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Abstract

This paper presents an optimization study of cylindrical sandwich shells to minimize the transmitted sound into the

interior induced by the exterior acoustic excitations. The boundary elements and finite elements are, respectively, used to

model the interior and exterior acoustics and the vibration of the shell. The design parameters of the optimization are the

reinforcement angles of the orthotropic composite materials of the skins and core. The sensitivity analysis of the objective

function with respect to the design variables is computed by the adjoint-variable technique. The optimizations of the shell

at a single frequency and in a band of frequencies are investigated. From the promising optimization results it is seen that

the reinforcement angles in the composite sandwich layers are effective structural design parameters to minimize the sound

transmission into the interior without giving up the structural rigidity, particularly at low frequencies where the structural

damping is not effective.

r 2008 Elsevier Ltd. All rights reserved.
1. Introduction

Modern aircraft fuselage design requires better sound and vibration isolation. Optimal design of cylindrical
sandwich shells with minimum noise and vibration transmission is a great interest to aerospace industry.
Structural–acoustic analysis of cylindrical sandwich shells has been studied in the literature. However,
optimization of the shell to minimize the sound transmission into the interior has not been studied thoroughly.
This paper presents such an optimization study of cylindrical sandwich shells with anisotropic materials both
at a single frequency and over a band of frequencies. The targeted frequencies are below 1 kHz where
structural damping is not effective in reducing vibration and sound transmission.

Integrated acoustical and mechanical fuselage designs of cylindrical sandwich shells have been investigated
for better sound transmission reduction [1,2]. Thamburaj and Sun have studied vibration and acoustics
problems of non-circular cylindrical sandwich shells with the conformal mapping [3]. Optimization of
sandwich beams for maximizing sound transmission loss has been conducted with respect to the material
ee front matter r 2008 Elsevier Ltd. All rights reserved.
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parameters that couple the in-plane and out-of-plane deformation [4]. The skin materials and core geometry,
comprising honeycomb and truss-like structures, have been considered to reduce sandwich panel vibrations
[5]. Optimization of cylindrical isotropic shells has been studied using the weak radiator concept to minimize
the radiated sound power [6].

A parallel research to this study has been conducted by Johnson and Cunefare [7]. They have studied the
minimization of the sum of the squared acoustic pressure within a cylindrical acoustic cavity due to the
vibration of the composite cylinder at a single frequency. The contribution of the current paper lies in the
optimization study of cylindrical sandwich shells for minimum sound transmission into the interior both at a
single frequency and over a band of frequencies. In this study, the angle of the in-plane fiber reinforcement is
considered as a design variable to achieve the minimization.

The paper is organized as follows. In Section 2, the solutions to the exterior acoustic scattering and sound
radiation into the shell interior are first obtained with the boundary element method. Section 3 presents the
structural response of the cylindrical sandwich shell with the finite element method. In Section 4, we discuss
the parametrization of material constants of the sandwich. In particular, we designate the fiber orientation
angles of the composite as the design parameters for optimization. The optimization problem is formulated in
Section 5. The sensitivity of the structural–acoustic objective function for optimization and the constraint
equation on the fundamental frequency with respect to the design parameters is discussion in Section 6. The
adjoint variable method for computing sensitivity functions is also introduced. The numerical results are
presented in Section 7.
2. Acoustic response with boundary elements

Fig. 1 shows the coordinate system for the exterior and interior acoustic problem of the cylindrical sandwich
shell. It is assumed that the shell is closed at both ends with a rigid endcap, and an acoustic baffle
covers outside the endcap. The wave equation for the acoustic pressure known as the Helmholtz equation is
given by [8]

r2pðrÞ þ k2pðrÞ ¼ �qðrÞ, (1)

where pðrÞ is the acoustic pressure, qðrÞ is the acoustic source in the domain, k is the wavenumber o=c, o is the
frequency and c is the speed of sound. Note that the frequency dependence of the functions pðrÞ and qðrÞ is
omitted for brevity in this paper. Consider Green’s function for the three-dimensional acoustic medium which
satisfies the following equation

r2GðrjrsÞ þ k2GðrjrsÞ ¼ �dðr� rsÞ. (2)

The solution to the equation and its normal derivative are given by

GðrjrsÞ ¼
e�ikR

4pR
,

Fig. 1. The coordinate system of the cylindrical shell subject to two point acoustic excitations.
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qGðrjrsÞ

qn
¼ �

cos y
4pR2

þ
ik cos y
4pR

� �
e�ikR, (3)

where R is the distance between r and rs, y is the angle between the normal direction n and the vector joining r

and rs, rs denotes the acoustic source location and r is the observation point.
Combining the Helmholtz equation and Eq. (2), and using the divergence theorems [9], we obtainZ

S

pðrsÞ
qGðrjrsÞ

qns

� GðrjrsÞ
qpðrsÞ

qns

� �
dS ¼ �CpðrÞ þ pqðrÞ, (4)

where the surface S encloses the acoustic medium in the three-dimensional space V , r is inside the acoustic
medium and ns is the outward normal of the surface S at rs. C takes values 1, 1=2 or 0 depending whether the
observation point r is within the acoustic medium, on the surface S or outside the acoustic medium,
respectively. pqðrÞ is the acoustic sound field generated by the source qðrÞ in the free three-dimensional space,
and is given by

pqðrÞ ¼

Z
V

GðrjrsÞqðrsÞdV . (5)

In the following, we make an assumption that the acoustic energy radiated by the shell is finite such that the
acoustic pressure and its gradient vanish as r!1. Green’s function GðrjrsÞ also enjoys these properties as can
be seen from Eq. (3). Under this assumption, the surface integration needs only to be computed on the outer
boundary of the shell. From now on, S denotes the outer surface of the cylindrical shell.

Let us discretize the surface S into a collection of M boundary elements Si such that S ¼
SM

i¼1Si. Eq. (4) can
be rewritten as [10]

XM
i¼1

Z
Si

qGðrjjrsÞ

qns

NðrsÞdS

� �
pi �

XM
i¼1

Z
Si

GðrjjrsÞNðrsÞdS

� �
qi ¼ �CjpðrjÞ þ pqðrjÞ, (6)

where i refers to the source element, j refers to the receiver node, and NðrsÞ is the shape function. In this work,
we use only one type of elements which share the same shape function. The nodal variable vectors pi and qi of
the ith element are defined as

pi ¼

pðri;1Þ

pðri;2Þ

..

.

pðri;K Þ

8>>>>><
>>>>>:

9>>>>>=
>>>>>;
; qi ¼

qpðri;1Þ

qns

qpðri;2Þ

qns

..

.

qpðri;K Þ

qns

8>>>>>>>>>><
>>>>>>>>>>:

9>>>>>>>>>>=
>>>>>>>>>>;
, (7)

where ri;k is the kth node of the ith element and K is the number of nodes of the element. Introducing the
following element matrices:

Bij ¼

Z
Si

qGðrjjrsÞ

qns

NðrsÞdS,

Eij ¼

Z
Si

GðrjjrsÞNðrsÞdS, (8)

we can rewrite Eq. (6) as

pqðrjÞ � CjpðrjÞ ¼
XM
i¼1

Bijpi þ
XM
i¼1

Eijqi. (9)

Next, we evaluate pðrjÞ at the nodes of the elements on the surface S.
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Let C denote a diagonal matrix with elements Cj at a proper location, p be the global vector of the nodal
pressure pðrjÞ, qi be the global vector of the nodal pressure gradient qpðriÞ=qns along the normal direction ns,
and pq be the global vector of the nodal pressure pqðrjÞ. Eq. (9) now reads

ðCþ BÞp ¼ pq � Eq. (10)
2.1. Boundary conditions

When the surface S is rigid without motion, the boundary condition for the acoustic response is given by

q ¼ 0. (11)

That is, the pressure gradient on the rigid surface vanishes. When the surface is flexible and vibrates, the
acoustic boundary condition reads

q ¼ rao
2un, (12)

where ra is the mass density of the air, and un is the normal displacement of the surface vibrating at the
frequency o.

Obviously, the above boundary element solution of the acoustic response together with the boundary
conditions are general and applicable to both the interior and exterior acoustic problems with respect to the
cylindrical shell.

2.2. Remarks

It is well known that Eq. (6) or (10) fails to give a unique solution at certain frequencies which are known as
the characteristic frequencies. These frequencies correspond to the natural frequencies of the acoustic medium.
One way to avoid this singularity is to add constraints outside the acoustic domain using the combined
Helmholtz integral formulation (CHIEF) [10].

3. Vibration of cylindrical sandwich shell

The equations of motion of the cylindrical sandwich shell can be derived by applying Hamilton’s principle,Z t2

t1

dðT �U þW Þdt ¼ 0, (13)

where T and U are the kinetic and strain energies of the system, and dW is the virtual work done by the
external forces. The energies and the virtual work for the sandwich construction can be written as

U ¼
1

2

Z
D

½sxex þ syey þ szez þ 2sxygxy þ 2sxzgxz þ 2syzgyz�dV , (14)

T ¼
r
2

Z
D

½ _u2 þ _v2 þ _w2�dV , (15)

dW ¼

Z
D

du � fðr; tÞdV þ

Z
S

du � tðr; tÞdS, (16)

where r is the mass density, D refers to the physical volume of the shell, S is the surface, (x, y, z) are the global
coordinates of the shell, u ¼ fu; v;wgT is the displacement vector of the shell in (x, y, z) directions, sx, sy and sz

are the normal stresses, ex, ey and ez are the normal strains, sxy, sxz and syz are the shear stresses and gxy, gxz

and gyz are the shear strains. fðr; tÞ denotes the body force acting on the shell, and tðr; tÞ is the surface traction.
In this work, we ignore the body force and consider only the normal acoustic pressure acting on the most outer
and inner surfaces of the shell as the traction force.
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We discretize the shell structure with finite elements. The shape function of the finite element is denoted by
H. The global coordinates (x, y, z) can be defined as a function of the nodal coordinates by

r ¼ fx; y; zg ¼ HðrÞfxe; ye; zeg, (17)

xe ¼

x1

x2

..

.

xM

8>>>><
>>>>:

9>>>>=
>>>>;
; ye ¼

y1

y2

..

.

yM

8>>>>><
>>>>>:

9>>>>>=
>>>>>;
; ze ¼

z1

z2

..

.

zM

8>>>><
>>>>:

9>>>>=
>>>>;
, (18)

where ðxe; ye; zeÞ denote the vectors of the nodal coordinates, M is the number of the nodes in an element. In
the same manner, we obtain the relationship between the global displacements and nodal displacements as

fu; v;wg ¼ HðrÞfue; ve;weg, (19)

ue ¼

u1

u2

..

.

uM

8>>>><
>>>>:

9>>>>=
>>>>;
; ve ¼

v1

v2

..

.

vM

8>>>><
>>>>:

9>>>>=
>>>>;
; we ¼

w1

w2

..

.

wM

8>>>><
>>>>:

9>>>>=
>>>>;
, (20)

where ðue; ve;weÞ denote the nodal displacement vectors. Under the assumption of small deformations, the
strain–displacement relationship is given by

ex

ey

ez

gxy

gxz

gyz

8>>>>>>>>><
>>>>>>>>>:

9>>>>>>>>>=
>>>>>>>>>;
¼

q
qx

0 0

0
q
qy

0

0 0
q
qz

q
qy

q
qx

0

q
qz

0
q
qx

0
q
qz

q
qy

2
666666666666666666664

3
777777777777777777775

u

v

w

8><
>:

9>=
>;. (21)

Let u denote the assembled vector of all the nodal displacements ðue; ve;weÞ. The strain can be written as
e ¼ Bu for each element where e ¼ fex; ey; ez; gxy; gxz; gyzg

T and the matrix B contains the derivatives of the
shape functions defined through Eq. (21). In this work, we consider anisotropic materials. The constitutive
equations of the lth layer are given by

r ¼ Qle. (22)

where r ¼ fsx;sy; sz;sxy;sxz;syzg
T and Ql is a 6� 6 matrix.

Consider the harmonic problem. In this study, we assume that there are two acoustic volume velocity point
sources located at Rs ¼ 10m, Ls ¼ 2m and y ¼ �1

12
p and y ¼ 13

12
p rad outside the cylindrical shell as shown in

Fig. 1. The air density is ra ¼ 1:21 kg=m3 and the speed of sound is c ¼ 340:2m=s. The shell is excited by the
acoustic pressure only. The acoustic pressure distribution over an element of the outer or inner surface of the
cylindrical shell can be expressed in terms of the nodal pressure values and the shape function,

pðrÞ ¼ NðrÞpe, (23)

where NðrÞ is the shape function for the surface element and pe is the nodal vector of the acoustic pressure on
the boundary element defined in Section 2. Note that the outer and inner surfaces of the shell are discrete with
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the same boundary elements as for the acoustic problem. We write the variation of the kinetic and strain
energies and the virtual work for all the layers as

dU ¼ duH
XN

e91

XNl

l91

Z
De

BTQlBdV

� �
u,

dT ¼ duH
XN

e91

XNl

l91

o2rl

Z
De

HTHdV

� �
u,

dW ¼ duH
XN

e91

Z
Se

NTpe dS

� �
, (24)

where the symbol 9 implies the assembly of element matrices in this paper, u is the global nodal displacement
vector assembled from all the vectors ðue; ve;weÞ, du is the corresponding virtual global displacement vector
and De is an individual element volume. Nl is the number of the layers and N ¼ Nr �Nz where Nr is the
number of elements in the circumferential direction and Nz is the number of elements along the axial direction.
Note that the assembly of the sandwich system can be decomposed into in-plane and transverse components.
Hamilton’s principle together with Eq. (24) leads to the equations of motion as

ð{̂b� o2ÞMuþ ðl2 þ {̂aÞKu ¼ f, (25)

where {̂ ¼
ffiffiffiffiffiffiffi
�1
p

and

M ¼
XN

e91

XNl

l91

o2rl

Z
Ve

HTHdV

� �
,

K ¼
XN

e91

XNl

l91

Z
Ve

BTQlBdV

� �
,

f ¼
XN

e91

Z
Se

NTpe dS

� �
. (26)

We have assumed a Rayleigh damping as C ¼ aKþ bM where a and b are prespecified constants.

3.1. A computational note

The calculation of the global stiffness and mass matrices K and M can be simplified for the sandwich
element construction shown in Fig. 2. When the cylindrical shell is discretized uniformly in the radial and axial
directions as in Fig. 3, and each layer is made of a uniform material, elemental stiffness and mass matrices Ke

and Me are required to be calculated only once for each layer in the local coordinates. The elemental matrices
can then be rotated by an angle ji and assembled along the thickness direction. The stiffness and mass
matrices K and M assembled in this manner can now be denoted as

M ¼
XNz

j¼1

XNr

i¼1

XNl

l¼1

ðTT
i MlTiÞj,

K ¼
XNz

j¼1

XNr

i¼1

XNl

l¼1

ðTT
i KlTiÞj, (27)
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Fig. 2. The structural element of the cylindrical shell.

Fig. 3. The structural finite element mesh of the cylindrical sandwich shell.
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where Nl ¼ 3 in this application, index j refers to the assembly along the axial direction of the shell, the
matrices TT

i MlTi and TT
i KlTi are not a function of index j and Ti is the transformation matrix from the local

coordinate to the global coordinate defined as

Ti ¼

Tii

Tii

. .
.

Tii

2
66664

3
77775,

Tii ¼

cosðjiÞ sinðjiÞ

� sinðjiÞ cosðjiÞ

1

2
64

3
75. (28)

The dimension of the transformation matrix Ti is the 3M � 3M. Recall that M is the number of nodes in an
element.

In Eq. (27), the elemental matrices Ml and Kl are required to be computed only Nl times where Nl is the
number of layers, and remain the same for different indices i and j. The transformation matrix is required to
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Mode 1 Mode 2

Mode 3 Mode 4

Fig. 5. The first four natural modes of the cylindrical sandwich shell. Their frequencies are 68:70, 70:35, 72:02 and 82.25Hz.

Fig. 4. The reinforcement angles of the composite as design parameters.
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be computed Nr times where Nr is the number of circumferential elements. Along the axial direction, the same
matrices are assembled. This assembly process can save a huge amount of computational time in the
construction of the system matrices since the volume integrations in Eq. (26) are numerically computed only
Nl times.

The natural frequencies and modes of the cylinder can be obtained from the following eigenvalue problem:

½K� o2
j M�/j ¼ 0, (29)

where /T
i M/j ¼ dij , o2

j are the eigenvalues and /j are the associated eigenvectors. Examples of the first four
mode shapes of the cylindrical shell are exhibited in Fig. 5 and the corresponding natural frequencies are
68:70, 70:35, 72:02 and 82:25Hz.
4. Material parametrization

The material properties of the layers are parametrized by the angles shown in Fig. 4. Angles a, b and y
indicate reinforcement orientations along the local coordinates r, s (out-of-plane normals) and t (in-plane
normal). The reinforcement orientation for the skins and core can be given as

Q̄l ¼ T�1y T�1b T�1a QlTaTbTy, (30)
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where Q̄l refers to the material stiffness matrix after the transformation, Ta, Tb and Ty are the transformation
matrices [11,12]. For instance, the in-plane transformation matrix is

Ty ¼

cos2 y sin2 y 0 0 0 sinð2yÞ

sin2 y cos2 y 0 0 0 � sinð2yÞ

0 0 1 0 0 0

0 0 0 cos y � sin y 0

0 0 0 sin y cos y 0

� sinð2yÞ=2 sinð2yÞ=2 0 0 0 cos2y� sin2y

2
6666666664

3
7777777775
, (31)

and the out-of-plane transformation matrices are similarly structured as a function of a and b.
4.1. Baseline configuration

The optimization study takes a baseline configuration of the sandwich shell as an initial condition. The
length and inner radius of the cylinder is 6 and 2m. The thicknesses of the inner skin, core and outer skin are
0:01, 0:1 and 0:01m, respectively. The skins of the baseline cylinder are made of S-Glass/Epoxy and are
transversely isotropic. The core is made of in-plane symmetric generic material. The material properties are
listed in Table 1. Angles a and b determine the out-of plane reinforcement directions for the core; and angle y
determines the in-plane reinforcement direction for the skins. Since the skin materials are transversely
symmetric and the core material is in-plane symmetric, the reinforcement orientation for the skins and core are
given as

Q̄s ¼ T�1y QsTy,

Q̄c ¼ T�1b T�1a QcTaTb, (32)

The orthotropic material stiffness matrices of the skin and core Qs and Qc can be expressed in terms of the
elastic moduli and Poisson ratios as [11]

Q11 ¼
ð1� n23n32Þ

E2E3D
; Q12 ¼

ðn12 þ n32n13Þ
E1E3D

,

Q13 ¼
ðn13 þ n12n23Þ

E1E2D
; Q22 ¼

ð1� n13n31Þ
E1E3D

,

Q23 ¼
ðn23 þ n21n13Þ

E1E3D
; Q33 ¼

ð1� n12n21Þ
E1E2D

,

Q44 ¼ G23; Q55 ¼ G31; Q66 ¼ G12;
nij

Ei

¼
nji

Ej

,

Table 1

The material constants of the sandwich layers

Material r ðkg=m3Þ E1 (10MPa) E2 (10MPa) G12 (10MPa) n12

S-Glass/Epoxy 1760 5380 1790 896 0.25

Generic core 130 10.8 10.8 4.12 0.31

Material E3 (10MPa) G13 (10MPa) n13 G23 (10MPa) n23

S-Glass/Epoxy 1790 896 0.25 345 0.34

Generic core 2.0 0.6 0.3 0.6 0.3
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D ¼
1� n12n� n23n32 � n31n13 � 2n21n32n13

E1E2E3
, (33)

where Ei is the elastic modulus along the i direction, Gij is the shear modulus over the i � j plane and nij is the
Poisson ratio between directions i and j.

5. Optimization formulation

The optimization problem seeks for a structure that transmits minimum acoustic power into the interior in
the given frequency band when excited by exterior acoustic sources. The structural–acoustic optimization
problem is stated as

minimize W tðbÞ ¼
1

o2 � o1

Z o2

o1

W ðo; bÞdo, (34)

subject to
bl

ipbipbu
i ;

�of ðbÞ þ o0p0;

(
(35)

where the lower and upper limits of the frequency band are o1 and o2, b is a vector of design parameters such
as the material reinforcement angles, bl

i and bu
i are the lower and upper bounds of the ith design parameter,

of ðbÞ is the fundamental frequency of the shell and o0 is the allowable minimum fundamental frequency. Note
that the constraint on the fundamental frequency is meant to maintain the static stiffness and structural
integrity of the system. This is a common practice in structural optimization studies. Assume that there are m

inequality constraints and n equality constraints. The inequality constraints can be converted to equality
constraints by introducing m slack variables as follows:

cjðb1; . . . ; bnÞ þ b2
jþn ¼ 0; j ¼ 1; . . . ;m, (36)

where cjðb1; . . . ; bnÞ is a shorthand notation of the constraint function. We expand the design parameter vector
to be b ¼ ½b1; . . . bn; . . . ; bnþm�

T. Define the Lagrangian function

Lðb; kÞ ¼W tðbÞ þ kTcðbÞ, (37)

where k 2 Rnþm denotes the vector of Lagrange multipliers. The quasi-Newton gradient descent searching
algorithm is used to solve the optimization problem. It should be noted that there are many other searching
algorithms available in Ref. [13]. A performance comparison of all the algorithms for the present
structural–acoustic optimization problem is out of the scope of the paper.

The transmitted acoustic power through the cylindrical shell into its interior is the objective function given
by

W ðo; bÞ ¼
Z

Sin

1

T

Z T

0

pðrÞejotv�nðrÞe
�jot dt

� �
dS, (38)

where T ¼ 2p=o is the period, pðrÞ is the acoustic pressure on the interior surface of the shell, vnðrÞ is the
normal velocity of the inner surface Sin. With the discretization of the surface using the same finite elements as
discussed earlier, Eq. (38) can be rewritten as a sum of surface integrations over each element,

W ðo; bÞ ¼
XM
e¼1

Z
Se
in

pðrÞv�nðrÞdS. (39)

With the finite element representation of the shell vibration response, we have

vnðrÞ ¼ joNðrÞue
n ¼ joNðrÞGeu (40)

where Ge is the linear operator that extracts the normal element displacements from the global displacement
vector. Substituting Eq. (12) into Eq. (9) when pqðrÞ ¼ 0, we obtain

pðrÞ ¼ NðrÞpe ¼ rao
2NðrÞðCþ BÞ�1EGeu; r 2 Se

in.
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Thus,

W ðo; bÞ ¼ ðjrao
3ÞuH

XM
e91

GT
e

Z
Se
in

NTðrÞNðrÞdSðCþ BÞ�1EGe

 !
u. (41)

Expressing W in the matrix form, we obtain

W ðo; bÞ ¼ uHAu ¼ uHAsu, (42)

where A is the acoustic coupling matrix defined in Eq. (41)

A ¼ ðjrao
3Þ
XM
e91

GT
e

Z
Se
in

NTðrÞNðrÞdSðCþ BÞ�1EGe

 !
(43)

and As ¼ AH
s is the symmetrical part of A.

6. Sensitivity analysis

Sensitivity analyses can help improve the accuracy and efficiency of the optimization process. It is
advantageous to obtain analytical expressions for sensitivity functions. The objective function W is a function
of the design parameters u ¼ uðb1; b2; . . . ; bnÞ as indicated. Hence, we can compute the partial derivatives of the
objective function with respect to the design variables. Consider the objective function defined in Eq. (42).
We have

qW

qbi

¼
qW

qu
qu
qbi

¼ 2uHAs

qu
qbi

. (44)

Assume that the external excitation of the system is independent of the design parameters. qu=qbi can be
obtained from the direct differentiation of the equation of motion (25). We have,

½ð{̂b� o2ÞMþ ð1þ {̂aÞK�
qu
qbi

¼ � ð{̂b� o2Þ
qM
qbi

þ ð1þ {̂aÞ
qK
qbi

� �
u. (45)

This sensitivity analysis requires the solution of Eq. (45) for each design parameter. Alternatively, we can
apply the method of adjoint variable. Define an adjoint variable z satisfying the following equation:

½ð{̂b� o2ÞMþ ð1þ {̂aÞK�z ¼
qW

qu
¼ 2Asu. (46)

When the structure is excited at a single frequency, Eq. (46) is in the same form as the equation of motion with
z as the response and the right-hand side term 2Asu as the force vector when u is available. Thus, it can be
solved by using the normal modes of the equation of motion (25) [14].

Eqs. (44)–(46) are combined to yield the gradient

qW

qbi

¼ �zT ð{̂b� o2Þ
qM
qbi

þ ð1þ {̂aÞ
qK
qbi

� �
u. (47)

Note that the partial derivatives qM=qbi and qK=qbi with respect to bi on the right-hand side of the equation
can often be obtained in an analytical form.

Since the fundamental frequency of the structure is used as a constraint in optimization, its sensitivity
with respect to the design parameters is also needed. The sensitivities of the natural frequencies with
respect to design variables can be obtained by directly differentiating the eigenvalue problem in Eq. (29).
We obtain

qK
qbi

� o2
j

qM
qbi

�
qo2

j

qbi

M

" #
/j þ ½K� o2

j M�
q/j

qbi

¼ 0. (48)
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Premultiplying the above equation by /T
j and recognizing that /T

j ½K� o2
j M� ¼ 0, we obtain

qo2
j

qbi

¼ /T
j

qK
qbi

� o2
j

qM
qbi

� �
/j. (49)

7. Numerical results

Before presenting the numerical results, we should point out that the finite element model and the computer
programs of this work have been verified with analytical or numerical solutions for special cases available in
the literature. For the sake of space, we shall not discuss this further.

Recall that the discretizations of the boundaries of the exterior/interior acoustic media and the outer/inner
surfaces of the sandwich cylindrical shell share the same nodes because the same elements and shape functions
are used for both the acoustic media and the shell structure. A 4-node two-dimensional linear element is chosen
for the acoustic boundaries and an 8-node three-dimensional linear element type is taken for the layers of the
sandwich shell [15]. The boundary of the interior or exterior acoustic media is discretized by 24 uniform
elements circumstantially and 11 uniform elements axially, leading to a total of 264 elements.

The acoustic pressure distributions on the outer surface of the shell obtained from Eq. (10) subject to the
boundary condition in Eq. (11) and the external acoustic excitations at 100 and 200Hz are plotted in Fig. 6.
The figure shows the total pressure amplitude of the incident and scattering waves. This pressure distribution
will be applied as a load to the shell on the outer surface.

When applied to the interior acoustics, Eq. (12) requires the structural displacements normal to the inner
surface of the shell. The displacements on the inner surface are obtained from the vibration analysis in Section
3. The solutions of Eq. (10) for the interior boundary condition with pq ¼ 0 and for the coupled
structural–acoustic boundary condition are obtained at 100 and 200Hz. The acoustic pressure on the inner
surface of the shell is shown in Fig. 7. Note that for the interior acoustic problem, the reverse fluid loading on
the shell structure is neglected in the vibration analysis.

While the outer and inner surfaces of the shell are discretized with the same element as the boundary
elements of the acoustic media, along the thickness direction, each layer has only one element. The total
number of structural elements is 792. The mesh of the shell is shown in Fig. 3. In the baseline structure, the in-
plane reinforcement direction is y ¼ 0 for both the inner and outer skin materials. The out-of-plane
reinforcement angles are a ¼ 0 and b ¼ 0 for the core material. An example of the objective function for the
baseline shell is shown in Fig. 8. The objective function W in dB is calculated as

W ðdBÞ ¼ 10 log10
W

W ref

� �
, (50)
119.4 70.0 20.7 112.4 70.0 27.7

Fig. 6. The acoustic pressure amplitude on the outer surface of the cylindrical shell due to the external acoustic point excitations at (a) 100

and (b) 200Hz. The shell is treated as a rigid body in the exterior acoustic analysis.
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78.6 56.0 33.4 74.1 57.0 39.9

Fig. 7. The acoustic pressure amplitude on the inner surface of the cylindrical shell due to the structural vibration at (a) 100 and (b)

200Hz. The reverse interior acoustic loading on the shell is neglected.
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Fig. 8. The variation of the objective function as a function of frequency.
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Fig. 9. The sensitivities of the objective function with respect to the in-plane reinforcement angle of the inner (solid line in (a)) and outer

skin materials (dashed line in (a)), and the out-of-plane reinforcement angles in the axial direction (solid line in (b)) and in the

circumferential direction (dashed line in (b)) of the core material.
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where W ref ¼ SIn � 10�12 W. Examples of the sensitivity functions of the objective function with respect to the
reinforcement angles of the baseline shell are shown in Fig. 9. Notice that the sensitivities of the objective
function with respect to the in-plane reinforcement angles of the inner and outer skins are approximately the
same. The sensitivity in dB is defined as

qW

qbi

ðdBÞ ¼ 10 log10jqW=qbij. (51)

In the following, we present three case studies:
(1) The optimization with respect to the material reinforcement angles is studied at a single frequency

125Hz. The initial reinforcement angles are all set to be 01. Each angle is allowed to change between 01 and
901. The fundamental frequency 68.70Hz of the baseline structure is taken to be the constraint of the
Table 2

The optimal reinforcement angles from the tonal optimization

Optimal orientation angle yi yo ac bc

Degree 68.76 50.83 59.36 0.38

The subscripts i, o and c refer to the inner, and outer surfaces, and the core of the sandwich shell.
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Fig. 10. (a) The history of the objective function and (b) the gradient of the objective function in the search direction for the tonal

optimization at 125Hz.
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Fig. 11. The variations of the objective functions with frequency for the optimized structure at 125Hz (solid line) and for the baseline

structure (dotted–dash line).
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minimum fundamental frequency. The optimal design parameters are found and listed in Table 2. The
fundamental frequency of the optimized shell is 74.72Hz.

Fig. 10 shows the history of the objective function and the sensitivity of the objective function during the
optimization. The optimization has converged after 17 iterations when the sensitivity approaches zero. The
objective function is reduced by 23.91 dB at 125Hz. The objective function W in the frequency domain is
shown in Fig. 11, which clearly indicates the reduction of W near 125Hz.

(2) The optimization in a band of frequencies from 100 to 150Hz is considered next. The design parameter
bounds and fundamental frequency constraint same as in the previous case are applied. The optimal design
parameters are obtained and listed in Table 3.
Table 3

The optimal reinforcement angles from the wideband optimization

Optimal orientation

angle

yi yo ac bc

Degree 87.29 50.33 58.99 0.10

The subscripts i, o and c refer to the inner and outer surfaces, and the core of the sandwich shell.
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Fig. 12. (a) The history of the objective function and (b) the gradient of the objective function in the search direction for the wideband

optimization (100–150Hz).
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Fig. 13. The variations of the objective functions with frequency for the optimized structure in the frequency band (100–150Hz) (solid

line) and for the baseline shell (dotted–dash line).
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Fig. 12 shows the history of the objective function and the sensitivity of the objective function during the
optimization. We yield 7.17 dB average reduction of the transmitted acoustic power over the frequency band.
The frequency variation of the objective function W is shown in Fig. 13.

(3) Here, we consider another frequency band from 150 to 200Hz. In this case, the optimization reduces the
objective function W by 3.06 dB on average over the band. The fundamental frequency of the optimized
structure is 69.08Hz. The iteration history of the optimization is shown in Fig. 14. The optimized objective
function W is plotted in Fig. 15 and is compared to the baseline value in the frequency domain. (Table 4)
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Fig. 14. (a) The history of the objective function and (b) the gradient of the objective function in the search direction for the wideband

optimization (150–200Hz).
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Fig. 15. The variations of the objective functions with frequency for the optimized structure in the frequency band (150–200Hz) (solid

line) and for the baseline shell (dotted–dash line).

Table 4

The optimal reinforcement angles from the wideband optimization

Optimal orientation

angle

yi yo ac bc

Degree 45.47 0.00 0.00 20.22

The subscripts i, o and c refer to the inner and outer surfaces, and the core of the sandwich shell.
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7.1. Discussions

Recall that the optimization parameters are the fiber reinforcement angles of the composites in the three
layers of the sandwich. Reinforcement angles can be readily achieved in the composite manufacturing process.
As is the case in most structural and topological optimization studies, we do not have experimental verification
of the optimum structures. The optimization results presented herein, however, do offer a general guideline on
how to choose the orientation of the composite layers of the sandwich structure when the minimum sound
transmission is an objective, and what one could expect when only the fiber reinforcement angles are at one’s
disposal. By comparing the results in the three cases, one can see that the current set of optimization
parameters can provide significant tonal sound reductions, and becomes less effective in higher frequency
bands. This is physically reasonable. At higher frequencies, structural damping becomes more effective in
reducing vibration and sound transmission and the structural–acoustic optimization should then consider
damping parameters.

The optimization solution process is computationally intensive. Most of the computational cost is for the
solution of the eigen problem at every iteration. The computational time for a complete optimization solution
varies significantly because the termination of the search algorithm depends on initial conditions and the
optimum criteria. Each iteration of the optimizations reported above is about 40 s including sensitivity
calculations. The computation was done on a PC with a dual-core 1.3GHz Intel processor running Windows
XP.
8. Concluding remarks

We have presented an optimization study of cylindrical sandwich shells to minimize the transmitted sound
induced by the exterior acoustic excitations. The boundary element method is used to model the interior and
exterior acoustics, and the finite elements are used to model the vibration of the shell. The design parameters
of the optimization problem are the reinforcement angles of the orthotropic composite materials of the skins
and core. The sensitivity of the objective function with respect to the design variables has been analyzed, and
the adjoint variable method is adopted for the solution of sensitivity functions. The optimizations of the shell
at a single frequency and in a band of frequencies are investigated. The results of optimization show that it is
possible to optimally design composite sandwich shells to minimize the sound transmission into the interior at
low frequencies. At higher frequencies where structural damping is more effective in reducing vibration and
sound transmission, the fiber reinforcement angles are no longer sufficient to reduce sound transmission
significantly.
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