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Abstract

For coupling vibration of the mistuned bladed-disk in aeroengine, the vibration differential equation of the system is

established using component-mode synthesis methods. Experimental mode analysis and mode correction are used to

calculate some low-order modes of tuned blade and the disk with cone-flange. The models of actual mistuned bladed-disk

is constructed by exerting some small perturbation on the mode stiffness of blades. The forced vibration experimentation

of an actual mistuned bladed-disk in non-rotating status is carried out to verify the vibration model and calculation

formulae. The results show that excessive vibration response of a single blade is caused by blade mistuning, and the

random mistuning distribution of a small frequency difference is more profitable than other arrangements for depressing

the maximal vibration level of the hapless blade. In this study, the better natural frequency difference amplitude of blades

and the right working frequency range of aeroengine are also suggested according to the result analysis of several

numerical calculations.

r 2008 Elsevier Ltd. All rights reserved.
1. Introduction

For long time, vibration of the rotating blade in an aeroengine was taken as blade-root not to vibrate in
many existed publications [1–4], i.e., the disk effect on blade vibration is ignored. For an initial jet aeroengine,
since the disk is thicker and its vibration is very small, the hypothesis on the fixed blade root is probably close
to real status between the blade and the disk. With developments in advanced performance and the high
thrust-weight rate of a jet aeroengine, the rotating disk with installed multiple blades is gradually thinned and
many inscrutable problems of blade vibration often emerge. For example, the same multiple blades installed
on a disk behave very differently in their response features of forced vibration, i.e., only one or a few blades
undergo severe vibration so as to anteriorly cause fatigue damage of a single blade. In fact, the above-
mentioned issue has previously been discussed. In the 1960s, the concept of ‘‘Rogue Blade’’ was put forward
[5,6]. For the origin caused to the Rouge Blade, the common comprehension is the influence of a disk on blade
vibration, e.g., coupling vibration between a disk and blades. Griffin and Hoosac [7] showed that the
maximum response amplitude of blades on a mistuned bladed-disk may be several times greater than that of
ee front matter r 2008 Elsevier Ltd. All rights reserved.

v.2008.03.006

ing author. Tel.: +86 29 88492895.

ess: yjyan_2895@nwpu.edu.cn (Y.J. Yan).

www.elsevier.com/locate/jsvi
dx.doi.org/10.1016/j.jsv.2008.03.006
mailto:yjyan_2895@nwpu.edu.cn


ARTICLE IN PRESS
Y.J. Yan et al. / Journal of Sound and Vibration 317 (2008) 294–307 295
the tuned one. Kaneko et al. [8] indicated that weakly coupled systems with low damping are very sensitive to
mistuning. Mignolet and Hu [9] presented an approach to determine reliable estimates of the moments of the
steady-state resonant response of a randomly mistuned bladed-disk and described the use of these moments to
predict the corresponding distribution of the amplitude of blade vibration. Because of the large numbers of
blades and the complex shapes of the blade and the disk, it is very difficult to establish an accurate model of
structural dynamics for a mistuned blade-disk. Previously, multifarious simplified models, such as the model
expressed by spring mass [10,11], the model of elastic bar and lumped mass [7], etc., were often adopted
because of the limitations of computer capability. Due to differences of the built dynamics model and the
adopted analysis methods, the results of coupling vibration analysis for disks and blades do not agree with one
another, especially, which blade on the same disk will undergo the severest vibration level.

In the 21st century, a more advanced aeroengine with a higher thrust-weight rate needs to be developed. On
the other hand, there is always some difference in the natural vibration frequencies of all blades installed on
the same disk, which is called ‘‘blades mistuning’’, because of some unavoidable reasons, such as
manufacturing tolerance, materials non-uniformity, installation differentia, etc. Obviously, blade mistuning
is unavoidable. Therefore, the coupling vibration among disk and mistuned blades cannot be avoided and still
needs to be explored. To date, the vibration fatigue damage of several blades on the rotating bladed-disk of an
aeroengine sometimes occur, and it is very necessary to further study the coupling vibration of a mistuned
bladed-disk. In 2001, Huang and Kuang [12] presented an investigation of the effects of centrifugal and
Coriolis forces, on the mode localization of a mistuned blade–disk which is presented in this paper. A disk
comprising of periodically shrouded blades is used to simulate the weakly coupled periodic structure. The
Galerkin method is employed to derive the mode localization equations of the mistuned system with the
consideration of Coriolis force. The blades are approximated as cantilever beams, and five axial and lateral
modes of each blade are used to present the dynamic behavior of the system. Ten modal coordinates have been
considered for each blade. The effects of Coriolis force and the magnitude of disorder on the localization
phenomenon of a rotating blade–disk system were investigated numerically. Numerical results obtained herein
indicate that the Coriolis force may enhance the localization phenomenon. In 2002, Feiner and Griffin [13]
proposed a new reduced-order model of mistuned bladed-disk vibration. This new approach is shown to
accurately represent the response of real turbine geometries when only a single family of modes is excited. Yet
its mathematical form is even simpler than that of a mass–spring model. Because it requires only minimal
input data, this model is much easier to use than previous reduced-order methods. Furthermore, its simplicity
allows the fundamental parameters that control mistuning to be readily identified. In addition, Bladh et al. [14]
also presented a study on the effects of random blade mistuning on the dynamics of an advanced industrial
compressor rotor using a component-mode-based reduced-order model formulation for tuned and mistuned
bladed-disks, and found mistuned forced response amplitudes and stresses vary considerably with mistuning
strength and the degree of structural coupling between the blades. In 2003, Rivas-Guerra and Mignolet [15]
presented a method to determine the maximum amplification of the steady-state forced response of bladed-
disks due to mistuning, and proposed an optimization strategy in which partially mistuned bladed-disks are
considered as physical approximations of the worst-case disk and the mistuned properties are sought to
maximize the response of a specific blade. In 2005, Hou and Cross [16] proposed a study on minimizing the
maximum dynamic response in a mistuned bladed-disk through design optimization. The problem was
formulated as a constrained, nonlinear optimization process. It was found that the dynamic amplification
factor of the maximum responding blade can be reduced to a range between 20% and 40% less than the tuned
system for several combinations of engine excitation orders and coupling ratios. Recently, Castanier and
Pierre [17] presented a review on reduced-order modeling, simulation and analysis of the vibration of bladed-
disks found in gas-turbine engines, and showed that key developments in the last decade have enabled a better
prediction and understanding of the forced response of mistuned bladed-disks, especially with respect to
assessing and mitigating the harmful impact of mistuning on blade vibration, stress increases and attendant
high-cycle fatigue.

In this study, by classifying and analyzing various bladed-disk structures in first stage of compressor in
aeroengine, vibration model of a real bladed-disk is built. First, experimental mode analysis and mode
correction are used to calculate the actual vibration modes of a blade and a disk, respectively. Compared with
similar studies, the main contributions of this study are as follows: (1) owing to utilizing real solutions of
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bending–torsion coupling vibration of mistuned blades and theoretic solutions of disk and its flange vibration
in establishing a dynamics model of a mistuned disk-blade using the modal synthetical method, the
constructed dynamics model of the mistuned bladed-disk is more in accordance with a practical bladed-disk
compared with the existing one; (2) the experimental validations for vibration modes of blades, disk and real
bladed-disk are carried out for establishing the dynamics model; (3) real distribution laws of mistuned blades
are experimentally measured, and the results show that the proposed optimal collocation of blade location can
effectively restrain the greatest vibration level of blades.

Because the bladed-disk of an aeroengine always rotates at high speed when it operates, the rotor system
consisting of a multiple-stage bladed-disk undergoes strong centrifugal force. Owing to the action of
centrifugal force on the disk and blades, the ‘‘dynamic stiffening’’ in a bladed-disk will be very strong so that
the natural frequencies of disk and blades will increase with rotating speed. Based on two causes, the effect of
rotational speed is not considered in the dynamics model in this study. First, it is difficult and expensive
experimentally to measure the vibration of a bladed-disk at high rotating speed with tremendous aerodynamic
load. Since the experimental data with rotational speed are unavailable, the numerical analytical results for
coupling vibration of a bladed-disk cannot be compared with the experimental result. Secondly, coupling
between disk and blades should not be affected by centrifugal force field, and in most of the publications on
vibration analysis for a bladed-disk, centrifugal force caused by rotational speed is almost ignored.

2. Vibration equation of a bladed-disk

In an aeroengine compressor, to assemble many working blades onto a disk, a cone-flange with a disk is
necessary. A typical structural model of the first stage bladed-disk of an aeroengine compressor can be
generalized as a model as shown in Fig. 1(a) and (b). Generally, a bladed-disk can be divided into three parts
as sub-structures: (1) a variable-thickness disk, the center of which gets a fixed stay, (2) a cone-flange
connected to the disk rim, whose thickness is variable, (3) multiple blades, which are twisty along the blade
center axes. While establishing the mechanical model of a bladed-disk, two reasonable assumptions are given.
X
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Fig. 1. Mechanical model of a typical bladed-disk: (a) framework figure of an experimental bladed-disk and (b) model of a bladed-disk.
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First, one can assume that all blades are fixed on the cone-flange connected to the external rim of the disk.
Secondly, one can be hypothetical that the longitudinal flexing of the cone-flange can be ignored because of
the reinforced effect of multiple blade roots.

In order to acquire the equation of motion of a bladed-disk using component-mode synthesis methods, the
experimental mode analysis and mode correction separately to the blades and the cone-flange with the disk are
carried out. The obtained vibration modes of the blades and the disk can be described as follows:

The mode of the disk can be expressed as wij(r) cos jy i, j ¼ 0, 1, 2, where i is the number of the node cycle,
j the number of node diameter of the disk mode and wij(r) is the displacement in normal direction of the disk
middle plane.

The three components of the bend–torsion combination vibration mode for the blade can be, respectively,
denoted as uk(r), vk(r), fk(r), k ¼ 1, 2, where k is the number of the mode order. The uk(r) and vk(r) are
transverse displacement components of a blade bending center in r location to a disk center, and fk(r) is the
torsion component of the vibration mode of the blade.

Selecting multiple vibration modes of the blade and the disk, and using the mode synthesis techniques, the
vibration displacement of every sub-structure can be expressed as:

For disk:

wðr; y; tÞ ¼
Xm

i¼0

Xn

i¼0

wijðrÞ cos jyqijðtÞ (1)

where qij(t) is the generalized coordinates, ij is an integer variable, m is an integer which denotes the
maximum number of the node cycle and n is the maximum number of the node radius in the selected disk
mode. Then, the integer variable ij can be expressed as ij ¼ ðj þ 1Þ þ iðnþ 1Þ ¼ 1; 2; . . . ; ðmþ 1Þðnþ 1Þ;
where i ¼ 0 and j ¼ 0 denote the vibration mode with 0 node cycle and 0 node radius, respectively.
For the pth mistuned blade:

upðr; tÞ ¼ �½wðr2; yp; tÞ þ w0rðr2; yp; tÞr� cosðaoÞ þ
Ps
k¼0

uNkpðtÞ

vpðr; tÞ ¼ ½wðr2; yp; tÞ þ w0rðr2; yp; tÞr� sinðaoÞ þ
Ps
k¼0

vNkpðtÞ

fpðr; tÞ ¼
Ps
k¼1

fpkðrÞqNkp

9>>>>>>>>=
>>>>>>>>;

(2)

where up(r, t), vp(r, t) and fp(r, t) are the vibration displacement of the pth blade fixed on the disk, and
upk(t), vpk(t) and fpk(t) are the kth order mode of the pth blade. ao is the installed angle of blade root, and s

is the number of selected blade vibration mode, w0r ¼ qw(r, y, t)/qr. qNkp is the generalized coordinate and
Nkp is an integer variable which denotes the sequence of the selected vibration mode of the mistuned
blades. Thus,

Nkp ¼ ðmþ 1Þðnþ 1Þ þ k þ ðp� 1Þs; k ¼ 1; 2; . . . ; s; p ¼ 1; 2; . . . ;N

and N is the total number of all blades installed on the disk.
For the cone-flange:
Set circular cylindrical coordinates xhy in the cone-flange as shown in Fig. 1, and suppose that the axial (x), radial
(h) and circumferential (y) vibration displacements are wc(x, h, y, t), vc(x, h, y, t) and uc(x, h, y, t), respectively.

According to the displacement coincident relationship of the cone-flange with the disk rim and the
distortion assumption, the vibration displacements of the cone-flange can be expressed as

wcðx; h; y; tÞ ¼ wðr2; y; tÞ þ hw0rðr2; y; tÞ

vcðx; h; y; tÞ ¼ ½h=ðr2 � xtgboÞ�w
00
r ðr2; y; tÞ

ucðx; h; y; tÞ ¼ �w0rðr2; y; tÞx

9>=
>; (3)
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where x1pxpx2, h1pxph2, h1 ¼ �h0(x)/2, h2 ¼ h0(x)/2. b0 is the half cone angle and h0(x) is the average
thickness of the cone-flange.

According to the vibration displacement of every sub-structure, their vibration speed can be expressed as

_w ¼ qw=qt

_up ¼ qupðr; tÞ=qt; _wc ¼ qwcðx; h; y; tÞ=qt

_vp ¼ qvpðr; tÞ=qt; _uc ¼ qucðx; h; y; tÞ=qt

_fp ¼ qfpðr; tÞ=qt; _vc ¼ qvcðx; h; y; tÞ=qt

Thus, the vibration kinetic energy and potential energy of all sub-structures can be calculated.

2.1. Vibration energy of every sub-structure

The kinetic energy of the disk is

T1 ¼
1

2

ZZ
D

r1hðrÞ _w
2rdrdy (4)

where D is the integration field of the disk, r1 is the material density of the disk and h(r) is the thickness of the
disk.

The kinetic energy of all N mistuned blades is

T2 ¼
XN

p¼1

1

2

Z r2þL

r2

r2AðrÞ½ _u
2
p þ _v

2
p þ ðJrp=AðrÞÞ _f

2

p þ 2ðxr _vp � yr _upÞ
_fp�dr

� �
(5)

where L is the length of the blade, A(r) is the sectional area of the blade, r2 is the material density of the disk,
Jrp(r) is the rotary inertia about the bending center of the blade section, and xr and yr are the coordinates of
the bending center, respectively.

The kinetic energy of the cone-flange is

T3 ¼
1

2

ZZZ
c

r1ð _wC þ _u2
C þ _v

2
CÞRdxdhdy (6)

where C is the integration field of the cone-flange and R ¼ (r2�xtgb0+h).
The elastc deformation energy of the disk is

U1 ¼
1

2

ZZ
D

E1h
3
ðrÞ

12ð1� m21Þ
w00rr þ

1

r
w0r þ

1

r2
w00yy

� �2

� 2ð1� m1Þw
00
rr

1

r
w0r þ

1

r2
w00yy

� �"

þ2ð1� m1Þw
00
rr

1

r
w00ry þ

1

r2
w0y

� ��
rdrdy (7)

where E1 is the elastic modulus of the disk, m1 is Poisson’s ratio, w0r and w0y are the first-order partial
derivatives of w(r, y, t), w00rr and w00yy are the second-order partial derivatives of w(r, y, t) and w00ry is the mixed
partial derivatives of w(r, y, t).

The elastic deformation energy of the N mistuned blades is

U2 ¼
XN

P¼1

1

2

Z r2þL

r2

E2ðJGyu00
2
pþ

h
JGxv00

2
p þ 2JGxyu00pv00p þ 2a0ðJTxv00p

þ JTyu00pÞf
0
p þ ðG2IT þ E2J2Þf

02
p

i
dr (8)
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where E2 is the elastic modulus of the blade materials, G2 is the shear modulus, a0 is the natural torsion ratio, Ir

is the torsion-resistance coefficient, JGx, JGy and JGxy are the inertia moments and inertia product about the
mass center of the blade sections, and JTx, JTy and J are the high-order moment of the blade section about its
bending center.

According to elastic mechanics, the non-zero strain on the cone-flange can be written as

�y ¼ ðqvc=qyþ ucÞ=R; txy ¼ Rqðvc=RÞqxþ ðqwc=qyÞ=R (9)

So the elastic deformation energy of the cone-flange is

U3 ¼
1

2

ZZZ
C

E1

1� m21
�2y þ

E1

2ð1þ m21Þ
t2xy

� �
Rdhdxdy (10)

2.2. The equation of a motion of mistuned bladed-disk

Based on the known vibration modes, structural parameters, the expressions of vibration kinetic energy and
elastic deformation energy can be written as a quadratic form function of generalized speed _qðtÞ and
generalized coordinate q(t) follow as:

Tð _qij ; _qNkpÞ ¼ T1ð _qijÞ þ T2ð _q; _qNkpÞ þ T3ð _qijÞ ¼ ð1=2Þf _qg
T½M�f _qg

Uðqij ; qNkpÞ ¼ U1ðqijÞ þU2ðqNkpÞ þU3ðqijÞ ¼ ð1=2Þfqg
T½K �fqg

)
(11)

where fqg ¼ fqij ; qNkpg
T and f _qg ¼ f _qij ; _qNkpg

T, [M] and [K] are the total mass matrix and total stiffness matrix
of the system, and their element values can be calculated using numerical integration.

When the system vibrates freely, by taking T and U into Lagrange equation one can obtain

dðqT=q _qtÞdtþ qU=qqt ¼ 0; l ¼ 1; 2; . . . ; ðmþ 1Þðnþ 1Þ þNs (12)

So the equation of motion of the free vibration for a mistuned bladed-disk can be written as

½M�f €qg þ ½K �fqg ¼ f0g (13)

where the f €qg is the generalized acceleration.
For forced vibration of a bladed-disk, periodical excitation is taken into account. The periodical

excitation on the operating cascade is created because of the wake of struts, guide vane or distortion
of inlet flow field. The circumferential non-uniformity of the exciting force can be decomposed using
Fourier series, and the radial non-uniformity can be decomposed by every mode of the blade. In a fixed
coordinate system, any component force exerted on the blade can be expressed as Fk cos jy, which corres-
ponds to the component force of the kth order blade mode and the disk mode with the jth nodal diameter.
In a coordinate system moving with the bladed-disk, the exciting force exerted on the pth blade can be
written as

FNkp ¼ F k cos jðotþ ypÞ ¼ Fk cos jot cos jyp � Fk sin jyp sin jot (14)

where o is the angular velocity of the bladed-disk, yp is the direction angle of the pth blade and Fk is amplitude
of the exciting force. Apparently, jojyp denotes the exciting frequency and phase. In numerical analysis, each
part in the expanded form of FNkp can be calculated as one exciting force.

From Eq. (14), an exciting force vector {F(t)} can be formed by changing p ¼ 1, 2,y, N and k ¼ 1, 2,y, s.
In this study, only the vibration damp of blades is considered, and the mode damping xkp is obtained by
experimental modal analysis to every blade. Therefore, the component of the modal damping force exerted on
the kth mode of the pth blade can be expressed as

DNkp ¼ �xkp _qNkp (15)

Taking {F} and {D} into Eq. (13), the forced vibration equation of the mistuned bladed-disk can be
written as

½M�f €qg þ ½C�f €qg þ ½K �fqg ¼ fFg (16)
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2.3. The equation of motion of a tuned bladed-disk

When all blades installed on a disk are completely same, the bladed-disk is called the tuned bladed-disk.
Obviously, this is only a kind of idealization case. Because the N blades installed on the disk only have s

different modes, the corresponding generalized coordinate qNkp of the tuned bladed-disk is only related to the
nodal diameter number j of the disk mode and the mode order k of a blade, while it is not relevant to the serial
number of every blade. Thus, the number of the generalized coordinate qNkp can be reduced as the new
generalized coordinate gskj based on the nodal diameter number j of the disk mode. The relationship between
gskj and qNkp can be expressed as

qNkp ¼ gskj cosðjypÞ; skj ¼ ðmþ 1Þðnþ 1Þ ¼ k ¼ js (17)

Irrespective of being mistuned or harmonious, the generalized coordinate of the disk and cone-flange does
not change. When j ¼ 1, 2, y, s and p ¼ 1, 2, y, N, a transformation relation can be acquired from Eq. (17)
as follow

fqg ¼ ½c�fgg (18)

where [c] is a transformation matrix and {g} ¼ {qij, gskj}
T is the generalized coordinate vector of the tuned

bladed-disk.
One can realign the displacement expressions of all sub-structures based on the generalized coordinate of

the tuned bladed-disk {g}, so that the mass matrix [Mg] and stiffness matrix [Kg] of the tuned system are
obtained using the foregoing procedures; Using the transformation matrix [c], one can derive the exciting
force of the tuned system as being {F}g ¼ [c]{F}, and the damping force{D}g ¼ [c]{D}. Therefore, the free
vibration and forced vibration equations of the tuned bladed-disk can be written as follows:

½Mg�f €gg þ ½Kg�fgg ¼ f0g (19)

½Mg�f €gg þ ½Cg�f €gg þ ½Kg�fgg ¼ fFgg (20)

The solutions of the free vibration and forced vibration of the tuned and mistuned bladed-disk can be
obtained by solving Eqs. (13), (16), (19) and (20).

3. Example of a mistuned bladed-disk

3.1. The model parameters and natural frequency experiments

The example model in this study is from the first-stage bladed-disk of the low-pressure compressor in some
type of aeroengine. The model parameters are listed in Table 1. To obtain every sub-structure mode, their
natural frequencies are experimentally measured. Because the disk and cone-flange intersects, they are taken as
one. The natural frequency and corresponding nodal diameter and nodal cycle are listed in Table 2.

When a blade is taken as a sub-structure, it can be considered as the fixed root. The natural frequency
experiment results in the status are listed in Table 3. If the interested frequency for the bladed-disk is
confirmed as 1000Hz, Tables 2 and 3, the first three order modes of the disk and blade should be taken into
the mode synthesis. When the tuned bladed-disk model is build, the natural frequencies obtained by
experiment for one blade can be reckoned as all blades on the disk.

As mentioned before, frequency mistuning of blades on a disk is not avoidable in a practice aeroengine, but
the mistuning distributing can be changed artificially because this can be carried out by rearranging the
position of all blades on the disk. First, a real blade mistuning distributing of the selected bladed-disk is
obtained by measuring the first four natural frequencies of all 31 blades on the disk, and the first and second
orders of measured natural frequencies are shown in Fig. 2. Fig. 2 shows that the mistuning distribution of
actual blades is random. For the mistuned frequency difference, as the first order, the maximum is 161.25Hz
and the minimum is 127.75Hz. The frequency difference is 23.7% relative to the average value. It may be a
little large compared with the practical situation because the experimental measure is taken in the condition of
the non-rotating bladed-disk. It is because the blade-roots are not fixed completely. When the bladed-disk is in
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Table 1

Parameters of the bladed-disk

Structural parameters Symbols Values

Number of the blades on the disk N 31

Blade length L 0.184m

Blade warping angle between the root and tip y 381

Installed angle of blade root a0 31

Disk radius r2 0.14m

Half cone angle of the cone-flange b 281

Longitudinal length of the cone-flange x2�x1 0.075m

Table 2

Experimental results of disk and cone-flange natural frequency

Mode shape Natural frequency (Hz)

Nodal diameter Nodal cycle

0 0 634.39

1 0 519.61

2 0 924.24

3 0 2854.60

0 1 5446.7

Table 3

Experimental results of a single blade

Mode order Measured natural frequency (Hz)

1 141.49

2 406.94

3 935.56

4 1546.7
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Fig. 2. Mistuning distributing of measured natural frequencies of blades on a disk.
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a rotating status at high speed, the fixing of a blade-root can be reinforced because of centrifugal force. Hence
the actual frequency difference is much smaller, but its distribution tendency should not change much.

In order to find the most appropriate blade mistuning distributing rule for reducing the vibration level of
blades on a disk, different mistuning rules can be constructed using a small quantity change of the mode
stiffness of blades in numerical simulations. The acquired experimental mode shape must be properly modified
before they are taken into the mode synthesis.
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3.2. Experimental validation

To validate the calculation formulae and model parameters, the forced vibration experiments of the selected
bladed-disk are carried out. In the experiment, the central axis of the bladed-disk is fixed onto the vibration
table, and the sine excitation is exerted on it. The vibration amplitude of all 31 blade-tip centers are measured,
and they are compared with the numerical calculation results in the same condition. In numerical simulations,
one supposes that the motion of the bladed-disk is

xðtÞ ¼ AO sin Ot (21)

where AO is the exciting amplitude and O is the exciting frequency.
At the moment, the bladed-disk receives basic excitation, and the inertia exciting force created by the mode

mass of the bladed-disk can be written as

fFg ¼ �½M�f €xðtÞg ¼ ½M�fA0O2g sin Ot (22)

where [M] is the mass matrix of the mistuned bladed-disk system.
Because the measured data cp(t) is the amplitude of the mass center of the blade-tip, data up, vp and fp

obtained by numerical simulation should be transformed into cp(t) so that they can be contrasted. The
relationship between them can be expressed as

cpðtÞ ¼ ðup � yrfpÞ cos aL þ ðvp þ xrfpÞ sin aL þ sinða0 þ aLÞA0 sin Ot (23)

where p denotes the pth blade and aL is the directional angle of the main inertia axis in the blade-tip section. up,
vp and fp are the same as in Eq. (2).

cp(t) in Eq. (23) can also be written in the compact form as

cpðtÞ ¼ cop sinðOtþ bopÞ (24)

In this experiment, the response amplitudes of all 31 blade tips under eight exciting frequencies are
measured. The experimental and numerical results under 125Hz exciting frequency are shown in Fig. 3.
Results show that both are in accordance with each other. This indicates that the hypothesis about the model
in this study is correct, and also demonstrates the credibility of the theoretical analysis method. As shown in
Fig. 2, the first-order natural frequencies of the 1st, 7th, 11th and 19th blade of the mistuned bladed-disk are
all smaller, but one of the 1st blade is smaller. In the distribution of forced response amplitude of blades in
Fig. 3, the response amplitude of the 1st blade is the greatest; this is because the used excitation frequency
125Hz is most closest to the first-order natural frequency of the 1st blade, which causes the resonance
response of the 1st blade. In fact, this phenomenon can explain why some blades solely undergo the most
severe vibration level.

3.3. Numerical results and analysis of bladed-disk vibration

In order to analyze influence of blade mistuning on the dynamic characteristic and the vibration response
characteristic of a bladed-disk, six kinds of mistuning distribution models are factitiously designed, which are
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Fig. 3. Response amplitude distributing of blade tips under exiting frequency 125Hz.
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random distribution (RAM), crossed distribution (CRO), two kinds of cosine distribution (cos y and cos 2y),
and only single-order random mistuning (SIG1), and only second-order random mistuning (SIG2). As a
comparable baseline, the tuned bladed-disk is marked TUN. The numerical simulations under the seven
distributions, the exciting frequency range from 110 to 170Hz, the mistuned frequency difference from 1% to
12%, and the four exciting forces (F1 cos y, F2 cos y, F1 cos 2y and F2 cos 2y) are fulfilled.

3.3.1. Free vibration characteristic of a bladed-disk

First, modal analyses of the tuned and mistuned bladed-disk models are carried out using the given model
parameters and the distribution data of the blade mistuning blades, which are experimentally measured. The
natural frequency distributions of the two models are shown in Fig. 4. The mode shape of the TUN is shown
in Fig. 5 which is plotted using amplitudes of the 31 blades on the disk. A typical mode shape of the mistuned
is shown in Fig. 6.

The obtained natural frequencies and mode shapes of the bladed-disk show that the natural frequency of a
mistuned bladed-disk is denser and has a wider scatter compared to that of the tuned harmonious one. This
indicates that the more resonance may occur in the mistuned bladed-disk. On the other hand, the mode shape
of the tuned bladed-disk is either regularly distributed in cosine wave or the constant, but the mode shape of
the mistuned bladed-disk is very anomalous, i.e., the amplitudes of few mistuned blades are observably large.
Since the forced vibration response is the sum of all modes at different proportions, the response amplitude of
every blade on the tuned bladed-disk will be the same consequentially, but the total result in the mistuned
bladed-disk may be that the response amplitude of the single blade is much larger than others. Obviously, it is
very much possible that this kind of blade becomes the most hapless, that is the so-called ‘‘Rogde Blade’’. That
is, the vibration mechanism of the mistuned bladed-disk can also give a logical explanation to the advanced
damage of a single blade.

3.3.2. Resonance response characteristic of a bladed-disk

The research shows that the effects of blade mistuning are mainly in the resonance region of the system.
When it is far from the resonance section, the effect of the mistuning is very small. The maxim amplitude
response curves of the blade-tip on 6 mistuned and the tuned models with an exciting frequency range from
120 to 160Hz are shown in Fig. 7.

Generally, in the resonance region, the response at the mistuned is larger than that at the tuned one, and it
differs in different mistuning forms. Since the peak response at the resonance region depends mainly on system
damping, the mistuning effect to the peak value is secondary. Perhaps, the worst problem is that the resonance
range of the mistuned bladed-disk is much large than that of the tuned bladed-disk. It can be seen from Fig. 7
that the mistuned blade can produce resonance in a larger frequency range (i.e. rotating speed of the
aeroengine). Thus, the dispersion degree of natural frequency for a mistuned blade has a direct effect on the
width of the resonance bandwidth, and the detailed analysis is as follows.
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If the maximum resonance amplitude is QM , one can obtain the two frequencies F1 and F2 corresponding to
two points on the response curve at QM=2 (F14F2). Let the dispersion degree of the mistuned blade frequency
DF ¼ ðFmax � FminÞ=ðFmax þ FminÞ, where Fmax and Fmin are the maximal and the minimal natural vibration
frequency of all blades in the same order mode for a group of mistuned blades. Also suppose the non-
dimensional resonance bandwidth coefficient Z ¼ (F2�F1)/(F2+F1). The relationship between DF and Z under
random misting is showed in Fig. 8. It can be seen from Fig. 8 that the larger the DF, the larger the Z. If DF is
43%, then Z enlarges obviously. If Fn ¼ n/60 is the working frequency of an aeroengine where n is the
rotating speed and Fc is the center frequency of the resonance amplitude, the maximal amplitude of the
bladed-disk is always less than QM=2 when Fc(1+DF)oFnoFc(1�DF).

QM values with different mistuning distributing under the excitation of the F1 cos y are listed in Table 4
where Femax is the exciting frequency corresponding to QM . The maximal response amplitudes of the blade-tip
response with only a single-order natural frequency mistuning under different exciting forces are listed in
Table 5.It can be seen from Table 4 that QM under cos y mistuning is the largest and QM under CRO is the
second largest. This may be because that the exciting force is cos y-type so that it is more possible for the cos y
mistuned distribution to cause resonance. In the view of the requirement to decrease the vibration level, the
CRO-type mistuned distribution is also not a good choice, and this distributing is not easy to realize in
practice. The QM under the RAM-type and SIG1-type mistuning are almost the same because their first-order
natural frequencies are all random mistuned. Since the frequencies distributing under the SIG2-type mistuning
and the TUN are all tuned, their QM are quite similar and small. But both the SIG1-type and SIG2-type
mistuning distributing need more than one tuned order, and these two types are not easy to be realized in
practice. Summarizing the above, the random mistuned distribution with a small frequency difference should
have a small vibration response and be easy to be realized.

According to data in Table 5, only the mode with the mistuning is excited, the vibration response level will
be obviously increscent. For example, under the same exciting force F1 cos y, the maximal response of the
SIG2-type mistuning is 17.4, but that of the SIG1-type is 37.2; this increases mostly to 114%. Obviously, if the
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Table 4

QM of different mistuned distribution

Mistuned model TUN RAM CRO cos y cos 2y SIG1 SIG2

QM
34.66 40.16 48.49 49.78 35.46 40.16 35.2

Femax (Hz) 142 136 134 134 138 136 140
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exciting frequency is close to some order natural frequency and we make this order frequency to be tuned as
possible, this method can effectively reduce vibration response level. Especially, this method has a better effect
on low-order vibration.
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Table 5

Maximal response values under different exciting forces for single-order mistuning

Exciting frequency 135Hz 415Hz

Exciting force F1 cos y F2 cos y F1 cos 2y F2 cos 2y

SIG1 37.2 0.013 0.36 2.09

SIG2 17.4 0.015 0.45 1.91

Y.J. Yan et al. / Journal of Sound and Vibration 317 (2008) 294–307306
The coupling degree between the blade and the disk has a greater influence on the distribution of the natural
vibration frequency of the bladed-disk system, so as to have an obvious effect on the vibration characteristic of
the bladed-disk. This also indicates that there exists important internal relations between the blade mistuning
and the coupling of the blades and the disk.

4. Conclusions

Based on the established mechanical model, the innovative theoretical analysis method and experiment
measurements, research on the coupling vibration and mistuning effects of a bladed-disk in an aeroengine has
been successfully carried out. Because blade mistuning in an aeroengine is unavoidable, both the rational
explanations for the phenomenon of producing the excessive vibration response of a single blade are given,
and technology methods on how to decrease the maximal response level by changing the misting distributing
of blades on a disk.

The main conclusions obtained in this study are as follows:
(1)
 Because of blade mistuning, the natural frequency of a mistuned bladed-disk is denser and has a wider
scatterance, and this indicates that more resonance may occur in the mistuned bladed-disk.
(2)
 Mode shape of the mistuned bladed-disk possesses the character of excessive large amplitudes in few
blades, and these blades will potentially become the most hapless.
(3)
 Resonance range of the mistuned bladed-disk is much larger than that of the tuned bladed-disk, and the
dispersion degree of natural frequency for mistuned blades has a direct effect on the width of the resonance
bandwidth.
(4)
 The random mistuned distribution with a small frequency difference should have a small vibration
response and be easy to be realized.
(5)
 When the exciting frequency is close to some order natural frequency of a bladed-disk, letting this order
frequency to be tuned as possible, this can effectively reduce the vibration response level.
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