 7.85, the second-order mode regains stability.

Fig. 7 gives the variation of the first three-order dimensionless complex frequencies of the plate with
dimensionless axially moving speed for l ¼ 0.5, h2/h1 ¼ 1, H ¼ 10�3. In comparison with Fig. 4, because of
the increase of the dimensionless delay time, the imaginary part of the dimensionless complex frequency o
becomes a positive value, and increase with the increase of mode order. The first-order mode does not couple
the third-order mode.

4.2. The plate with two opposite edges simply supported and other two edges clamped

Figs. 8 and 9 gives the variation of the first three-order dimensionless complex frequencies of the plate with
dimensionless axially moving speed for the same aspect ratio l ¼ 1, thickness parameter h2/h1 ¼ 1, and
different dimensionless delay time H ¼ 10�5, 10�3. In the case of H ¼ 10�5, the first-order mode behaves
divergent instability when dimensionless moving speed c ¼ 8.21, after then, the plate regains stability at the
moving speed c ¼ 10.31. When the moving speed increases to c ¼ 11.09, the first mode couple the third mode.
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Fig. 6. Dimensionless complex frequency versus the dimensionless axially moving speed for SSSS plate for H ¼ 10�5; l ¼ 0:5; h2=h1 ¼ 1.

Fig. 7. Dimensionless complex frequency versus the dimensionless axially moving speed for SSSS plate for H ¼ 10�3; l ¼ 0:5; h2=h1 ¼ 1.

Fig. 8. Dimensionless complex frequency versus the dimensionless axially moving speed for CSCS plate for H ¼ 10�5; l ¼ 1; h2=h1 ¼ 1.
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Fig. 9. Dimensionless complex frequency versus the dimensionless axially moving speed for CSCS plate H ¼ 10�5; l ¼ 1; h2=h1 ¼ 1.

Fig. 10. Dimensionless complex frequency versus the dimensionless axially moving speed for CSCS plate H ¼ 10�5; l ¼ 1; h2=h1 ¼ 0:5.
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In the case of H ¼ 10�3, the increase of delay time does not have effect on the critical divergence speed of the
first mode, but the imaginary parts of the complex frequencies change from zero to positive values, and the
imaginary parts of the dimensionless complex frequencies of the first three modes increase with the increase of
the modes order. The first mode and the third mode do not undergo coupled-mode flutter.

Figs. 10 and 11 gives the variation of the first three-order dimensionless complex frequencies of the plate
with dimensionless axially moving speed for the same aspect ratio l ¼ 1, thickness parameter h2/h1 ¼ 0.5, and
different dimensionless delay time H ¼ 10�5, 10�3. It is found that the second mode does not couples the third
mode because of the increase of delay time, but the critical divergence speed of the first mode remains
invariable. By contrast with Figs. 8 and 9, it indicates that the real parts of the complex frequencies decrease
because of the decrease of thickness parameter, but the critical divergence speed of the first-order mode
increases, and the modes in which the plate undergoes coupled-mode flutter change. Because of the decrease
of thickness ratio, the plate undergoes coupled-mode flutter firstly, then it behaves divergent instability in
first order.

Figs. 12 and 13 give the variation of the first three-order dimensionless complex frequencies of the plate with
dimensionless axially moving speed for the same aspect ratio l ¼ 0.5, thickness parameter h2/h1 ¼ 1, and
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Fig. 11. Dimensionless complex frequency versus the dimensionless axially moving speed for CSCS plate H ¼ 10�3; l ¼ 1; h2=h1 ¼ 0:5.

Fig. 12. Dimensionless complex frequency versus the dimensionless axially moving speed for CSCS plate H ¼ 10�5; l ¼ 0:5; h2=h1 ¼ 1.

Fig. 13. Dimensionless complex frequency versus the dimensionless axially moving speed for CSCS plate H ¼ 10�3; l ¼ 0:5; h2=h1 ¼ 1.
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different dimensionless delay time H ¼ 10�5, 10�3. As can be seen that the increase of delay time does not have
effect on the critical divergence speeds of various modes, but the first mode does not couple the second mode.
And because of the increase of delay time, the imaginary parts of the complex frequencies become positive
values. By contrast with Figs. 8 and 9, respectively, it is obtained that the real parts of the first three
dimensionless complex frequencies decrease with the decrease of aspect ratio, and the critical divergence
speeds of various modes decrease too.
5. Conclusions

A DQ procedure for vibration analysis of axially moving viscoelastic plate with parabolically varying
thickness was developed, the completeness of the present DQM was demonstrated for plates under different
boundary conditions as well as the thickness variation. Dimensionless complex frequency versus the
dimensionless axially moving speed are plotted for different boundary conditions and the effects of
dimensionless delay time H, aspect ratio l and thickness ratio h2/h1 on vibrations of axially moving
viscoelastic rectangular plate constituted by the Kelvin–Voigt model with parabolically varying thickness are
analyzed. The conclusions can be summarized as follows:

(1) For the SSSS plate and the CSCS plate, when other parameters are invariable, the increase of delay time
(10�5�10�3) does not alter critical divergence speeds in various modes, but the plate does not undergo
coupled-mode flutter, the imaginary parts of the first three complex frequencies don’t remain zero, but are
positive numbers, and increase with the increase of the modes.

(2) For the SSSS plate, when other parameters are invariable, with the decrease of thickness ratio h2/h1, the
real parts of the first three complex frequencies decrease in the case of c ¼ 0, and the critical divergence speeds
of various modes decrease too, but the decrease of thickness ratio does not alter the modes that the plate
undergo the coupled-mode flutter. With the decrease of aspect ratio, the real parts of the first three complex
frequencies decrease evidently in the case of c ¼ 0, and the critical divergence speeds in the first mode and the
second mode decrease too, the modes that the plate undergoes coupled-mode flutter vary because of the
decrease of aspect ratio.

(3) For the CSCS plate, when other parameters keep constants, with the decrease of thickness ratio h2/h1,
the real parts of the first three complex frequencies decrease in the case of c ¼ 0, but the critical divergence
speeds of various modes increase, at the same time, the modes that the plate undergo the coupled-mode flutter
change. With the decrease of aspect ratio, the real parts of the first three complex frequencies decrease
evidently in the case of c ¼ 0, and the critical divergence speeds in the first mode and the second mode de-
crease too, at the same time, the modes that the plate undergo coupled-mode flutter vary with the decrease of
aspect ratio.
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