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Abstract

The aim of this paper is to analyze three-dimensional free vibration of magneto-elastic/electro-elastic circular/annular
plates with different boundary conditions using the Chebyshev—Ritz method, in which a set of duplicate Chebyshev
polynomial series multiplied by the boundary function satisfying the boundary conditions are chosen as the trial functions
of the displacement components, the electric potential and the magnetic potential. Convergence of the method is checked
using various Chebyshev polynomial terms. The effect of geometrical parameters and material properties of magneto-
elastic/electro-elastic circular/annular plates on the eigenfrequencies of free vibration is considered.
© 2008 Elsevier Ltd. All rights reserved.

1. Introduction

Magneto-electro-elastic composite materials can effectively be used to manufacture various sensors and
actuators for controlling structural responses, and they also have important applications in the fields of
electrics, microwave, supersonics, laser, infrared and so on [1]. Due to their special characteristics, research on
the behavior of magneto-electro-elastic structures has been widely carried out. The exact closed-form solution
for the simply supported and multilayered plates made of anisotropic piezoelectric and piezomagnetic
materials under a static mechanical load has been given by Pan [2]. Free vibration analysis of the simply
supported and multilayered plates has been shown by Pan and Heyliger [3]. A finitely long circular
cylindrical shell of piezoelectric/piezomagnetic composite under pressuring and temperature change has been
solved by Wang and Zhong [4]. The bending analysis of non-homogeneous magneto-electro-elastic-thermo
plates has been studied by Chen and Lee [5]. Free vibration study of non-homogeneous transversely isotropic
magneto-electro-elastic plates has been done by Chen et al. [6]. Free vibration of an infinite magneto-electro-
elastic cylinder has been investigated using semi-analytical finite element method by Buchanan [7]. Free
vibration studies of simply supported non-homogeneous functionally graded magneto-electro-elastic finite
cylindrical shells has been presented using series solution together with finite element method by Bhangale and
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Ganesan [8]. Free vibrations of clamped—clamped magneto-electro-elastic cylindrical shells have been analyzed
using semi-analytical finite element method by Annigeri et al. [9].

The Chebyshev—Ritz method was used to solve the eigenfrequencies of free vibration of various isotropic
plates by Zhou et al. [10-12]. The advantage of the Chebyshev—Ritz method is in the fact that the more
accurate eigenfrequencies of free vibration of various isotropic plates can be obtained as shown by Zhou et al.
[10-12]. It can be expected that the Chebyshev—Ritz method can also be used to obtain the more accurate
eigenfrequencies of free vibration of magneto-electro-elastic annular plates with different boundary
conditions. Therefore in this paper, three-dimensional (3D) free vibration studies of magneto-elastic/
electro-elastic circular/annular plates with various boundary conditions are carried out by the Chebyshev—Ritz
method. Convergence of the adopted method is done using various Chebyshev polynomial terms. The effect of
geometrical parameters and material properties of the circular/annular plates on the eigenfrequencies of free
vibration is considered.

2. Basic formulation

One magneto-electro-elastic circular/annular plate with inner radius Ry and outer radius R; and thickness /
is considered. A cylindrical coordinate system (r, 0, z) with the origin o at the circular/annular plate is used to
describe the annular plate displacements, i.e. the radial direction displacement u, the circumferential direction
displacement v and the thickness direction displacement w, and the electric field E(i = r, 0, z) and the magnetic
field H(i=r, 0, z).

Linear elastic strain energy V for a magneto-clectro-elastic circular/annular plate is given as follows:

2n fRy ph)2
V= / / / (lsTcs _LgreE_ lHTuH —STeE — STqH - ETmH)rdzdrdH (1)
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where ¢ and y are, respectively, the electric potential and the magnetic potential; Cj, ¢; and p;; are the elastic,
dielectric and magnetic permeability coefficients, respectively; e;, ¢g; and my; are the piezoelectric,
piezomagnetic and magnetoelectric material coefficients, respectively.

The kinetic energy 7 of the circular/annular plate can be given as

2t pRi ph)2 2 2 2
0 Ou ov ow
T==L — — — dzdrd0 3
LA G (5 e ®
where p is the mass density per unit volume of the circular/annular plate.
In numerical implementation, some dimensionless parameters are introduced [11], i.e.

7=%—5, 0=0, z=% 4)
where
_Ri+ Ry

R=R —Ry, o

R —R

In the situation of free vibration, the displacement components and the electric potential and the magnetic

potential of the annular plate can be expressed into the following forms:

u(r,0,z,0) = U, 0,2) e,  u(r,0,z,0 = V(70,2 e, w(r,0,z,10) = W(F,0,2) e,

o(r,0,2,0) = O(F,0,2) e, Y(r,0,z,t) = V(7 0,7) e (5)
where w is the eigenfrequency of the circular/annular plate and i = +/—1.

Considering the circumferential symmetry of the circular/annular plate about the coordinate 0, the
displacement amplitude functions, electric potential amplitude functions and magnetic potential amplitude
functions can be expressed as trigonometric functions in the circumferential direction as

U(F,0,%) = U7, %) cos(s0)

V(F,0,z) = V(F,%) sin (s0)

W(F,0,Z) = W(7, %) cos (s0)

(7, 0,2) = O(7,Z) cos (s0)

¥(7,0,z) = (7, Z) cos (s0) (6)

where s = 0,1,...,00. As mentioned by Zhou et al. [11], s = 0 means the axisymmetric vibration, i.e.

UF0,2) = U2, V(E0.2)=0, WF0,2)=WEz), oF0,7) = oF,3),
¥(7,0,%) = V(7. 2).

Rotating the symmetry axes by n/2, another set of free vibration modes can be obtained, corresponding to
an interchange of cos(sf) and sin(sf) in Eq. (6). For this case, s = 0 means the torsional vibration, i.e.

U(F,0,2) =0, V(7,0,2) = V(7,2), W(F0,2) =0, &F0,2) =0, ¥(7,0,z) = 0.
Based on Egs. (4)—(6), Egs. (1) and (3) can be changed into the following forms:
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Each of the displacement amplitude functions, the electric potential and the magnetic potential can be
written as double series of Chebyshev polynomials multiplied by boundary functions, i.e.

1 J
U(F,2) = FURFLP Y Y APi(F)PiE)

i=1 j=1

K L
V(F,2) = F)OF)P) Y Y BuPk(PPIE)

k=1 I=1



C.Y. Dong |/ Journal of Sound and Vibration 317 (2008) 219-235 223

M N
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m=1 n=1
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o=1 p=1

0 H
V(r,2) = Fy(NF ()Y > EgPy(F)PyE) (10)
q=1 h=1
where I, J, K, L, M, N, O, P, Q and H are the truncation orders of the Chebyshev polynomial series; 4;;, By,
Com» D,p and E, are the coefficients to be determined; P(y) (i = 1,2,...;y =7,Z) is the one-dimensional (1D)
ith Chebyshev polynomial, i.e.

Pi(y) = cos[(i — 1)arccos(y)], i=1,2,3,... (11)

The choice of the boundary functions Fy, F}, F,, Fy,, Fy,(i = 0,1) is to make the displacement components
(u, v, w), the electric potential ¢ and the magnetic potential  to satisfy the inner and outer geometric
boundary conditions, the electric potential and the magnetic potential boundary conditions of the circular/
annular plate, respectively.

The energy functional I1 of the circular/annular plate is as follows:

n=v-rT (12)
Based on Ritz method, we have
ol oI1 oIl oIl oIl
=0, — =0, =0, =0, =0 13
04;; OBy 0C oD, OF (13)

Thus, the eigenfrequency equation of the circular/annular plate can be obtained as follows:

Ku Ko K Kip Ky My, O 0 0 0 A 0
K, Ko Ko Ky, Ky 0 M, 0 0 0 B 0
K, K, Ki K Ky|_G* 0 0 M, 00 cl=1o (14)
Ky, K, K, Ky Ky 0O 0 0 00 D 0
Ky, K, K, K, Ky 0 0 0 00 E 0

where Q = wa ; Kii, j=u, v, w, @, ) and M(i, j = u, v, w) are, respectively, the coefficient matrices
related to the column vectors A, B, C, D and E which are as follows:

A=[An -+ Ay Ay o Ay - Ap - Ayl

B=[Bu -+ B By -+ By -+ Bgi - BKL]T,

C=[Cn ~+ Ciy Cy -+ Cuy -+ Cai -+ Cuy]',

D=[Du -+ Dip Dy -+ Dyp -+ Dot - DOP]T,

E— {E” oo Ewy Ey - Eay -+ Eg - EQH}T (15)

The detailed expressions of the matrices Ki(i, j =u, v, w, ¢, ) and M(i, j = u, v, w) are omitted for
simplicity.
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In Eq. (14), the electric potential and magnetic potential terms are eliminated by condensation techniques.
Thus, the resulting matrix for solving the eigenvalues is obtained as follows:

K Ko Ky M., 0 0 A 0
~T ~ _
Kuv va Kvw — Qz 0 Mvv 0 B = 0 (l 6)
I’ZZW IA(/FLFM f{ww 0 0 Mww C 0
where
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From Eq. (16), the eigenvalues Q and the corresponding modes shapes can be obtained using numerical
methods such as the QR algorithm [13].

3. Numerical examples
3.1. Piezoelectric circular/annular plate

A piezoelectric circular/annular plate is studied herein. The material parameters are as follows:
Cii=139x%x10"Pa, C;,=778x10""Pa, C;3=743x10"Pa, C33=11.5x 10'"Pa,
Cyy =2.56 x 10'°Pa, ;5 =12.7C/m?, 3 =—-52C/m?, e3 =151C/m?
e =646 x 107°F/m, &3 =15.62x 107 F/m.

The ratio of the inner radius R, and outer radius R; of the circular/annular plate is R;/Ry = 2, its thickness

is i/R; = 0.1. For comparison, the non-dimensional free vibration first frequency, Q = wh+/p/C11, for wave
number s = 1, 2, 3 for piezoelectric circular/annular plate with boundary condition, i.e. v=0, w =0, ¢ =0
along inner and outer circumferential boundaries is calculated and shown in Table 1. Note that Chebyshev
polynomial terms are taken as I=K=N=0=Q =10, /=L =N =P = H =10 in calculation. One can
find that excellent agreement between the present results and those from Wang et al. [14] has been observed.

3.2. Magneto-elastic/electro-elastic annular plates

Magneto-elastic/electro-elastic annular plates with inner radius Ry and outer radius R; as well as thickness /
(R1/Ry = 2.5, h/Ry = 0.5) are studied here. The first eight free vibration frequencies will be calculated and
compared for plates of BaTiO; and CoFe,Qq4, respectively. The material data are shown in Table 2 [7].

Table 1

The non-dimensional first frequency of circular annular plate

Methods s=1 s=2 s=3
Present 0.1050 0.1177 0.1386

Wang et al. [14] 0.1023 0.1152 0.1362
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Table 2
Material properties for piezoelectric barium titanate and magnetostrictive cobalt iron oxide [7]

Material coefficient BaTiO3 CoFe,0y4
Ci1 (10°) (N/m?) 166 286
Css 162 269.5
Ci 77 173
Cis 78 170
Cus 43 453
Ces 44.5 56.5
ers (C/m?) 11.6 0

es; —4.4 0

e 18.6 0

e (107°) (C/Vm) 11.2 0.08
€33 12.6 0.093
¢1s (N/A m) 0 550
¢ 0 580.3
¢33 0 699.7
u(107% (Ns3/C?) 5.0 —590
133 10.0 157
mi1(107%) (N's?/V C) 0 0
nmss3 0 0
Table 3

Convergence of the first eight eigenfrequency parameters for the clamped—clamped annular BaTiO3/CoFe,O, plates

s IxJ BaTiO; CoFe0y4

Q9 0 Q. Q5 Q% Q0 Q0 9 9 QU 0 Q@ Q O

0 9x4 2866 5524 5640 7.076 7.277 8210 8968 9.871 2914 5693 6.314 7.634 8.380 8.990 9.326 10.63
20x 12 2.837 5.492 5587 6926 7.191 7.828 8.845 9.589 2.859 5.628 6.255 7.453 8.357 8.684 8.817 10.47
26 x22 2833 5456 5582 6912 7.183 7.801 8.796 9.563 2.858 5.627 6.253 7.451 8.356 8.683 8.816 10.47

1 20x12 2926 3.547 5.182 5.523 5738 6.629 6.885 7.218 2922 3916 5424 5723 6.166 7.231 7306 8.054
24 x20 2886 3.545 5.172 5515 5.625 6.622 6.839 7.154 2921 3916 5424 5.722 6.165 7.230 7.304 8.054
26x22 2.884 3.545 5.171 5514 5580 6.619 6.815 7.158 2921 3916 5424 5722 6.164 7.230 7.304 8.054

2 9x4 3309 4.186 5549 5.669 6329 7.004 7.142 7.823 3.197 4.632 5.853 6.144 6.180 7.297 7.557 @ 8.340
20x 12 3.153 4.159 5507 5.596 6.056 6.825 6.867 7.281 3.149 4.622 5812 6.110 6.121 7.230 7.485 7.973
24 x20 3.102 4.153 5503 5556 5967 6.789 6.827 7.233 3.149 4.622 5811 6.109 6.120 7.229 7.484 7973
26x22 3.101 4.152 5502 5.555 5914 6.769 6.828 7.231 3.149 4.622 5811 6.109 6.120 7.229 7.484 7973

3 9x4 3770 4890 5.768 6.171 6.873 7.235 7.440 8.110 3.607 5390 6.251 6.321 6.829 7.481 7.830 8.549
20x 12 3.566 4.842 5726 6.037 6.594 6.968 7.066 7.559 3.558 5370 6.186 6.307 6.729 7.437 7.750 8.182
24 x20 3.501 4.833 5.720 5981 6.489 6.952 6.993 7.525 3.558 5370 6.186 6.306 6.728 7.437 7.750  8.181
26x22 3.503 4.832 5719 5961 6437 6944 6996 7.505 3.558 5.370 6.186 6.306 6.728 7.437 7.749  8.181

In calculation process, Chebyshev polynomial terms are taken as I = K=N=0=Q,J=L=N=P=H
for convenience. The non-dimensional free vibration frequencies for wave number s = 0, 1, 2, 3 for plates of

BaTiO; and CoFe,04, ie. Q =4/Q/Cyy, with different boundary conditions are, respectively, listed in

Tables 3-5. It should be noted that the symbol “‘clamped—free”” denotes an annular with the inner and outer
circumferences having fixed and free boundary conditions, respectively. Similarly, the symbol ‘“‘clamped—
clamped” (“free—clamped”’) denotes an annular with the inner and outer circumferences having fixed and fixed
(free and clamped) boundary conditions, respectively. One can find that with the increase of Chebyshev
polynomial terms the convergent solution can be obtained. Relatively, for various boundary conditions, the
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Table 4
Convergence of the first eight eigenfrequency parameters for the clamped—free annular BaTiO3/CoFe,O, plates
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N

IxJ

BaTiO;

CoFe,0y4

o

[0}

Qs

Q4

Qs

Q6

e

Qs

@

Q

Qs

Q4

Qs

Q6

@

Qg

9x4
24 x 20
26 x 22

20 x 12
24 x 20
26 x 22

9 x4
20 x 12
24 x 20
26 x 22

9 x4
20 x 12
24 x 20
26 x 22

1.061
1.036
1.031

0.860
0.859
0.859

0.976
0.969
0.968
0.968

1.412
1.398
1.396
1.396

2.855
2.839
2.838

1.324
1.324
1.324

2.035
2.034
2.034
2.034

2.532
2.530
2.530
2.530

3.927
3.741
3.714

2.796
2.793
2.793

3.013
2.988
2.985
2.985

3.677
3.647
3.645
3.645

6.082
5.986
5.981

2.963
2.955
2.949

3.362
3.259
3.247
3.241

3.808
3.694
3.681
3.675

6.519
6.295
6.209

4.085
4.084
4.083

4.663
4.621
4.616
4.612

5.370
5.258
5.238
5.224

7.141
6.999
6.950

4.926
4.924
4.924

5.436
5.185
5.166
5.158

5.617
5.352
5.343
5.342

7.434
7.028
6.994

5.223
5.199
5.191

5.472
5.398
5.392
5.391

5.880
5.745
5.738
5.739

8.356
8.124
8.099

5.693
5.678
5.678

6.026
5.727
5.720
5.720

6.031
5.765
5.750
5.749

0.980
0.967
0.967

0.920
0.920
0.920

1.045
1.038
1.038
1.038

1.494
1.489
1.489
1.489

3.080
3.063
3.063

1.459
1.459
1.459

2.244
2.243
2.243
2.243

2.794
2.793
2.793
2.793

3.275
3.265
3.265

3.148
3.148
3.148

3.379
3.376
3.375
3.375

3.882
3.860
3.860
3.860

5.491
5.407
5.407

3.206
3.206
3.206

3.444
3.425
3.425
3.425

4.059
4.056
4.056
4.056

6.513
6.194
6.194

4.148
4.148
4.148

4.765
4.750
4.750
4.750

5.373
5.328
5.327
5.327

6.983
6.868
6.868

5.329
5.329
5.329

5.360
5.309
5.309
5.309

5.657
5.627
5.627
5.627

7.095
6.974
6.974

5.399
5.399
5.399

5918
5.870
5.870
5.870

6.303
6.243
6.242
6.242

9.437
8.918
8.917

6.225
6.225
6.225

6.502
6.255
6.255
6.255

6.528
6.285
6.285
6.285

Table 5

Convergence

of the first eight eigenfrequency parameters for the free—clamped annular BaTiO;/CoFe,0, plates

N

IxJ

BaTi03

COF6204

Q

2

Q4

Qs

Qs

2,

Q

Lo

2

2

Q4

Qs

Qs

o,

Qg

9 x4
24 x 20
26 x 22

20 x 12
24 x 20
26 x 22

9x4
20 x 12
24 x 20
26 x 22

9x4
20 x 12
24 x 20
26 x 22

1.472
1.405
1.403

1.581
1.578
1.577

2.244
2.208
2.201
2.199

3.032
2.967
2.952
2.948

3.460
3.449
3.449

2.629
2.628
2.628

2.856
2.843
2.841
2.840

3.343
3.330
3.329
3.328

4.089
3.806
3.781

3.449
3.433
3.430

3.832
3.727
3.712
3.708

4.400
4.302
4.288
4.285

6.185
5.968
5.944

3.629
3.628
3.628

4.259
4.254
4.253
4.253

5.069
5.042
5.040
5.039

6.471
6.067
6.049

4.799
4.797
4.796

5.426
5.213
5.204
5.199

5.794
5.539
5.519
5.515

7.028
6.769
6.749

5.508
5.498
5.496

5.816
5.725
5.715
5.714

6.368
6.164
6.154
6.153

7.199
7.060
7.021

5.518
5.515
5.515

6.032
5.860
5.855
5.855

6.418
6.342
6.333
6.331

8.487
8.251
8.245

6.082
6.077
6.077

6.610
6.365
6.336
6.336

6.978
6.650
6.627
6.626

1.403
1.387
1.387

1.651
1.651
1.651

2.296
2.275
2.275
2.275

3.069
3.038
3.038
3.038

3.590
3.563
3.563

2977
2971
2977

3.257
3.248
3.248
3.248

3.759
3.752
3.752
3.752

3.890
3.880
3.880

3.610
3.610
3.610

3.926
3.906
3.906
3.906

4.533
4.504
4.504
4.504

5.785
5.702
5.702

4.011
4.011
4.011

4.680
4.679
4.679
4.679

5.547
5.536
5.536
5.536

6.732
6.428
6.428

4.969
4.968
4.968

5.429
5.360
5.359
5.359

5.744
5.679
5.678
5.678

7.151
7.081
7.081

5.678
5.678
5.678

6.039
6.019
6.019
6.019

6.780
6.742
6.742
6.742

7.227
7.114
7.113

6.029
6.029
6.029

6.467
6.384
6.384
6.384

6.826
6.771
6.771
6.771

9.437
9.185
9.185

6.719
6.719
6.719

7.167
6.962
6.961
6.961

7.550
7.255
7.255
7.255

convergence of the free vibration frequencies for CoFe,O4 plate is faster than BaTiOj; plate. The same case
happens in the other examples. This shows that the convergence of free vibration frequency of the magneto-
elastic/electro-elastic annular plates is related to the corresponding materials.

Based on the above convergence study, the magneto-elastic/electro-elastic thin annular plates with inner
radius Ry and outer radius R; as well as thickness / (R|/Ry =2, h/R; = 0.01) are also studied. Chebyshev
polynomial terms are taken as I=K=N=0= Q=25 J=L=N=P= H=20. The non-dimensional
free vibration frequencies for wave number s =0, 1, 2, 3 for thin plates of BaTiO; and CoFe,O,, i.e.

Q = /Q/Cy4, with different boundary conditions are listed in Table 6. The corresponding vibration modes
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The first eight eigenfrequency parameters of each vibration category for the thin annular BaTiOs;/CoFe,O4 plates with different
inner—outer boundary conditions (three distinct boundary conditions C—C, C-F and F-C in which the first capital letter denotes the inner
boundary, while the second refer to outer boundary, and C means clamped, F means free)

BC S BaTiO;

COF6204

@

(73

93 .Q4

Qs

Qs @ 2

93 94

Qs

2,

Qg

0.395
0.230
0.238
0.253

0.396
0.220
0.234
0.253

F-C 0.405
0.245
0.270

0.308

W N = O W N = O W N = O

1.046
0.633
0.644
0.663

1.032
0.620
0.633
0.655

0.939
0.641
0.662
0.695

2.387
1.230
1.242
1.262

3.771
2.056
2.069
2.090

2.054
1.214
1.227
1.249

3.144
1.330
1.938
2.041

1.659
1.237
1.255
1.286

2.980
2.010
2.028
2.057

6.012
2.987
3.000
3.021

7.846
4.186
4.199
4.483

3.403
2.004
2.018
2.405

6.480
2.987
3.000
3.265

3.334
2.448
2.678
2.955

6.017
3.249
3.679
4.166

9.879
5.484
5.437
5.506

0.256
0.259
0.267
0.283

0.702
0.706
0.718
0.738

9.223
4.125
4.139
4.161

0.244
0.249
0.263
0.286

0.696
0.700
0.715
0.739

8.826
4.125
4.140
4.392

0.267
0.277
0.303
0.346

0.718
0.725
0.748
0.784

1.369
1.373
1.386
1.408

2.244
2.249
2.263
2.285

1.363
1.368
1.383
1.407

2.241
1.464
2.134
2.286

1.385
1.391
1.412
1.446

2.263
2.269
2.288
2.320

3.321
3.325
3.339
3.362

3.209
2.246
2.261
2.652

3.343
2.746
3.065
3.355

4.587
3.772
4.306
4.629

3.321
3.175
3.238
3.366

3.556
3.349
3.367
3.398

6.032
4.592
4.606
5.019

4.594
3.326
3.341
3.682

4.615
3.617
4.049
4.668

6.364
6.037
6.051
6.074

6.047
4.599
4.613
4.638

6.068
4.621
4.638
4.875

Table 7

Mode shapes of clamped-clamped annular BaTiO; plate

Mode number

Fundamental
frequency

Mode shape

)=

0.3953

0.2301

)

©

C

)
//

N
)y

C

1
/

/

)
>

0
%

0.2530

5

<

)

©

are shown in Tables 7-12 for middle plane z = 0. One can find that the vibration modes W and @ (i) for
BaTiO; (CoFe,0y) plate are somewhat similar each other. For BaTiO; plate, there is no vibration mode ,
while for CoFe,Oy4 plate there exists no vibration mode @.

Similar to the isotropic annular plate, the fundamental non-dimensional eigenfrequency data Q =

\/§/C44

for each of the vibration categories (s = 0, 1, 2, 3) of magneto-elastic/electro-elastic thin annular plates with
the clamped inner boundary and free outer boundary are obtained using the present method. Five different
outer—inner radius ratios R;/Ry =10, 10/2, 10/3, 10/7 and 10/9 are analyzed. In calculation process,
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Table 8
Mode shapes of clamped—free annular BaTiO; plate
Fundamental Mode shape
Mode number frequency U v W >
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Table 9
Mode shapes of free-clamped annular BaTiO; plate
Mode number Fl{ndﬂmema‘ Mode abope
frequency w
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Chebyshev polynomial terms are chosen to be I=K=N=0=0Q=25 J=L=N=P=H=20.The
fundamental eigenfrequencies of each vibration category with respect to the thickness—radius ¢/R; are shown
in Figs. 1-8, respectively. From Figs. 1 and 2, one can find that for the given value R;/R, the fundamental
non-dimensional eigenfrequency of axisymmetric vibration s = 0 reaches to almost constant value with the
increase of the thickness-radius #/R;, and for the given value of #/R;, the fundamental non-dimensional
axisymmetric vibration eigenfrequency increases with the decrease of the outer—inner radius ratios R;/Ry.
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Table 10
Mode shapes of clamped—clamped annular CoFe,O, plate

Mode number Fu.ndamemal Made hape

frequency

0 0.2557

1 0.2585

2 0.2673

3 0.2832
Table 11

Mode shapes of clamped—free annular CoFe,O, plate

> Mode sha
Mode number I-L{ndamcmal e
frequency
0 0.2443
1 0.2488
2 0.2626
3 0.2857

Similar case can also be observed from Figs. 3 and 4 for the circumferential vibration s = 1. From Figs. 5
and 6, one can observe that two eigenfrequency curves for R;/Ry = 10/2, 10/3 are almost the same for various
values of ¢/R;, while with the increase of inner radius of annular plate the fundamental non-dimensional
eigenfrequency of circumferential vibration s = 2 increases and reaches to certain constant value with the
increase of various values of #/R;. Figs. 7 and 8 show that for different outer—inner radius ratios, only when
R{/Ry = 10/9 the fundamental non-dimensional eigenfrequency of circumferential vibration s = 3 fast reaches

to one constant value with the increase of various values of #/R;.
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Table 12
Mode shapes of free—clamped annular CoFe,O, plate
R Fundamental Made shape
Mode number frequency U W v
0 0.2443 : -
1 0.2488
2 0.2626

0.2857
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_
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02 b — = RRy=10/7

— = Ry/Ry=10/9
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01 015 02 025 03 035 04 045
hR,

0.5

Fig. 1. The fundamental eigenfrequencies of axisymmetric vibration (s = 0) for BaTiO; annular plates with clamped inner boundary and

free outer boundary.

4. Conclusions

In this paper, 3D free vibration analysis of magneto-elastic/electro-elastic circular/annular plates have been
studied using the Chebyshev—Ritz method which has been successfully used to carry out free vibration analysis
of various isotropic plates (e.g. Refs. [10-12]). The convergence rate of magneto-elastic/electro-elastic circular/
annular plates with different boundary conditions has been shown by using various Chebyshev polynomial
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Ry/Ry=10
Ry/Ry=10/2
Ry/Ry=10/3
- Ry/Ry=10/7
Ry/Ry=10/9
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Fig. 2. The fundamental eigenfrequencies of axisymmetric vibration (s = 0) for CoFe,O,4 annular plates with clamped inner boundary and

free outer boundary.
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Fig. 3. The fundamental eigenfrequencies of circumferential vibration (s = 1) for BaTiO; annular plates with clamped inner boundary and

free outer boundary.

terms. Besides, the effect of geometrical parameters and material properties of the problems on the free
vibration eigenfrequencies has been considered. The obtained results can be used to check the accuracy of
other numerical methods, i.e. finite element method and boundary element method.
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Fig. 4. The fundamental eigenfrequencies of circumferential vibration (s = 1) for CoFe,0O4 annular plates with clamped inner boundary

and free outer boundary.

Fig. 5. The fundamental eigenfrequencies of circumferential vibration (s = 2) for BaTiO; annular plates with clamped inner boundary and

free outer boundary.
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Fig. 6. The fundamental eigenfrequencies of circumferential vibration (s = 2) for CoFe,O4 annular plates with clamped inner boundary
and free outer boundary.
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Fig. 7. The fundamental eigenfrequencies of circumferential vibration (s = 3) for BaTiO; annular plates with clamped inner boundary and
free outer boundary.
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Fig. 8. The fundamental eigenfrequencies of circumferential vibration (s = 3) for CoFe,0O,4 annular plates with clamped inner boundary
and free outer boundary.
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