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Abstract

In this paper, analytical solutions for the free vibration analysis of tapered thin-walled laminated-composite beams with

both closed and open cross-sections are developed. The present study is based on a recently developed model that

incorporates in a full form the shear flexibility. The model considers shear flexibility due to bending as well as warping

related to non-uniform torsion. The theory is briefly reviewed with the aim to present the equilibrium equations, the related

boundary conditions and the constitutive equations. The stacking sequences in the panels of the cross-sections are selected

in order to behave according to certain elastic coupling features. Typical laminations for a box-beam such as

circumferentially uniform stiffness (CUS) or circumferentially asymmetric stiffness (CAS) configurations are adopted. For

open cross-sections, special laminations behaving elastically like the CAS and CUS configurations of closed sections are

also taken into account.

The exact values (i.e. with arbitrary precision) of frequencies are obtained by means of a generalized power series

methodology. A recurrence scheme is introduced with the aim to simplify the algebraic manipulation by shrinking the

number of unknown variables. A parametric analysis for different taper ratios, slenderness ratios and stacking sequences

is performed. Numerical examples are also carried out focusing attention in the validation of the present theory with

respect to 2D FEM computational approaches, as well as to serve as quality test and convergence test of former finite

elements schemes.

r 2008 Elsevier Ltd. All rights reserved.
1. Introduction

The increasing employment of composite materials, instead of isotropic materials, in structural components
is motivated due to the evidence that composite structures have many advantages with respect to the isotropic
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counterparts. The most well known features of composite materials are high strength and stiffness properties
together with a low weight, good corrosion resistance, enhanced fatigue life and low thermal expansion
properties among others [1]. Another interesting aspect of composite materials is the very low machining cost
with respect to the common machining procedures for isotropic materials such as steel, aluminum or titanium
[2]. As a result of the mentioned context, the analysis of the static and dynamic behavior of composite thin-
walled beams is the subject of deep investigation. Many research activities have been devoted toward the
development of theoretical and computational methods for the appropriate analysis of such members.

The first consistent study dealing with the static structural behavior of thin-walled composite-orthotropic
members under various loading patterns was carried out by Bauld and Tzeng [3]. These authors employed
Vlasov hypotheses in order to derive a beam theory for the analysis of fiber-reinforced members featuring
open cross-sections with symmetric laminates. This theory for non-shear deformable thin-walled beam was
restricted to structural members constructed with special orthotropic stacking sequences and employed only
for static analysis. However, further contributions of many authors since the early eighties until the present
time have made possible to extend Vlasov models by considering shear deformability due to bending, warping
effects, among others. The resulting models have been employed in many problems such as free/forced
vibration, elastic stability, etc.

Models for thin-walled composite beams allowing for some effects of shear deformability were already
presented in the middle eighties by Giavotto et al. [4] and Bauchau [5]. In these works the effect of the
warping-torsion shear deformability was not appropriately taken into. The issues related to shear
deformability in composite beams were slightly studied in a few problems of static’s and dynamics.

In the late eighties and the nineties a considerable number of new models and uses were developed. Some
researchers [6–9] studied the non-conventional effects of constitutive elastic couplings (such as bending–bend-
ing coupling or bending–shear coupling, etc.) in the mechanics of cantilever box-beams considering only the
bending component of shear flexibility whereas the warping torsion shear flexibility was neglected. However,
in these models [6–9] new extensions such as the consideration of the thickness effects in shear and warping
deformations, among others were introduced. Moreover, new studies devoted to the dynamical aspects of
elastic couplings were performed.

Recently, Cortı́nez and Piovan [10] employed the Hellinger–Reissner principle to derive a theory of thin-
walled beams with symmetric balanced laminates, in which the full shear flexibility was considered. This model
covered topics of dynamics under states of initial normal stresses, also accounting for in-thickness shear
flexibility and warping.

Many of the aforementioned models were employed for eigenvalue calculation, among other problems.
However, in those numerical studies only beams with uniform cross-section were considered. There is evidence
of some works devoted to the free vibration analysis of tapered beams with thin-walled cross-sections made of
isotropic material [11] and with solid cross-section made of composite materials [12]. However, despite the
importance of the vibratory problems in robotic arms and rotor-blades among other applications, there is
scarce evidence [13] of studies focused in the free vibrations of thin-walled tapered beams made of composite
materials with elastic coupling effects.

In the present work, a power series methodology is employed to calculate the exact (or with arbitrary
precision) free vibration frequencies of composite thin-walled tapered beams allowing for shear flexibility due
to bending as well as non-uniform torsion warping. Several studies for box-beams and I-beams with special
lamination are carried out. The effects of taper and the elastic couplings are analyzed and their influence in the
free vibration patterns of the beam structures appropriately enhanced. In order to show the accuracy and
practical effectiveness of the model and present series approach, some comparisons with former finite element
approaches, as well as shell finite elements of the commercial program COSMOS/M are performed.

2. Description of the model

In Fig. 1 a sketch of a thin-walled beam is shown. In this figure, it is possible to see the reference points C
and B. The main reference point C is located at the geometric center of the cross-section, where the x-axis is
parallel to the longitudinal axis of the beam, while y-axis and z-axis are the axes associated to the cross-
section, but not necessarily the principal ones. The point B is a generic point belonging to the middle line of the
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Fig. 1. Sketch of the thin-walled beam.

Fig. 2. (a) Description of cross-section geometrical entities and (b) displacement parameters. Secondary or lamination reference systems

for the segments of open (c) and closed (d) cross-sections, respectively.
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cross-sectional wall (see Fig. 2a); its co-ordinates are denoted as Y(s) and Z(s). The Fig. 2b shows the
displacement parameters of the model. Fig. 2c and d show the reference system for each laminated segment of
open and closed cross-sections, respectively.

The beam model employed in this study has been developed [10,14,17] under the following hypotheses:
(a) the cross-section contour is rigid in its own plane; (b) the warping distribution is assumed to be composed
by contour (or primary) and thickness (or secondary) components; (c) in the panels, the shell force and shell
moment corresponding to the hoop stress sss and the force resultant corresponding to the in-thickness stress
sns are neglected; (d) the radius of curvature at any point of the shell is neglected; (e) twisting curvature of the
shell is expressed according to the classical plate theory, but bending curvature is expressed according to the
first-order shear deformation theory; (f) special stacking sequences are adopted such as circumferentially
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uniform stiffness (CUS) or circumferentially asymmetric stiffness (CAS) or any other lamination scheme that
provides a specialized elastic coupling among twisting, bending and/or extension; (g) taking into account the
comparative evidence of previous theoretical beam models [16] with experimental data and 2D–3D
computational approaches, the shear flexibility due to in-thickness strains is neglected.

Under this context, the mechanics of a thin-walled beammodel allowing for shear flexibility due to bending and
warping can be described, in terms of beam-stress-resultants, with the following differential equations [10,14]:

�
qQX

qx
þ M̄1ðxÞ ¼ 0; �

qQY

qx
þ M̄2ðxÞ ¼ 0;

qMZ

qx
�QY þ M̄3ðxÞ ¼ 0, (1a2c)

�
qQZ

qx
þ M̄4ðxÞ ¼ 0;

qMY

qx
�QZ þ M̄5ðxÞ ¼ 0, (1d2e)

�
q
qx

TSV þ TW½ � þ M̄6ðxÞ ¼ 0;
qB

qx
� TW þ M̄7ðxÞ ¼ 0, (1f2g)

where QX is the axial force; QY and QZ are shear forces; MY and MZ are bending moments, B is the bimoment,
TSV is the twisting moment due to pure torsion and TW is the flexural–torsional moment, due to warping torsion.
M̄j, j ¼ 1,y,7 are the inertial forces. Eq. (1) define the extensional motion; Eqs. (1b) and (1c) define the bending
motion in the plane XY; Eqs. (1d) and (1e) define the bending motion in the plane XZ; Eqs. (1f) and (1g) define
the warping and twisting motion.

These differential equations may be subjected to the following boundary conditions:
(a)
 Clamped–clamped:

uxc ¼ uyc ¼ uzc ¼ yz ¼ yy ¼ fx ¼ yx ¼ 0 at x ¼ 0 and x ¼ L. (2a,b)
(b)
 Clamped–free:

uxc ¼ uyc ¼ uzc ¼ yz ¼ yy ¼ fx ¼ yx ¼ 0 at x ¼ 0,

QX ¼ QY ¼ QZ ¼MY ¼MZ ¼ TSV þ TW ¼ B ¼ 0 at x ¼ L. (3a,b)
(c)
 Simply supported for bending, free to warp and free to extend at one end:

uxc ¼ uyc ¼ uzc ¼ fx ¼MY ¼MZ ¼ B ¼ 0 at x ¼ 0,

uyc ¼ uzc ¼ fx ¼ QX ¼MY ¼MZ ¼ B ¼ 0 at x ¼ L. (4a,b)
In the previous equations, uxc is the axial displacement of the centroid, uyc and uzc are lateral displacements
of the centroid, yy and yz are the bending rotation parameters, fx is the twisting angle and yx is the warping
intensity variable. In Appendix B, one can find a brief deduction of the differential equations (1) starting from
the displacement field defined in Refs. [14,17].

For a general lamination, the aforementioned beam-stress-resultants are related to the displacement
variables by means of the following expression [14,17]:
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and the inertia terms are expressed as follows:
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. (6)

The stiffness coefficients in Eq. (5) and the inertia coefficients in Eq. (6) are obtained as follows:

Jkh
ij ¼

Z
S

Ākh ḡ
ðaÞ
i ḡ
ðaÞ
j

� �
þ B̄kh ḡ

ðaÞ
i ḡ
ðcÞ
j þ ḡ

ðcÞ
i ḡ
ðaÞ
j

� �
þ D̄kh ḡ

ðcÞ
i ḡ
ðcÞ
j

� �h i
ds,

J
r
ij ¼

Z
A

rḡ
ðdÞ
i ḡ
ðdÞ
j dsdn, (7a,b)

where the vectors ḡðjÞ are defined as follows:

ḡðaÞ ¼ 1;ZðsÞ;Y ðsÞ;oP;
dY

ds
;
dZ

ds
; rðsÞ þ cðsÞ;cðsÞ

� �
,

ḡðcÞ ¼ 0;
dY

ds
;�

dZ

ds
; lðsÞ; 0; 0; 1;�2

� �
; ḡðdÞ ¼ 1;ZðsÞ þ n

dY

ds
;Y ðsÞ � n

dZ

ds
;oðsÞ

� �
. (8a 2 c)

In the Eq. (7), r is the density and Āij , B̄ij and D̄ij are modified elastics coefficients (see Appendix B, [10,14]),
whereas o is the whole warping function, which is composed by two terms: primary or contour warping (op)
and secondary or thickness warping (os) defined by

o ¼ opðsÞ þ osðs; nÞ; opðsÞ ¼

Z s

s0

½rðsÞ þ cðsÞ�ds�DC ; osðs; nÞ ¼ nlðsÞ. (9)

The function c(s) is the shear flow of pure torsion (or Saint Venant torsion) for a closed contour section. It
accounts for variable laminates along the contour and it is defined as follows:

cðsÞ ¼
1

Ā66ðsÞ

R
s
rðsÞdsH

S
ð1=Ā66ðsÞÞds

" #
; DC ¼

H
S
½rðsÞ þ cðsÞ�Ā11ðsÞdsH

S
Ā11ðsÞds

. (10a,b)

In the case of an open cross-section c(s) ¼ 0. The functions r(s) and l(s) are defined as follows:

rðsÞ ¼ ZðsÞ
dY

ds
� Y ðsÞ

dZ

ds
; lðsÞ ¼ Y ðsÞ

dY

ds
þ ZðsÞ

dZ

ds
, (11a,b)

The stacking sequences of hypothesis (f) provide selective elastic couplings such as torsion-extension or
bending-torsion even for cases of cross-section with double symmetry. The configurations CUS and CAS were
adopted specifically for closed cross-sections by Rehfield et al. [6]. There are many different stacking sequences
that show evidence of the elastic couplings manifested by CUS and CAS configurations. In Fig. 3a and b one
can see a class of CUS and CAS configurations, respectively. The fiber-reinforcement angle a is arranged
according Fig. 2d.
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Fig. 3. (a) CUS and (b) CAS lamination for closed rectangular section. (c) CUS-like and (d) CAS-like lamination for open I-cross-section.
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The CAS configuration has the following beam stress–strain relations [14]:
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. (12)

This expression implies, according to the constitutive behavior, that torsion induces fully coupled
bending and extension. In fact, the CAS configuration shown in Fig. 3b, produces elastic couplings
between extension and shear forces because J15

16
6¼0 and J16

16
6¼0. The torsion motion is coupled with the

bending moments due to the non-vanishing coefficients J27
16, J28

16, J37
16 and J38

16. In a few words, the
torsion moments (and fx and yx) are elastically coupled with the bending moments (and yy and yz) that by
equilibrium are connected with the shear forces (and uy and uz) that are elastically coupled with the extensional
force (and ux).
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The CUS configuration has the following beam stress–strain relations [14]:
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Eq. (13) indicates that extension induces torsion. In this case, the axial force QX is coupled with the torsional
moments TW and TSV due to the non-vanishing coefficients J17

16 and J18
16. On the other hand the bending

moments MZ and MY are coupled with the shear forces QZ and QY, by means of the non-vanishing coefficients
J25
16 and J36

16, respectively. Thus, a bending action (force or moment) in the XY plane induces bending in the XZ

plane and vice versa.
Although the names CUS and CAS are proper denominations for stacking sequences of closed cross-

sections, the lamination sequence of the open cross-sections can be arranged in order to have the same or
similar elastic couplings of the closed cross-section counterpart. Thus, the stacking sequences of Fig. 3c and d
have a similar elastic behavior as the CUS and CAS configurations, respectively. In fact, according to the
stacking sequence of Fig. 3c one has an elastic coupling quite similar to the CUS configuration because the
torsion moments are coupled with the axial force QX by means of the non-vanishing coefficients J17

16 and J18
16,

and the bending moment MY is coupled with the shear force QY by means of non-vanishing coefficient J25
16.

On the other hand, the stacking sequence of Fig. 3d manifests an elastic coupling quite similar to the
CAS configuration because the torsion moments are coupled with the bending moment MY by means
of the coefficients J27

16 and J28
16, and the axial force QX is coupled with the shear force QY by means of the

coefficient J15
16.

If a ¼ 901 or a ¼ 01, the CAS and CUS configurations of Fig. 3 coincide with a cross-ply configuration
which decouples the bending, extensional and torsion movements because in this case the coefficients of
constitutive matrix in Eq. (5) are such that Jij

16
¼ 0 and Jij

66
¼ 0 8iaj, but J78

66
6¼0 (this is inherent to the model

as one can see in Refs. [10,14]). Then, under these circumstances, the eigenvalues for CAS, CUS and cross-ply
configurations are the same.
3. Power series methodology

The exact solution of the present eigenvalue problem is carried out by means of a generalization of the
power series scheme developed originally by Filipich et al. [18,19] and Rosales and Filipich [20] for structural
problems involving isotropic materials. The methodology requires a previous non-dimensional re-definition of
the differential equations, which implies that x̄ 2 ½0; 1�, with x̄ ¼ x=L [18].

The displacement variables have the common harmonic motion:

fuxc; uyc; yz; uzc; yy;fx; yxg ¼ fu1; u2; u3; u4; u5; u6; u7g e
iOt ¼ ūeiOt, (14)

where O is the circular frequency measured in rad/seg, t is the temporal variable and i ¼
ffiffiffiffiffiffiffi
�1
p

, whereas the
generic displacement uiðx̄Þ is expanded with the following power series:

ui ¼
XM
k¼0

_

Cikx̄k; i ¼ 1; . . . ; 7, (15)

where the
_

Cik’s are unknowns coefficients. Theoretically M-N, however, for practical purposes M may be
an arbitrary large integer.
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Now, taking into account the harmonic motion of Eq. (14) and the non-dimensional re-definition of the
domain and variables, the eigenvalue problem derived from Eq. (1) may be written in the following second-
order differential system:

X7
j¼1

f ijðx̄Þu
00
j ðx̄Þ þ F̂ iðū; ū

0Þ þ luiðx̄Þ ¼ 0; i ¼ 1; . . . ; 7 and x̄ 2 ½0; 1�. (16)

The functions f ijðx̄Þ and F̂ iðū; ū0Þ which are considered analytic 8x̄ 2 ½0; 1� condense the variation of the
cross-section geometric properties (width and/or height) together with the Eq. (5). These functions can be
defined in the following form:

f ijðx̄Þ ¼
XM
k¼0

aijkx̄k; i; j ¼ 1; . . . ; 7, (17)

F̂ iðū; ū
0Þ ¼

X7
j¼1

½wijðx̄Þu
0
iðx̄Þ þ vijðx̄Þuiðx̄Þ�; i ¼ 1; . . . ; 7, (18)

where wijðx̄Þ and vijðx̄Þ are functions depending on the cross-sectional dimensions and lamination type. The
eigenvalue l is related to the circular frequency by means of the following expression:

l ¼ O
ffiffiffiffiffiffiffiffi
reL

p
. (19)

The boundary conditions can be expressed in the following generic form:

ā0iuið0Þ þ b̄0iu
0
ið0Þ ¼ 0; i ¼ 1; . . . ; 7, (20a)

ā1iuið1Þ þ b̄1iu
0
ið1Þ ¼ 0; i ¼ 1; . . . ; 7, (20b)

where the coefficients āni and b̄ni, n ¼ 0,1, i ¼ 1,y,7 are given according to Eqs. (2)–(4).
Now, substituting Eq. (15) in Eq. (20) one has the equations of boundary conditions described in terms of

the unknown coefficients
_

Cik’s, as shown in the following equation:

ā0i

_

Ci0 þ b̄0i

_

Ci1 ¼ 0; i ¼ 1; . . . ; 7, (21a)

ā1i

XM
k¼0

_

Cik þ b̄1i

XM�1
k¼0

ðk þ 1Þ
_

Ciðkþ1Þ ¼ 0; i ¼ 1; . . . ; 7. (21b)

In view of the fact that in the present problem the cross-section properties vary continuously along the
domain leading to a second-order differential system with variable coefficients, therefore one has to employ
power series products together with the power series form of higher derivatives. Then it is important to keep in
mind the following two remarks:

Remark 1. If h1ðx̄Þ; h2ðx̄Þ and h3ðx̄Þ are analytic functions defined by the following power series:

hnðx̄Þ ¼
XM
k¼0

Cnkx̄k; n ¼ 1; 2; 3, (22)

and if hnðx̄Þ, n ¼ 1,2,3 are such that h3ðx̄Þ ¼ h1ðx̄Þh2ðx̄Þ and remembering the concept of Cauchy products, then
one can easily see that:

C3k ¼
Xk

m¼0

C1mC2ðk�mÞ ¼
Xk

m¼0

C2mC1ðk�mÞ. (23)

Remark 2. If h1ðx̄Þ is defined according to Eq. (22), then the mth-order derivative is given by

dmh1ðx̄Þ

dx̄m
¼
XM�m

k¼0

jmkC1ðmþkÞx̄
k; where jmk ¼ ðk þ 1Þðk þ 2Þ . . . ðk þmÞ ¼

ðk þmÞ!

k!
, (24)
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Now, substituting Eq. (15) into Eq. (16) one can simplify the terms as follows:X7
j¼1

f ijðx̄Þu
00
j ðx̄Þ ¼

XM�2
k¼0

Pikx̄k; i ¼ 1; . . . ; 7, (25a)

X7
j¼1

½wijðx̄Þu
0
jðx̄Þ þ vijðx̄Þujðx̄Þ� ¼

XM�1
k¼0

Fikx̄k; i ¼ 1; . . . ; 7, (25b)

where

Pik ¼
Xk

r¼0

j2r

X7
j¼1

_

Cjðrþ2Þaijðk�rÞ; i ¼ 1; . . . ; 7; k ¼ 0; 1; . . .M � 2 (26)

and the differential system can be expressed, in terms of the unknown coefficients
_

Cik’s, in the following form
(for Fik see Remark 1):

Pik þ F ik þ l
_

Cik ¼ 0; i ¼ 1; . . . ; 7; k ¼ 0; 1; . . .M � 2. (27)

Now, to obtain a recurrence scheme for the
_

Cik’s, note that Eq. (26) may be expressed as

Pik ¼ P�ik þ j2k

X7
j¼1

_

Cjðkþ2Þaij0; i ¼ 1; . . . ; 7; k ¼ 0; 1; . . . ;M � 2 (28)

with

P�ik ¼
Xk�1
r¼0

j2r

X7
j¼1

_

Cjðrþ2Þaijðk�rÞ; i ¼ 1; . . . ; 7; k ¼ 0; 1; . . . ;M � 2. (29)

Note that Eq. (29) is simply the Eq. (26) where the upper limit of the summation in r is reduced in one.
Then, the system defined in Eq. (27) can be rearranged in terms of the

_

Cjðrþ2Þ’s asX7
j¼1

_

Cjðkþ2Þaij0 ¼ �
1

j2k

ðP�ik þ Fik þ l
_

CikÞ; i ¼ 1; . . . ; 7; k ¼ 0; 1; . . .M � 2. (30)

Now solving, for each ‘‘k’’, the 7� 7 system defined in Eq. (30) in the unknowns
_

Cjðkþ2Þ, j ¼ 1,y,7 one
obtains the aforementioned recurrence scheme. Note that the recurrence scheme implies that for each ‘‘k’’,

the coefficients
_

Ciðkþ2Þ, i ¼ 1,y,7, depends on the other coefficients
_

Cin, i ¼ 1,y,7, with nok+2. At the

beginning when k ¼ 0, one needs to know the fourteen coefficients
_

Ci0 and
_

Ci1, i ¼ 1,y,7 involved in the
boundary condition of Eq. (21a), and simultaneously one has to satisfy the Eq. (21b). Then one can proceed as
follows:
(1)
 Seven of the fourteen coefficients
_

Ci0 and
_

Ci1, i ¼ 1,y,7, are conveniently selected (i.e. according to the
form of the boundary equation). These seven coefficients denominated ‘‘free coefficients’’, are defined as gi,
i ¼ 1,y,7.
(2)
 According to the linearity of the present problem one can appeal to the principle of superposition,
performing alternatively the following seven forms:

g1 ¼ 1; g2 ¼ g3 ¼ g4 ¼ g5 ¼ g6 ¼ g7 ¼ 0;

g2 ¼ 1; g1 ¼ g3 ¼ g4 ¼ g5 ¼ g6 ¼ g7 ¼ 0;

g3 ¼ 1; g1 ¼ g2 ¼ g4 ¼ g5 ¼ g6 ¼ g7 ¼ 0;

g4 ¼ 1; g1 ¼ g2 ¼ g3 ¼ g5 ¼ g6 ¼ g7 ¼ 0;

g5 ¼ 1; g1 ¼ g2 ¼ g3 ¼ g4 ¼ g6 ¼ g7 ¼ 0;

g6 ¼ 1; g1 ¼ g2 ¼ g3 ¼ g4 ¼ g5 ¼ g7 ¼ 0;

g7 ¼ 1; g1 ¼ g2 ¼ g3 ¼ g4 ¼ g5 ¼ g6 ¼ 0:

(31)
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For each of the seven alternatives described in Eq. (31), one can apply the recurrence form defined in Eq.
(3)

(30) for a given value of l to obtain

_

Ci2;
_

Ci3; . . . ;
_

Cin, i ¼ 1,y,7, which afterwards are substituted in the
seven boundary conditions of Eq. (21b). The resulting expressions of these boundary conditions leads to
the following homogeneous system in the unknowns gi, i ¼ 1,y,7:

�11 lð Þ �12 lð Þ �13 lð Þ �14 lð Þ �15 lð Þ �16 lð Þ �17 lð Þ

�21ðlÞ �22ðlÞ �23ðlÞ �24ðlÞ �25ðlÞ �26ðlÞ �27ðlÞ

�31ðlÞ �32ðlÞ �33ðlÞ �34ðlÞ �35ðlÞ �36ðlÞ �37ðlÞ

�41ðlÞ �42ðlÞ �43ðlÞ �44ðlÞ �45ðlÞ �46ðlÞ �47ðlÞ

�51ðlÞ �52ðlÞ �53ðlÞ �54ðlÞ �55ðlÞ �56ðlÞ �57ðlÞ

�61ðlÞ �62ðlÞ �63ðlÞ �64ðlÞ �65ðlÞ �66ðlÞ �67ðlÞ

�71ðlÞ �72ðlÞ �73ðlÞ �74ðlÞ �75ðlÞ �76ðlÞ �77ðlÞ

2
666666666664

3
777777777775

g1
g2
g3
g4
g5
g6
g7

8>>>>>>>>>>><
>>>>>>>>>>>:

9>>>>>>>>>>>=
>>>>>>>>>>>;

¼

0

0

0

0

0

0

0

8>>>>>>>>>>><
>>>>>>>>>>>:

9>>>>>>>>>>>=
>>>>>>>>>>>;

, (32)

where eij(l) represent the ith boundary condition defined according to Eq. (21b) that corresponds to the jth
alternative of Eq. (31).
(4)
 Finally, if l is the appropriate eigenvalue, then the following characteristic equation is satisfied:

det½�ijðlÞ� ¼ 0. (33)
The recurrence scheme, as shown in the previous paragraphs, allows to shrink the algebraic problem from
7(M+1) to only 7 unknown coefficients that can be selected according to the boundary equations.

It has to be pointed out that the present power series scheme can be strongly simplified in some cases of
stacking sequences. This fact leads to the handling of two, three or four subsystems. For example in the case of
special orthotropic configurations one can handle three subsystems of two equations (twisting motion,
flapwise motion and chordwise motion) and the remaining equation (for extension). In the case of a CUS
configuration one can handle two subsystems, i.e. a subsystem with three equations (extension and twisting
due to pure torsion and warping torsion) and a subsystem with four equations (flapwise bending, chordwise
bending, flapwise shear and chordwise shear). General configurations and even the CAS configuration lead to
a full coupling (extensional, twisting, flapwise-chordwise bending and shear), and therefore to the handling of
the full system of seven equations. On the other hand due to the linearity of the present model the principle of
superposition has been employed in the power series methodology.
4. Numerical studies and analysis

In this section numerical studies on beams that have a variable web height h and constant flanges b and
thickness e are performed. The height for both open and closed cross-sections is assumed to have the linear
variation given in the following expression:

hðx̄Þ ¼ ho � bx̄. (34)

The beam has a unit length and many height/length, width/height and thickness/height ratios are employed.
In the calculation scheme, power series of 50 terms (M ¼ 50) are employed. In Table 1 the properties of the
graphite fiber reinforced epoxy AS4/3501-6 are summarized.
4.1. Comparisons of models and tests of earlier finite element procedures

Table 2 shows the first five frequencies of a tapered composite box-beam with a particular CUS
stacking sequence of {0/�45/45/90}S calculated with 400 SHELL4T elements of COSMOS/M and with the
present power series solution (M ¼ 50) of the beam model. The geometric properties are such that ho/L ¼ 0.1,
b/ho ¼ 0.6, e/ho ¼ 0.06 and b ¼ 0.04. One can see a good agreement between the solution of the beam model
and the shell approach, even in the case of an important taper ratio.
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The eigenvalues with the power series methodology are a straightforward test for the quality of finite
elements. Thus, in Table 3 a study of the convergence quality of a finite element previously developed [17]
for the present beam model is carried out. The geometric properties are such that ho/L ¼ 0.1, b/ho ¼ 0.6,
e/ho ¼ 0.03, b ¼ 0.04 and a ¼ 151 in the CAS lamination of Fig. 3b. One can see that the eigenvalues
calculated with the finite element approach converge monotonically to the exact solution furnished with the
power series methodology. Moreover, although the finite element approach is good enough for practical
purposes, even with 200 elements the approximation doesn’t reach the exact values given by the power series
methodology. Now, in the following paragraphs new parametric studies of the effect of taper, lamination
sequences and slenderness in the coupled vibrations of thin-walled composite beams are offered.

4.2. Analysis of elastic couplings in closed cross-section

In Table 4 the circular frequencies for clamped–free beams with closed cross-section (b/ho ¼ 0.6,
e/ho ¼ 0.06, b ¼ 0.04 and a ¼ 151) with CUS and CAS configuration and for different slenderness ratios
ho/L are summarized. It is interesting to note that the eigenvalues of CAS and CUS configurations manifest
differences of no more than 10% between them. However the mode shapes of the corresponding frequencies of
Table 1

Mechanic properties of the materials employed in the paper

E1 ¼ 144GPa, E2 ¼ 9.68GPa

G12 ¼ G13 ¼ 4.14GPa, G23 ¼ 3.45GPa

n12 ¼ 0.3, n23 ¼ 0.5

r ¼ 1389 kg/m3

Table 2

Comparison of a two-dimensional shell model and the one-dimensional beam model, for a tapered composite box-beam

Boundaries Method O1 O2 O3 O4 O5

Clamped–clamped Shell: COSMOS/M 3234.3 3954.9 8049.9 9814.6 10004.5

Beam: Power series 3237.0 3925.0 8114.3 9721.2 10262.1

Clamped–Free Shell: COSMOS/M 614.3 842.9 3353.8 4266.7 5945.4

Beam: Power series 613.0 836.8 3362.8 4232.8 5999.8

Natural frequencies Ok in rad/s.

Table 3

Convergence analysis of a former finite element [17]

Number of elements [14] O1 O2 O3 O4 O5

5 3538.8 4182.6 6416.4 7906.6 9266.4

10 3500.1 4128.9 6332.9 7628.9 8930.3

20 3483.0 4108.4 6311.6 7545.4 8835.9

30 3478.1 4103.4 6307.3 7524.7 8815.0

40 3475.9 4101.5 6305.5 7516.1 8806.8

60 3473.8 4100.0 6303.9 7509.1 8800.4

80 3472.8 4099.4 6303.1 7506.5 8798.1

100 3472.2 4099.1 6302.6 7505.2 8796.9

200 3471.1 4098.7 6301.5 7503.3 8795.3

Series 3469.8 4097.6 6301.3 7502.5 8794.5

Natural frequencies Ok in rad/s.
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CAS and CUS configurations are quite different due to the elastic coupling allowed. Thus, Figs. 4 and 5
depict, for CAS and CUS configurations respectively, the variation of the frequencies (associated to a given
mode shape) with respect to the slenderness ratio ho/L. The frequencies and their associated modes shapes
correspond to the example given in Table 4. The acronyms employed in Figs. 4 and 5 can be understood in the
following way: the number indicates the frequency order (first, second, etc.); the first capital letter indicates
the main contribution to the motion (T, F, E mean twisting motion, flexural motion, extensional motion); the
letters after the hyphen indicate the motion direction and/or the kind of coupling: capitalized letters imply the
direction of the main coupling. If capitalized letters appear alone, the mode shape is not coupled. That is, Y (or
Z) alone implies the direction (normally for decoupled flexural modes), but xYz means coupled motion
dominant in the y-direction). Thus, for the case ho/L ¼ 0.1 (b/ho ¼ 0.6, e/ho ¼ 0.06, b ¼ 0.04 and a ¼ 151),
Fig. 6a shows the second fully coupled torsional/flexural/extensional mode (21T-xYz) which has a coupled
motion dominated by twisting and bending in the y-direction. The mode 21T-xYz is typical of the CAS
configuration. Fig. 6b shows the second coupled flexural mode (21F-yZ) which has a motion pattern
dominated by bending in the z-direction. The mode 21F-yZ appears in CUS configurations. Fig. 6c shows the
fully coupled first torsional/flexural/extensional mode (11T-xyz) of the CAS configuration. The mode 11T-xyz
Table 4

Natural frequencies of beams with closed sections having circumferentially asymmetric stiffness (CAS) and circumferentially uniform

stiffness (CUS) laminations

Natural frequency (rad/s) Type of lamination ho/L

0.050 0.075 0.100 0.125 0.150

O1 CAS 488.0 663.7 836.3 996.8 1142.0

CUS 479.2 653.1 821.1 976.1 1116.0

O2 CAS 611.1 886.5 1136.6 1358.6 1551.1

CUS 598.4 875.3 1123.6 1342.7 1532.8

O3 CAS 2409.3 3229.2 3605.0 3549.2 3469.5

CUS 2354.8 3237.5 3377.6 3248.7 3168.2

O4 CAS 2516.3 3793.9 3981.2 4313.6 4604.8

CUS 2493.4 3612.7 3867.0 4322.9 4658.3

O5 CAS 4724.5 4172.9 4776.6 5360.8 5788.1

CUS 4179.0 3852.5 4768.3 5391.0 5831.2

Natural frequencies Ok in rad/s. ho/L is the slenderness ratio.
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Fig. 4. Variation of frequencies associated to mode shapes with respect to the ho/L ratio for a beam with closed cross-section with CAS

configuration: ( ) 11F-xYz; ( ) 11F-xyZ; ( ) 21F-xYz; ( ) 11T-xyz; ( ) 21F-xyZ; ( ) 21T-xYZ; ( ) 21T-

xYz; ( ) 31T-xYz.
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Fig. 5. Variation of frequencies associated to mode shapes with respect to the ho/L ratio for a beam with closed cross-section with CUS

configuration: ( ) 11F-Yz; ( ) 11F-yZ; ( ) 21F-Yz; ( ) 21F-yZ; ( ) 11T-E; ( ) 31F-Yz; ( ) 31F-yZ;

( ) 21T-E.

Fig. 6. (a) 21T-xYz mode of the CAS configuration. (b) 21F-yZ mode of the CUS configuration. (c) 11T-xyz mode of the CAS

configuration. (d) 11T-E mode of the CUS configuration. All cases correspond to ho/L ¼ 0.1, b/ho ¼ 0.6, e/ho ¼ 0.06, b ¼ 0.04 and

a ¼ 151. ( ) uxc; ( ) uyc; (’) yz; ( ) uzc; (B)yy; ( ) fx; ( ) yx.
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has a coupled motion dominated by twisting. Finally Fig. 6d shows the first torsional/extensional (11T-E)
mode of the CUS configuration (where the extensional displacement uxc is plotted with a 100� magnification
in order to reveal the intensity of twisting/extension coupling). Moreover, in Figs. 4 and 5 one can see the
phenomenon of mode crossover, which means that for a given order number of frequency its associated mode
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shape experiments a qualitative change with the variation of a geometric parameter such as the slenderness
ratio ho/L.

Figs. 7 and 8 depict the variation of frequencies (associated to a specified mode) with respect to the
taper ratio parameter b for clamped–free and clamped–clamped ends, respectively. The box-beam is such that
ho/L ¼ 0.05, b/ho ¼ 0.6, e/ho ¼ 0.06, and a ¼ 01. Note that in the case with clamped–free ends; the twisting
mode 11T has two mode-crossovers with the bending modes 21F-Y and 21F-Z along the variation of the taper.
In the case of the clamped–clamped ends the bending modes 11F-Y and 11F-Z and the bending modes 21F-Y
and 21F-Z have mode-crossovers at b ¼ 0.035. In Fig. 9 one can see the variation of frequencies with respect
to the taper ratio for a clamped–clamped box-beam with the following features: b/ho ¼ 0.6, e/ho ¼ 0.06, CAS
lamination with a ¼ 301, for ho/L ¼ 0.05 and ho/L ¼ 0.15. Now in Fig. 10 the variation of frequencies related
to a given mode shape for a clamped–free box-beam is plotted. The geometric and lamination properties of
this last case are: b/ho ¼ 0.6, e/ho ¼ 0.06, a ¼ 01.

After an examination of the evidence revealed in Figs. 4, 5, and 7–10 one can say that the presence of mode
crossovers overlapping among the first frequencies of composite thin-walled tapered box-beams is connected
with lower slenderness ratios, higher taper ratios and less restrictive boundary conditions.

4.3. Analysis of thin-walled beams with open cross-section

In Fig. 11 the variation of frequencies with respect to the taper ratio b of a clamped–free I-beam with a
CUS-like stacking sequence is plotted. The beam is such that ho/L ¼ 0.05, b/ho ¼ 0.6, e/ho ¼ 0.06. Three
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Fig. 7. Variation of frequencies with the taper ratio parameter b of a box-beam with a ¼ 0 and clamped–free boundary conditions:

( ) 11F-Y; ( ) 11F-Z; ( ) 11T; ( ) 21F-Y; ( ) 21F-Z.
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Fig. 8. Variation of frequencies with the taper ratio parameter b of a box-beam with a ¼ 0 and clamped–clamped boundary conditions:

( ) 11F-Y; ( ) 11F-Z; ( ) 11T; ( ) 21F-Y; ( ) 21F-Z.
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Fig. 9. Variation of frequencies with the taper ratio parameter b of a clamped–clamped box-beam with different slenderness ratios for

CAS lamination a ¼ 301: continuous lines h/L ¼ 0.05; dotted lines h/L ¼ 0.15; (n) 11T; (B) 21F-Y; (&) 21F-Z.
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Fig. 10. Variation of frequencies with the taper ratio parameter b of a clamped–free box-beam with different slenderness ratios for a ¼ 01:

continuous lines h/L ¼ 0.05; dotted lines h/L ¼ 0.15; (n) 11T; (B) 21F-Y; (&) 21F-Z.
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different orientation angles are employed. Note the strong influence of the taper ratio in the twisting modes for
each one of the stacking sequences studied. The frequencies related to the first twisting mode (11T) for tapered
beams can reach an increase of about 90% with respect to the uniform beam. On the other hand the
frequencies related to the first flexural mode in the y-direction (11F-Y) reach increments of about 18% and
the frequencies associated to the first flexural mode in z-direction (11F-Z) decrease in 6%. One can see the
presence of a mode-crossover between 11T and 11F-Z modes in each stacking sequence.

In Fig. 12 the variation of frequencies with respect to the taper ratio b of a simply supported beam with a
CAS-like configuration is shown. The geometric properties and the lamination features of this example are
taken from the previous one. As it is possible to see, the frequencies associated to the first flexural mode in the
y-direction (11F-Y) reach increments of about 10% with respect to the uniform beam and the frequencies
associated to the first flexural mode in the z-direction (11F-Z) decrease about 40%, whereas frequencies related
to the first twisting mode (11T) can reach an increase of about 25% with respect to the case of uniform beam.
In this case the mode-crossover between 11T and 11F-Z modes appear at higher values of the taper ratio b.

5. Conclusions

In this article quantitative and qualitative studies of the free vibrations of thin-walled tapered box-beams
constructed with composite materials have been performed. Laminates providing special elastic couplings, like
CUS and CAS stacking sequences have been employed. The effect of taper in the free vibrations of composite
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Fig. 11. Variation of frequencies with the taper ratio parameter b of a clamped–free I-beam with a CUS-like configuration for a

slenderness ratio of ho/L ¼ 0.05: continuous lines a ¼ 01; dashed lines a ¼ 151; dotted lines a ¼ 451; (n) 11F-Z; (B) 11F-Y; (&) 11T.
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Fig. 12. Variation of frequencies with the taper ratio parameter b of a simply supported I-beam with a CAS-like configuration for a

slenderness ratio of ho/L ¼ 0.05: continuous lines a ¼ 01; dashed lines a ¼ 151; dotted lines a ¼ 451; (n) 11F-Z; (B) 11F-Y; (&) 11T.
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thin-walled beams has been analyzed. The calculation process has been carried out appealing to a power series
methodology, which gives exact (or with arbitrary precision) eigenvalues. In the calculation of the eigenvalues
of composite tapered beams with linear or other functional variation along the domain, the power series
methodology can offer advantages with respect to conventional finite element schemes where very fine meshes
have to be used to get accurate results, especially to extract the higher modes. New parametric studies on the
subject have been performed. These studies allow the qualitative analysis of composite tapered beams having
the same dimensions but different elastic couplings. The tapering together with the coupling effects increase
the presence of mode-crossovers between torsion dominant and bending dominant modes, in higher modes
and even in lower modes. This fact is especially evident in the case of slender beams (i.e. for lower ratios
of ho/L), higher taper ratios and less restrictive boundary conditions.
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Appendix A. Brief deduction of motion equations

The differential equations of this problem can be obtained be means of the principle of virtual work with an
appropriate displacement field. The displacement field, compatible with the hypotheses summarized in the
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second paragraph, is given in the following expression [14,17]:

uxðx; y; z; tÞ ¼ uxcðx; tÞ � yzðx; tÞy� yyðx; tÞz� yxðx; tÞoðs; nÞ,

uyðx; y; z; tÞ ¼ uycðx; tÞ � fxðx; tÞz,

uzðx; y; z; tÞ ¼ uzcðx; tÞ þ fxðx; tÞy. (A.1)

The expression of the Principle of Virtual Work, compatible with the present problem, isZZZ
V

½sxxd�L
xx þ sxydgL

xy þ sxzdgL
xz�dV þ

ZZZ
V

r½ €uxdux þ €uyduy þ €uzduz�dV ¼ 0, (A.2)

where sxx, sxy and sxz are the stress components considered, r is the mass density, �L
xx, g

L
xy and gL

xz are the
components of the linear strain tensor that are given in terms of the displacement field variables by means of
the following expression [14]:

�L
xx ¼ u0xc � y0zy� y0yz� y0xo,

gL
xy ¼ ðu

0
yc � yzÞ � ðzþ qo=qyÞf0x þ qo=qyðf0x � yxÞ,

gL
xz ¼ ðu

0
zc � yyÞ þ ðy� qo=qzÞf0x þ qo=qzðf0x � yxÞ. (A.3)

Remember that in Eqs. (A.2) and (A.3) the dots and apostrophes mean derivation with respect to the
temporal variable ‘t’ and spatial variable ‘x’, respectively. It is useful to define the beam stress resultants (or
generalized forces and moment) in the following form:

fQX ;My;Mz;Bg ¼

ZZ
A

sxxf1; z; y;ogdA,

fQy;Qzg ¼

ZZ
A

fsxy;sxzgdA,

fTSV;TW g ¼

ZZ
A

fsxzðy� qo=qzÞ � sxyðzþ qo=qyÞ;sxyqo=qyþ sxzqo=qzgdA. (A.4)

Then, substituting (A.1), (A.3) and (A.4) in (A.2), collecting the like terms one has the following expression:Z
L

½QXdu0xc þQydðu
0
yc � yzÞ þQzdðu

0
zx � yyÞ þ TWdðf0x � yxÞ�dxþ

Z
L

½TWdf0x � Bdy0x �Mydy
0
y �Mzdy

0
z�dx

þ

Z
L

½M̄1duxc þ M̄2duyc þ M̄3dyz þ M̄4duzc þ M̄5dyy þ M̄6dfx þ M̄7dyx�dx ¼ 0. (A.5)

Finally, after performing in (A.5) the conventional steps of the variational calculus [14–17] one has the set of
differential equations given in Eq. (1).

Appendix B. Reduced elastic coefficients

The stress–strain relations for a composite ply can be expressed in the following form [1,2]:

sxx

sss

snn

ssn

sxn

sxs

8>>>>>>>>><
>>>>>>>>>:

9>>>>>>>>>=
>>>>>>>>>;
¼

Q̄11 Q̄12 Q̄13 0 0 Q̄16

Q̄12 Q̄22 Q̄23 0 0 Q̄26

Q̄13 Q̄23 Q̄33 0 0 Q̄36

0 0 0 Q̄44 Q̄45 0

0 0 0 Q̄45 Q̄55 0

Q̄16 Q̄26 Q̄36 0 0 Q̄66

2
6666666664

3
7777777775

�xx

�ss

�nn

gsn

gxn

gxs

8>>>>>>>>><
>>>>>>>>>:

9>>>>>>>>>=
>>>>>>>>>;
. (B.1)

In the above equation Q̄ij are components of the transformed stiffness matrix defined [1,2] in terms of the
elastic properties (elasticity moduli and Poisson coefficients) and fiber orientation of the ply [1,2]. Employing
(B.1) and with the definition of shell stress resultants (B.2) and neglecting normal effects in thickness
(i.e. snn ¼ enn ¼ 0) it is possible to obtain a constitutive form (B.3) in terms of shell stress resultants and shell
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strain components [1]

fNxx;Nss;Nxs;Nxn;Nsn;Mxx;Mss;Mxsg ¼

Z e=2

�e=2
fsxx; sss;sxs;sxn;ssn;sxxn; sssn;sxsngdn (B.2)
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A11 A12 A16 0 0 B11 B12 B16

A12 A22 A26 0 0 B12 B22 B26
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ðHÞ
45 0 0 0

0 0 0 A
ðHÞ
45 A
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B16 B26 B66 0 0 D16 D26 D66

2
666666666666664

3
777777777777775

�xx

�ss

gxs

gsn

gxn

kxx

kss

kxs

8>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

9>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>;

, (B.3)

where Nxx, Nss, and Nxs are axial, hoop and shear-membrane shell forces, respectively; Nxn, Nsn are transverse
shear shell forces; and Mxx, Mss and Mxs are axial and hoop bending and twisting shell moments, respectively;
whereas exx and ess are axial and hoop normal shell strains, respectively; gxs, gsn and gsn are shear shell strains;
kxx, kss and kxs are axial, hoop and twisting curvatures, respectively. The coefficients Aij, Bij, Dij and Aij

(H)are
shell stiffness-coefficients integrated in the thickness domain as defined in References [1,2]. Now, from
expression (B.3) and neglecting hoop, thickness and inter-laminar shell-stress-resultants (Nss ¼ Nsn ¼

Nxn ¼Mss ¼ 0) and rearranging the shell strains ess and kss in the remaining equations, it is possible to obtain
the basic constitutive relations:

Nxx

Nxs

Mxx

Mxs

8>>><
>>>:

9>>>=
>>>;
¼

Ā11 Ā16 B̄11 B̄16

Ā66 B̄
�

16 B̄66

D̄11 D̄16

sym D̄66

2
66664

3
77775

�xx

gxs

kxx

kxs

8>>><
>>>:

9>>>=
>>>;
, (B.4)

where Āij are the components of the reduced bending–extension coupling matrix, B̄ij are components of the
reduced bending–extension coupling matrix, D̄ij are components of the reduced bending stiffness matrix.
These coefficients are given by the following expressions:

Ā11 ¼ A11 þ
ð2A12B12B22 � A22B2

12 �D22A2
12Þ

A22D22 � B2
22

,

Ā16 ¼ A16 þ
ðA26B12B22 � A22B12B26 þ A12B26B22 � A12B26D22Þ

A22D22 � B2
22

,

Ā66 ¼ A66 þ
ð2A26B26B22 � A22B2

26 �D22A2
26Þ

A22D22 � B2
22

,

B̄11 ¼ B11 þ
ðB12B2

22 � A22B12D12 þ A12B22D12 � A12D22B12Þ

A22D22 � B2
22

,

B̄16 ¼ B16 þ
ðB12B22B26 � A12B26D22 � A22B12D26 þ A12D26B22Þ

A22D22 � B2
22

,

B̄
�

16 ¼ B16 þ
ðB12B22B26 �D12B26A22 �D22B12A26 þD12A26B22Þ

A22D22 � B2
22

,
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B̄66 ¼ B66 þ
ðB22B2

26 � A26B26D22 þ A26B22D26 � A22D26B26Þ

A22D22 � B2
22

,

D̄11 ¼ D11 þ
ð2B12B22D12 � A22D2

12 �D22B2
12Þ

A22D22 � B2
22

,

D̄16 ¼ D16 þ
ðB26B22D12 � B12B26D22 þ B12B22D26 � A22B26D12Þ

A22D22 � B2
22

,

D̄66 ¼ D66 þ
ð2B26B22D26 � A22D2

26 �D22B2
26Þ

A22D22 � B2
22

. (B.5)

It is interesting to note that, although B̄16 and B̄
n

16 have different algebraic forms; they have practically the
same numerical value, even in the case of complex lamination sequence [14].
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