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Abstract

Seismic oceanography techniques are able to provide oceanographic properties of the water masses by processing seismic

reflection data. These techniques have reported reflected waves due to the fine structure in the ocean, whose order of

magnitude is as weak as �80 dB. Thus, if we focus our attention on numerical simulation of this kind of oceanography

experiments, the numerical performance of the method should allow obtaining accurate results, where the spurious

reflections from the artificial boundaries of the computational grid are, at least, one order of magnitude smaller than the

physical phenomena. This can be achieved by introducing perfectly matched layers (PML), which simulate non-reflecting

boundaries. The aim of this work is to propose a numerical underwater propagation method, which combines a second-

order finite-difference scheme in the physical region of interest with a first-order pressure/velocity discretization in the

PML domain. This numerical method provides a low-cost computational algorithm with an accuracy, which allows

recovering the reflected phenomena from the ocean fine structure, and moreover, with a spurious error of order �100 dB

from the PML domain.

r 2008 Elsevier Ltd. All rights reserved.
1. Introduction

Most of the regions of the ocean contain water masses with different temperature and salinity
characteristics, which produce a relative motion among them. In fact, there exists a thermohaline fine-scale
structure and thermohaline intrusions in the interfaces between these water masses. Both structures are
important manifestations of mixing processes in the ocean [1]. These mechanisms, which transport heat from
the equator toward the poles, cooling the tropics and warming higher latitudes, conform the climate machine
of the ocean [2].

Fine structure in the ocean can be mapped by oceanographic probes that measure depth profiles of
temperature and salinity. Such techniques have practical limitations for achieving an accurate lateral
resolution due to the small ocean volume that can be imaged. Holbrook et al. [1] presented evidence that the
ee front matter r 2008 Elsevier Ltd. All rights reserved.
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oceanic fine structure can be mapped with a high lateral resolution using standard seismic reflection
techniques. Typically, marine seismic sources have a spectral content below 110Hz. Thus, acoustic waves
propagated in the water mass have a vertical resolving power of several metres. Long streamers of
hydrophones of several kilometres are capable of mapping large ocean regions, with a lateral resolution of
order of the acoustic wavelength (typically 20–30m). Holbrook and Fer [3] suggested the term seismic

oceanography for the seismic reflection techniques applied to retrieve oceanographic properties of the water
masses in the ocean.

The contact surface between distinct water masses produces acoustic impedance contrasts. Although the
reflected wave phenomena in such regions are weak, the large amount of energy raised by a seismic source can
generate measurable reflected energy in the hydrophones. Holbrook et al. [1] measured scattered waves, whose
magnitude was as weak as �80 dB. These measures corresponded to sound speed changes of 0.3m/s
(temperature variation of 0.1 1C), in a marine seismic reflection cruise across the oceanographic front between
the Labrador Current and the North Atlantic Current.

Seismic oceanography experiments can be simulated numerically by using standard underwater acoustic
propagation algorithms (see, for instance, [4]) and considering physical data for the boundary conditions at
the surface and bottom oceanic interfaces. However, since the ocean is unbounded along the lateral spatial
coordinate, then artificial boundaries must be introduced at both lateral sides of the physical domain of
interest. This truncation allows to bound the computational domain in the numerical simulations but, at the
same time, it should not introduce numerical spurious reflections in the physical region. Among other
methods, two kinds of numerical techniques can be used to truncate the unbounded physical domain of wave
propagation: the absorbing boundary conditions (ABC) and the perfectly matched layers (PML). Local ABCs
were introduced by Engquist and Majda [5] and subsequently improved from a computational point of view
by different authors [6]. More recently, Berenger [7] introduced an alternative approach to deal with the
truncation of unbounded domains based on simulating an absorbing layer of anisotropic material which
matches perfectly with the physical domain of interest, and thus, avoids spurious reflections from the lateral
boundaries. Although the PML method was introduced originally for electromagnetic waves, it has been
further extended to model elastic [8] and acoustic waves [9]. More specifically, Liu and Tao [10] used the PML
method with underwater acoustic propagation models.

In conclusion, if we focus our attention on the numerical simulation of the seismic oceanography
experiments with an oceanic fine structure, then the magnitude of the reflected waves at the truncating lateral
boundaries plays a more relevant role than in other physical wave propagation problems. Since the fine
structure yields weak reflected waves, spurious numerical reflections at the lateral PML boundaries must be at
least one order smaller than the magnitude of the physical phenomena of interest. The main goal of this work
is to describe an accurate and low-cost numerical method, which combines the PML technique with two
different coupled finite-difference schemes, in the framework of oceanography experiments with a fine
structure.

The outline of this paper is as follows: in Section 2 we describe the proposed numerical algorithm. For the
sake of completeness in the exposition, in Section 2.1 we derive briefly the wave equation in the physical
region. The two finite-difference schemes used for the physical and PML domain are explained in Sections 2.2
and 2.3, respectively. The combination of the chosen finite-difference schemes and the PML technique with
singular coefficients leads to a reduction of the time computation and memory storage and increases the global
precision of the numerical simulations for seismic oceanography experiments. The numerical accuracy of the
proposed method is illustrated in Section 3 by comparing the traces received at three depths with reference
traces and with those provided by the first-order method proposed by Liu and Tao [10]. The reference traces
are obtained by doubling the dimensions of the physical region, so that no reflected waves in the PML reach
the receivers. Moreover, we show some numerical results that illustrate the performance of the proposed
algorithm with a realistic sound-speed profile.

2. Description of the propagation algorithm

In this section, we present a combined algorithm where an explicit second-order finite-difference scheme for
the physical domain is matched with an explicit first-order pressure/velocity discretization in the PML region.
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2.1. Statement of the model

In this subsection, we develop the equations involved in the model of the underwater wave propagation in
the Lagrangian description [11].

Firstly, in the framework of the standard assumptions in linear acoustics where the thermodynamic process
is isentropic, i.e., if we assume that the entropy is preserved constant with respect to the time, the energy and
motion equation of an isentropic compressible fluid can be written in terms of the pressure fluctuation p and
the velocity v, which satisfies the governing equations

r
qv
qt
¼ �rp, (1)

qp

qt
¼ �rc2div v, (2)

r and c being, respectively, the mass density and the sound speed of the fluid in an initial state at rest. Now,
deriving with respect to the time in Eq. (2), we have

qv
qt
¼ �

1

r
rp, (3)

q2p
qt2
¼ �rc2 div

qv
qt

. (4)

Finally, introducing Eq. (3) into Eq. (4) provides

q2p
qt2
� rc2 div

1

r
rp

� �
¼ 0, (5)

which is the so-called Pekeris’ equation. Let us remark that both fields r and c are not assumed to be constant
in the previous equation. Obviously, if the mass density is constant then the above equation is reduced to the
wave equation

q2p

qt2
� c2 div ðrpÞ ¼ 0. (6)

Let us remark that assuming r to be constant does not mean neglecting completely small density variations
along the water column. Smooth changes of the mass density can still be included in the sound velocity profile
through

c ¼

ffiffiffiffi
K

r

s
, (7)

where K is the compression modulus of the fluid [12]. Therefore, in the following we will assume that the
simpler Eq. (6) governs the wave propagation in the physical domain. This, in turn, allows us to take
advantage of the Laplacian discretization which is second-order in space.

2.2. Finite-difference scheme in the physical region

As mentioned above, the main difficulty of simulating numerically the seismic oceanography experiments
consists of the high accuracy required for computing the weak reflections coming from the oceanic fine
structure. In this context, although the explicit first-order finite-difference schemes which discretize the system
of Eqs. (1) and (2) are low-cost computationally, they provide a precision of order O(Dt) in the pressure field
due to the computation only of it’s first time derivative. Hence, to compute an accurate acoustic scattered field,
it would be necessary to decrease the time step and consequently, to increase the computational cost of the
algorithm.
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However, since we only focus our attention on the spurious reflection from the PML region and not on
computing an accurate pressure field inside the PML region, we can combine a second-order propagation
algorithm, to take advantage of the O(Dt2) precision in the propagating medium, and use only a explicit first-
order finite-difference scheme in the PML region for the standard first-order PML formulation in terms of the
pressure and velocity field.

In the following we describe briefly the propagation algorithm in the physical region for the wave equation,
which consists of a finite-difference scheme implemented on a uniform grid with the same size D in the x- and
z-axis. For a given discrete field j, we denote by jn

ab the nodal value of the field at the grid point (aD,bD) and
at time step nDt. Therefore, the classical explicit second-order finite-difference scheme for Eq. (6) yields

1

c2ij

pnþ1
ij � 2pn

ij þ pn�1
ij

Dt2
¼

pn
ijþ1 � 2pn

ij þ pn
ij�1

D2
þ

pn
iþ1j � 2pn

ij þ pn
i�1j

D2
. (8)

2.3. PML model

For the sake of completeness in the exposition, the derivation of the Berenger PML model using the splitting
rule is detailed in the following. Let us start with the Fourier transform of the motion and mass conservation
equations expressed in terms of the velocity and pressure fields. Following Chew and Weedon [13], a complex
coordinate stretching is introduced by defining a new variable, Ẑ, for each spatial variable Z ¼ x,z

Ẑ ¼ Zþ
i

o

Z Z

Z0

sZ dZ0, (9)

where sZ is the so-called absorbing function in the Z-direction. Now, formally replacing the derivatives of Z by
the derivatives of the new complex variable Ẑ, it yields

� iorV Z ¼ �
1

1þ i sZ
�
o

� � qP

qZ
,

� ioP ¼ �rc2
X
Z¼x;z

1

1þ i sZ
�
o

� � qVZ

qZ
, (10)

where VZ is the Fourier transform of the Z-component of the particle velocity. Following the original idea
developed by Berenger [7], the next step consists of introducing the split pressure variables in Eq. (10). It yields
the coupled first-order PML equations in the frequency domain

ð�ioþ sZÞrV Z ¼ �
qP

qZ
,

ð�ioþ sZÞPðZÞ ¼ �rc2
qVZ

qZ
, (11)

where P(Z) are the Fourier transforms of the split pressure variables. The inverse Fourier transform of Eq. (11)
can be solved numerically with the following first-order finite-difference scheme:

r
v

nþ1=2
x;iþj=2 � v

n�1=2
x;iþj=2

Dt
þ

sx;iþj=2

2
v

nþ1=2
x;iþj=2 þ v

n�1=2
x;iþj=2

� 	0
@

1
A ¼ � pn

iþ1j � pn
ij

D
, (12)

r
v

nþ1=2
z;ijþ1=2 � v

n�1=2
z;ijþ1=2

Dt
þ

sz;ijþ1=2

2
v

nþ1=2
z;ijþ1=2 þ v

n�1=2
z;ijþ1=2

� 	0
@

1
A ¼ � pn

ijþ1 � pn
ij

D
, (13)

p
ðxÞ;nþ1
ij � p

ðxÞ;n
ij

Dt
þ

sx;iþj=2

2
p
ðxÞ;nþ1
ij þ p

ðxÞ;n
ij

� 	
¼ �

rc2ij

D
v

nþ1=2
x;iþj=2 � v

nþ1=2
x;i�j=2

� 	
, (14)



ARTICLE IN PRESS
J. Kormann et al. / Journal of Sound and Vibration 317 (2008) 354–365358
p
ðzÞ;nþ1
ij � p

ðzÞ;n
ij

Dt
þ

sz;ijþ1=2

2
p
ðzÞ;nþ1
ij þ p

ðzÞ;n
ij

� 	
¼ �

rc2ij

D
v

nþ1=2
z;ijþ1=2 � v

nþ1=2
z;ij�1=2

� 	
, (15)

where p
ðxÞ;n
ij and p

ðzÞ;n
ij are the nodal values of the split pressure field p(x) and p(z), respectively.

The final step in the construction of the propagation algorithm consists of introducing the combination
between the finite-difference schemes for the physical and PML domain. To match adequately the discrete
equations in the physical and PML domain, we impose the continuity of the pressure field. Moreover, the
velocity field on the interface between both regions must be re-computed by using Eqs. (12) and (13) with the
nodal pressure values close to the interface between the physical and the PML domains.

Let us remark that, instead of the previous first-order PML Berenger formulation, other authors have
already used second-order formulations with the split pressure variables. Some of them demonstrated the
efficiency of the PML formulation for solving underwater problems in the frequency domain [14–16].
Komatitsch and Tromp [17] presented a second-order algorithm in the time domain for elastic propagation
but it was more expensive in terms of memory storage. However, to the author’s knowledge, there does not
exist a second-order formulation that directly solves the acoustical time-domain problem with a PML system
in the Berenger formulation with a unique pressure field. Instead of these alternative formulations, our
numerical approach provides a second-order algorithm in time for the pressure field in the propagation
domain, which enhances the exactitude of the solution without increasing appreciably the computational cost
and the memory storage. As an example, Table 1 compares the computation times of our mixed algorithm
with the first-order splitted algorithm proposed by Liu and Tao [10], in (200� 200) and (400� 400) grids for
1500 iterations (computation carried out with a 64-bit AMD processor and 2 Go ram). The time computation
is decreased by 15% in both cases.

3. Numerical results

This section presents two numerical simulations of underwater acoustic propagation using the algorithm
described in Section 2.

3.1. PML efficiency analysis

In this first numerical simulation, we focus our attention on comparing the numerical performance of this
method with two different implementations and with two different profiles for the absorbing function in the
PML domain: the classical PML implementation of Liu and Tao [10] and our propagation algorithm with the
exact PML approach proposed by Bermudez et al. [18].

In this numerical example, we consider a non-dissipative isotropic medium with a constant density set to
1000 kg/m3 and a constant sound velocity equal to 1500m/s. The PML thickness is set to 100m, and the
source is a spatial monopole multiplied by a Ricker wavelet

hðtÞ ¼ 1� 2p2f 2
0ðt� t0Þ

2

 �

e�p
2f 2

0ðt�t0Þ
2

, (16)

where f0 is the central frequency (60Hz in this example) and t0 is the time shift of the wavelet. The grid size is
set to 1m to avoid numerical dispersion, and the time step is set to 0.4ms, unless specified.

Fig. 1 shows a sketch of the medium where the numerical implementation described above will be compared
with that of Liu and Tao [10]. The source is placed at mid-range, 5m deep. The region is 400m deep and 100m
Table 1

Computation times of the first-order and mixed algorithms for 1500 iterations in a grid with (200� 200) and (400� 400) points

Algorithm Computation time (s)

(200� 200) (400� 400)

First-order [10] 75 225

Mixed 63 193
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Fig. 1. Sketch of the medium/PML domain with the positions of the source and the receivers.
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long. There are two PML zones, on the lateral sides of the physical region. The receivers are located vertically
at 25m from the left medium/PML interface. The sZ function is the non-integrable hyperbolic one, similar to
those proposed by Bermudez et al. [18]

sZ ¼ 2c
1

ZT � Z0
�

1

ZT � Z

� �
; Z ¼ x; z, (17)

where ZT�Z0 is the thickness of the PML layers. This sZ function presents some advantages as compared to the
classical quadratic one. First, from a theoretical point of view, it is possible to prove that, if the mass density
and sound speed are constant, then the solution of the original wave propagation problem is exactly recovered
by using the PML technique. Second, from a computational point of view, we achieve a better numerical
performance than in the case of the bounded absorbing functions. Moreover, in the frequency domain,
optimal numerical results are obtained independently of the grid size and the data of the problem [18].

Fig. 2 shows the synthetic traces provided by the mixed and first-order [10] formulations, as compared to the
reference trace, at the receivers located at depths of 5, 50 and 100m. The reference solution is obtained by
doubling the medium dimensions, such that there are no reflected waves on the synthetic trace. All the traces
are normalized by the maximum of the reference one. Fig. 2(a) shows the results for the first-order (Liu)
formulation and Fig. 2(b) for the mixed formulation. At the resolution of the figure, no differences can be seen
between both traces.

Fig. 3 shows the error between the reference and the traces provided by the Liu and mixed formulations.
Due to the above-described normalization procedure, the error represents the amplitude of the reflected wave
at the receiver location. It is clear that the mixed formulation provides less error than the first-order
formulation. For instance, at the receiver 100m deep, the error for the first-order PML is twice that of
the mixed formulation. Note that the reflections from the mixed formulation are smaller than 0.0001 (�80 dB),
as expected.

In order to compare the numerical performance of different sZ absorbing functions, let us consider the
signals recorded at four receivers on the line depicted in Fig. 4. Two sZ functions are considered: one is the
non-integrable function defined by Eq. (17) and the other one is the classical quadratic function

sZ ¼ 400
Z� Z0

ZT � Z0

� �2

. (18)

In both cases, we use the propagation algorithm described in Section 2 and the PML thickness is set to four
wavelengths of the Ricker wavelet. The source is located at the centre of the physical medium. Fig. 5 shows the
signal recorded at four different ranges. As can be seen, when the absorbing function is non-integrable, we
observe a reflected wave with a smaller amplitude. For instance, in Fig. 5(a), the amplitude of the reflected
wave with the quadratic absorbing function is approximately two times larger than the amplitude computed in
the non-integrable case.
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Fig. 2. Traces comparison between the reference solution and that provided by the (a) Liu and (b) mixed formulations at three depths.
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3.2. Seismic oceanography experiment

The experiment simulated in Fig. 6 consists of a source and a 2000m long streamer, both located close to the
surface, in a medium with range 2000m and depth 1000m. In this numerical simulation the source and the
streamer are submerged at 15 and 20m, respectively, under the sea surface. Three PML regions are placed at
both lateral sides and the bottom. The sound-speed field depends on depth only, without lateral variation. The
sound-speed profile, which is shown in Fig. 7, is representative of the mixing of Mediterranean and Atlantic
water masses in the Gulf of Cadiz (Spain). As we have mentioned in Section 2, small variations in the mass
density are unimportant in the physical domain and hence, we assume a constant value of 1000 kg/m3 in the
PML regions. The source is again a spatial monopole multiplied by a Ricker wavelet with a central frequency
of 60Hz. Since we want to observe the numerical reflections on the exterior boundaries of the PML region
and, also, on the interface between the physical and PML domain, the total time of simulation is set to 3 s.

Fig. 8(a) shows the shot gather obtained with the above-described data. At the resolution of the figure, no
reflected waves can be seen coming from the right and left PML lateral regions. However, the reflection from
the bottom PML can be observed at time 1.5 s approximately (marked on the figure). Fig. 8(b) consists of a
zoom of the shot gather between 0 and 1.6 s. Again, we only observe the reflections which are coming from the
bottom PML region.
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Fig. 3. Comparison of numerical errors between the reference trace and that provided by the Liu and mixed formulations at three depths.

Fig. 4. Sketch of the medium/PML domain for the comparison between the sZ functions.
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In Fig. 9, we plot the trace of the signal recorded in a receiver at 50m from the source. According to the
real-life seismic experiment, a weak scattering due to the small variations of the velocity profile is observed in
the trace. Moreover, the amplitude of these weak reflected waves is of order 10�4, as it can be checked more
clearly in the zoom around 1.5 s of the entire trace (see Fig. 9(b)). A reflected wave from the bottom PML
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Fig. 5. Zoom on the recorded signals at four ranges along the receivers line for the quadratic (dashed line) and non-integrable (solid line)

absorbing functions: (a) 0m, (b) 54m, (c) 116m, and (d) 200m.

Fig. 6. Sketch of the medium/PML domain for the seismic oceanography experiment simulation.
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region at time 1.5 s is also observed in Fig. 9(b). Notice that its amplitude is smaller than those of the scattered
waves from the fine structure of the sound-speed profile. A closer zoom of the trace at time larger than 1.5 s is
shown in Fig. 9(c). We observe signal amplitudes of order 10�7 which correspond to numerical errors from the
finite-difference schemes.
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Fig. 7. Sound-speed profile representative of the Mediterranean/Atlantic water mixing in the Gulf of Cadiz.

Fig. 8. (a) Synthetic shot gather for the medium/PML sketched in Fig. 6 with the velocity profile of Fig. 7, and (b) a zoom between t ¼ 0 s

and 1.6 s.
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4. Conclusion

We have proposed a numerical algorithm which is able to simulate wave propagation phenomena in seismic
oceanography experiments with a weak fine structure. The algorithm uses the PML technique and a
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Fig. 9. (a) Synthetic trace at range 50m, (b) a zoom around the bottom PML reflection (t ¼ 1.5 s), and (c) a closer zoom between t ¼ 1.5 s

and 1.95 s.
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combination of low-order finite-difference schemes, for computing seismic signals generated by reflections
from very low impedance contrast structures in the water column. Because of the low acoustic impedance
contrast between typical water column structures, highly accurate techniques for simulating unbounded
domains are very relevant. With this purpose, the proposed model includes two lateral PML domains in order
to simulate unbounded lateral sides of the physical medium. The propagation algorithm combines a first-order
algorithm, based on the PML Berenger formulation with a non-integrable absorbing function, and an explicit
second-order finite-difference scheme in the propagation domain. This numerical approach leads to reflections
on the interface between the physical medium and the PML of order 10�5. It has been shown that this mixed
formulation improves previous results using classical first-order schemes.
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