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Abstract

A dynamic solution is presented for the propagation of harmonic waves in imhomogeneous (functionally graded)
magneto-electro-elastic plates composed of piezoelectric BaTiO3; and magnetostrictive CoFe,O4. The materials properties
are assumed to vary in the direction of the thickness according to a known variation law. The Legendre orthogonal
polynomial series expansion approach is employed to determine the wave propagating characteristics in the plates. The
dispersion curves of the imhomogeneous piezoelectric—piezomagnetic plate and the corresponding non-piezoelectric, non-
piezomagnetic plates are calculated to show the influences of the piezoelectricity and piezomagnetism on the dispersion
curves. They are compared with the dispersion curves of the plates with the different magnetic constants to illustrate the
influential factors of the piezoelectric and piezomagnetic effect for the wave propagation in a magneto-electro-elastic plate.
Electric potential and magnetic potential distributions at different wavenumbers are also obtained to illustrate the different
influences of the piezoelectricity and piezomagnetism.
© 2008 Elsevier Ltd. All rights reserved.

1. Introduction

Over the past few years, the mechanics of the piezoelectric—piezomagnetic composites has received
considerable research effort with their increasing usage in various applications, including sensors and
actuators [1,2]. These composites possess particular product properties, i.e. the magneto—electric coupling
effect, which are not demonstrated with their individual components.

The structural analysis of magneto-electro-elastic plates and shells has received much attention. Using a
propagator matrix method, Pan [3] derived an exact three-dimensional solution for a simply supported
multilayered orthotropic magneto-electro-clastic plate. Pan and Heyliger [4] investigated the free vibration of
piezoelectric—-magnetostrictive plate. They found that some natural frequencies of a piezoelectric-magnetos-
trictive plate were identical to the ones of the corresponding elastic plate. Chen et al. [5] showed theoretically
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that there actually exists a class of vibration, of which the frequencies depend on the elastic property only.
Wang and Shen [6] derived the general solution of three-dimensional problems in transversely isotropic
magneto-electro-elastic media and obtained the fundamental solution for dislocation and Green’s functions in
half-space. Wang and Shen [7] also studied the two-dimensional problem of inclusions of arbitrary shape in
magneto-electro-elastic composites. Hou and Leung [8] obtained the analytical solution for the axisymmetric
plane strain magneto-electro-elastic dynamics of hollow cylinders. Chen et al. [9] derived the General solution
for transversely isotropic magneto-electro-thermo-elasticity. Hou et al. [10] studied the transient responses of a
special non-homogeneous magneto-electro-elastic hollow cylinder for axisymmetric plane strain problem.

Wave propagating in magneto-clectro-elastic media has also attracted the attention of researchers. Chen
and Shen [11] obtained effective wave velocity and attenuation factor when axial shear magneto-electro-elastic
waves propagate in piezoelectric—piezomagnetic composites. Using the ‘rod model’, Wei and Su [12] studied
the axisymmetric flexural wave in piezoelectric-piezomannelic cylinders. Chen and Chen [13] investigated the
Love wave behavior in magneto-electro-elastic multilayered structures by the propagation matrix method.
Using the propagator matrix and state-vector (or state space) approaches, an analytical treatment is presented
for the propagation of harmonic waves in magneto-electro-clastic multilayered plates by Chen et al. [14].

In this paper, the propagation of harmonic waves in imhomogeneous magneto-electro-elastic plates
composed of piezoelectric and magnetostrictive materials is investigated by the Legendre orthogonal
polynomial series expansion approach, which was developed by Lefebvre for modeling free-ultrasonic waves
in multilayered plates [15] and functionally graded piezoelectric plates [16]. The dispersion curves for the
imhomogeneous magneto-electro-clastic plates and the corresponding non-piezoelectric and non-piezo-
magnetic plates are calculated to show the influences of the piezoelectricity and piezomagnetism. Electric
potential and magnetic potential distributions at different wavenumbers are obtained to illustrate the different
influences of the piezoelectricity and piezomagnetism. In this paper, the open circuit is assumed.

2. Mathematics and formulation of the problem

Consider an anisotropic, magneto-electro-elastic FGM plate, which is infinite horizontally with a thickness
h. We place the horizontal (x,y)-plane of a cartesian coordinate system on the bottom surface and let the plate
be in the positive z-region.

For a linear, anisotropic and magneto-electro-elastic solid, the coupled constitutive equation can be written
in the following form:
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where 7%, Di and Bi are the stress, electric displacement and magnetic induction, respectively; ¢/, Ei and Hi are
the strain, electric field and magnetic field, respectively; Cii, ei and gi are the elastic, piezoelectric and
piezomagnetic coefficients, respectively; €#, gii, and pi are the dielectric, magneto—electric, and magnetic

permeability coefficients, respectively. ) )
The relationship between the general strain and general displacement can be expressed as
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where u; is the elastic displacement, and @ and ¥ are the electric potential and magnetic potential.
For the wave propagation considered in this paper, the body forces, electric charge and current density are
assumed to be zero. Thus, the dynamic equation for the magneto-electro-elastic plate is governed by
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with p being the density of the material.
Because the material properties vary in the thickness direction, the elastic constants of the medium are the
function of z

Cz)=C9 + C(”(%)l +Cc® (%)2 4. 4 CP (%)L

With implicit summation over repeated indices, C(z) can be written compactly as
C=c"" 1=0,12,... L

And other material constants can be treated in the same way,

(D, =) =) o=

g;(2) = g (%)l 1y(2) = il (%)l 1=0,1,2,...,L. @)

Considering the boundary of the material for an open circuit surface, the position dependence of the elastic,
dielectric, piezoelectric constants and mass density is given by

C2) = Cmh), p(z) = p)n(h), &) =e)n(h), &z) = e()n(h),
4(2) = q@)n(h),  §(2) = g(2)n(h), [(z) = p(z)n(h), )

where 7(h) is the rectangular window function defined by

1, 0<z<h,
m(h) = 0, elsewhere.

Given Eq. (5), the material constants vanish outside the material. We thus describe the vacuum outside the
material as a medium with zero acoustic impedance and zero electric displacement, which ensures that
T..=T,.=T,.=0and D.=0, B.=0whenz=0, z=h.

For a free harmonic wave being propagated in the x direction in a plate, we assume the displacement
components, electric potential and magnetic potential to be of the form

uy(x, y,z, 1) = exp(ikx — i) U(2), (6a)
uy(x, . 2, 1) = exp(ikx — i) V(z), (6b)
1-(x, .z, 1) = exp(ikx — iwf) W (2), (6¢)
B(x, y,z, 1) = explikx — i) X(2), (6d)
Y(x,y,z, ) = explikx — iwf) Y (2). (6¢)

U(z), V(z) and W(z) represent the amplitude of vibration in the x, y and z directions, respectively, and X(z)
and Y(z) represent the amplitudes of electric potential and magnetic potential. k is the magnitude of the wave
vector in the propagation direction, and w is the angular frequency.
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Substituting Egs. (1), (2), (4)—(6) into Eq. (3), the governing differential equations in terms of displacement
components, electric potential and magnetic potential can be obtained:
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U(z), V(z), W(z), X(z) and Y(z) can be expanded to the Legendre orthogonal polynomial series as follows:
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where p! (i =1,2,3) and # (i = 1,2) are the expansion coefficients and
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with P, being the mth Legendre polynomial. Theoretically, m runs from 0 to co. In practice, the summation
over the polynomials in Egs. (8) can be halted at some finite value m = M, when higher-order terms become
essentially negligible.

Multiplying by Q;*(z) with j running from 0 to M, integrating over z from 0 to %, and taking advantage of
the orthonormality of the functions Q,,(z), give the following systems:
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where Ax/]”"(ac,ﬂ =1,2,3,4) and M,/ are the elements of a non-symmetric matrix. They can be obtained
according to Egs. (7).

Eq. (9e) can be written as
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Hence, Eqgs. (13) yield a form of the eigenvalue problem. The eigenvalue »” gives the angular frequency of
the guided wave; eigenvectors p' (i = 1,2,3) allows the components of the particle displacement to be
calculated; r,,,' and r,,?, which can be got according to Eqgs. (11) and (12), determined the electric potential and
magnetic potential distributions. According to Vph = w/k and Vg = dw/dk, the phase velocity and group
velocity can be obtained. The complex matrix equations (13) can be solved numerically making use of
standard computer programs for the diagonalization of non-symmetric square matrices. In practice, the
summation over the polynomials in the 3(M + 1) eigenmode are generated from the order M of the expansion.
Acceptable solutions are those eigenmode for which convergence is obtained as M is increased. We determine
that the eigenvalues obtained are converged solutions when a further increase in the matrix dimension does
not result in a significant change in the eigenvalue. The computer program was written using Mathmatica.

When the material is orthotropic or has fewer independent constants in the wave propagation direction, and
is polarized in the thickness direction, the governing differential equations are reduced to
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Table 1
The material properties of the two materials with polarization in the thickness direction [17]

Property Cn Ciz Ci3 Cx Cy Cs3 Cyy Css Coo

Ba,TiO; 166 77 78 166 78 162 43 43 44.6

CoFe,0y4 286 173 170.5 286 170.5 269.5 453 453 56.5
eis €24 €31 €32 €33 €11 €2 €33 P

Ba,TiOs 11.6 11.6 —4.4 —4.4 18.6 112 112 126 5.8

CoFe,0y4 0 0 0 0 0 0.8 0.8 0.93 5.3
q1s 24 q31 q32 q33 Hi1 H22 H33

Ba,TiO3 0 0 0 0 0 5 5 10

CoFe,0y4 550 550 580.3 580.3 699.7 —-590 —590 157

Units: Cy; (10°N/m?), €; (107"°F/m?), ¢; (C/m), g;; (N/Am), u; (107 Ns*/C?), p (10°kg/m?).

(@) (b)
L0 — 3.2
8 L
3
E 6} E
< 4
= =
> 4t > 2.8
2 - /MM
26
0.1 0.2 0.3 0.4 0.5 0.6 0.7 026 028 030 032 034 036 038 04
f (MHz) f (MHz)

Fig. 1. Phase velocity spectra for the Ba,TiO3—CoFe,O4 FGM plate: dotted line, with magneto-electric coefficients; solid line, without
magneto-electric coefficients.

(a) (b)
5
4
g3 3
= =
32 3

0.2 0.4 0.6 0.8 1
k (10 rad/m) k (10° rad/m)

Fig. 2. Frequency spectra for FGM plate: solid line, piezoelectric—piezomagnetic composite plate; dotted line, piezoelectric plate; dashed
line, piezomagnetic plate.
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Here, Eq. (14b) is independent of the other four equations. In fact, Eq. (14b) represents the propagating SH
wave. It is not influenced by the electric field and magnetic field when the material is polarized in the thickness
direction. Eqs. (14a) and (14c) control the propagating Lamb-like wave and are coupled with the electric field
and magnetic field.

3. Numerical results

Because the effective modulli of the piezoelectric—piezomagnetic composite is not yet the last word, the
Voigt-type model is used here to calculate the effective modulli (except for the magneto—electric coefficients) of
two combined piezoelectric—piezomagnetic materials. It is expressed as

P(z) = PV i(2) + P2 Va(2) (15)
(a) (b)
10 3.2
8
~ ~ 3 F
E 6 E
% <
s S
> 4 > 238
, oto
26 F
01 02 03 04 05 06 07 026 028 030 032 034 036 038 04
f (MHz) f (MHz)

Fig. 3. Phase velocity spectra for FGM plate: solid line, piezoelectric—piezomagnetic composite plate; dotted line, piezoelectric plate;
dashed line, piezomagnetic plate.

(a) (b)

10 3

8 29
E o6 g 28
= b =
[=9] =9
7 4 ” 27

) 2.6 . .

. - -
01 02 03 04 05 06 07 0.30 032 034 0.36 0.38 0.4
f (MHz) f (MHz)

Fig. 4. Phase velocity spectra for FGM plate: solid line, piezomagnetic plate; dotted line, elastic plate.
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where V(z) and P;, respectively, denote the volume fraction of the ith material and the corresponding property
of the ith material. Here, > Vi(z) = 1. Hence, the properties of the graded material can be expressed as

P(z) = Py + (P1 — P)V1(2). (16)

According to Eq. (4), the gradient field of the material volume fraction can be expressed as a power series
expansion. The coefficients of the power series can be determined using the Mathematica function ‘Fit’.

Based on the foregoing formulations, a computer program has been written to calculate the dispersion
curves for the FGM magneto-electro-elastic plate composed of piezoelectric BaTiO; (bottom) and
magnetostrictive CoFe,O4 (top) with thickness 7 = 10 mm. Their material constants are listed in Table 1
with thickness polarization and the other constants all being zero except for the magneto—electric coefficients.
The model of the multiphase method from Li and Dunn [17] is used to calcullate the magneto—electric
coefficients. The series expansion equations (8) are truncated at M = 10 for all the undermentioned
calculations. The gradient field used here is C(z) = Cg+(Cc—Cp)z/h.

The Lamb-like wave phase velocity dispersion curves for the FGM piezoelectric—piezomagnetic plate are
shown in Fig. 1, in which the solid lines are the dispersion curves without considering the magneto-electric
coefficients. Fig. 1(b) is the enlarged figure of the pane in Fig. 1(a). It can be seen that the magneto-electric
coefficients have little influence on the dispersion curves. So, the values of the magneto-electric coefficients are
unchanged in the undermentioned examples.

Figs. 2 and 3 are the Lamb-like wave frequency spectra and phase velocity spectra for the FGM
piezoelectric—piezomagnetic plate and the corresponding non-piezoelectric, non-piezomagnetic plates.
Figs. 2(b) and 3(b) are the enlarged figures of the panes in Figs. 2(a) and 3(a). Obviously, the curves of the
piezoelectric—piezomagnetic plate and those of the piezoelectric plate are very close to each other, but those of
the piezomagnetic plate are much below them. So, it can be assumed that the piezomagnetic effect is much
weaker than the piezoelectric effect on the dispersion curves of the Ba,TiO3;—CoFe,04 FGM plate. In order to
further approve this viewpoint, Fig. 4 gives the phase velocity spectra for the FGM piezomagnetic plate and
the corresponding FGM elastic plate. The two dispersion curves are also very close. The velocity of the
piezomagnetic plate is a little above the elastic plate.

Figs. 5 and 6 are the electric potential and magnetic potential distributions of the Ba,TiO;—CoFe, O, FGM
plate at k£ = 100 and 30000 rad/m. In spite of the wavenumber, the amplitudes of the electric potential are far
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Fig. 5. Potential distributions of the Ba,TiO3—CoFe,O4 FGM plate at k = 100 rad/m: (a) electric potential and (b) magnetic potential.
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Fig. 6. Potential distributions of the Ba,TiO3;-CoFe,O4 FGM plate at k£ = 30000 rad/m: (a) electric potential and (b) magnetic potential.

greater than those of the magnetic potential. Not considering the amplitudes, the trends of the electric
potential and magnetic potential are similar for the large wavenumber, but are very different for the small
wavenumber. Furthermore, for the large wavenumber, the electric potential and magnetic potential distribute
mostly near the two surfaces and distribute mostly near the top for the lowest three modes.

The phenomenon that the piezoelectric effect is stronger than the piezomagnetic effect can be explained by
Eq. (13) and Table 1. From Eq. (13) we can see that the influential factors of the piezoelectricity and
piezomagnetism are similar. The influences are directly proportional to the piezoelectric and piezomagnetic
constants and are in inverse ratio to the dielectric and magnetic permeability coefficients. From Table 1, it can
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be seen that the average piezomagnetic constant is about 50 times of the average piezoelectric constant, but the
average magnetic permeability coefficient is about 5000 times of the average dielectric coefficient. As is well
known, the velocity in the piezoelectric material is above the velocity in the corresponding non-piezoelectric
material. But in this example, the velocity in the piezomagnetic material is a little below the velocity in the
corresponding non-piezomagnetic material, which is because the two larger magnetic permeability coefficients
in CoFe,Oy is negative.

In order to validate the judgement, the magnetic permeability coefficients in Table 1 are reduced 100 times
and then are taken as absolute values. Fig. 7 is the frequency spectra and phase velocity spectra for the plate of
the changed magnetic permeability coefficients. In this case, the piezomagnetic effect is considerable, and even
exceeds the piezoelectric effect in some modes. Moreover, the piezomagnetic effect dos not make the
dispersion curves move downwards but move upwards.

Another point in Fig. 7 should be paid attention to. At some frequencies, piezomagnetic effect is more
considerable than piezoelectric effect, but at some other frequencies the case is quite the contrary. In order to
claborate the different effect of the piezoelectricity and piezomagnetism on the dispersion curves, another
example is considered. In this example, we take the values of the piezomagnetic and magnetic permeability
coefficients of the CoFe,O4 to be equal to the piezoelectric and dielectric coefficients of Ba,TiO3, respectively;
the magnetic permeability coefficients of Ba,TiO3, and the dielectric coefficients of CoFe,O, are zeroes; and
other constants keep unchanged. Fig. 8 is the frequency spectra for this plate. It can be seen that when the
wavenumber is small, the dispersion curves for the piezoelectric plate and the piezomagnetic plate is of
superposition, i.e. the piezomagnetic effect and piezoelectric effect are equal. However, as the wavenumber
increases, the two curves deviate from each other. The piezoelectric effect becomes stronger than the
piezomagnetic effect for the first mode; but for the second mode, the piezomagnetic effect becomes stronger.

4. Conclusions

Using the Legendre orthogonal polynomial series expansion method, the wave characteristics in the FGM
piezoelectric—piezomagnetic plates are discussed. Based on the calculated results, the following conclusions
can be drawn:

(a) When the plate is orthotropic and is polarized in the thickness direction, the independent SH wave is not
influenced by the electric field and magnetic field.

(b) In the Ba,TiO;—CoFe,O, FGM plate, the magneto-electric coefficients have little influence on the
dispersion curves.
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Fig. 7. Dispersion curves for FGM plate with the changed magnetic permeability coefficients: solid line, piezoelectric—piezomagnetic
composite plate; dotted line, piezoelectric plate; dashed line, piezomagnetic plate; point curve transformation, elastic plate; (a) frequency
spectra and (b) phase velocity spectra.
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Fig. 8. Frequency spectra for the FGM piezoelectric-piezomagnetic plate with equal magneto and electric constants: solid line,

piezoelectric—piezomagnetic composite plate; dotted line, piezoelectric plate; dashed line, piezomagnetic plate; point curve transformation,
elastic plate.

(c) The influential factors of the piezoelectricity and piezomagnetism on the wave characteristics are similar.
The influences are directly proportional to the piezoelectric and piezomagnetic constants and are inversely
proportional to the dielectric and magnetic permeability coefficients. In the Ba,TiO3;—CoFe,O, FGM
plate, the piezoelectric effect is far stronger than the piezomagnetic effect.

(d) For different Lamb-like wave modes, the piezoelectric effect is different from the piezomagnetic effect.

(e) The trends of the electric potential and magnetic potential are similar for large wavenumbers, but are very

different for small wavenumbers. Moreover, the electric potential and magnetic potential distribute mostly
near the surface for large wavenumbers.
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