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Abstract

This paper presents an analytical derivation of a set of transcendental equations for the normal modes of a one-

dimensional mechanical system composed of an arbitrary number of components and provides experimental validation for

the case of a two-component system consisting of a fiber partially submerged in liquid. The transcendental equations relate

thickness of layers and their elastic moduli and allow possible experimental measurement of thin film thickness and elastic

moduli. An effective model of the wave propagation in such systems gives an a-priori qualitative explanation of the natural

frequencies change and allows one to predict them quantitatively.

r 2008 Elsevier Ltd. All rights reserved.
1. Introduction

Natural frequency of a single degree of freedom oscillator or normal modes of a string are fundamental
characteristics of mechanical systems. An inaccurate determination of natural frequencies can result in
unwanted noise, lower effectiveness or even in the destructive damage of mechanical system [1,2]. Theoretical
determination of normal modes is quite complicated problem; therefore in most classical textbooks (see, for
example [3]), the vibrating behavior is considered mainly for systems with constant mechanical properties.
However many real applications involve not a constant but piecewise constant properties. As examples, the
longitudinal or torsional oscillations of the rod consisted of two or more different materials [4], or vibration of
a string partially immersed in liquid [5] can be mentioned. Here we show that normal modes of a mechanical
system with N-piecewise constant properties are the roots of a transcendental equation and an explicit form of
the transcendental equations for any N are derived analytically.
ee front matter r 2008 Elsevier Ltd. All rights reserved.
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2. Mathematical background

2.1. Statement of the problem for the N-steps function

This analysis starts with a one-dimensional system (rod, shaft or string) of length l consisting of N

homogeneous parts with different properties. An N-step function fN(x) can be represented as

f N ðxÞ ¼
XN

i¼1

f i rectðx;xi�1; xiÞ, (1)

where rect(x, a, b) ¼ H(x�a)H(b�x) is a rectangular window on an interval (a, b), H(x) is the unit step
function, x0 ¼ 0, xN ¼ l and fi is the amplitude on interval (xi�1, xi).

Then a differential equation describing the system oscillations can be written as

rN ðxÞutt ¼ F NðxÞuxx. (2)

In case of longitudinal vibrations of a rod, rN(x) and FN (x)�EN(x) are the density and Young’s modulus
distributions over the rod; in case of torsional oscillations, rN(x) and FN (x)�GN(x) are the density and
shear modulus distributions over the rod, and in case of string immersed in N-layers pie of immiscible
liquids, FN (x) ¼ constant is the string tension, rN(x) is the linear density of the string with due account of
added mass.

Splitting Eq. (2) into N equations with constant coefficients yields

uitt ¼ c2i uixx; hi�1oxohi; i ¼ 1; 2; . . .N ; h0 ¼ 0; hN ¼ l, (3)

with these corresponding matching conditions:

uiðhi; tÞ ¼ uiþ1ðhi; tÞ, (4)

kiuixðhi; tÞ ¼ kiþ1uðiþ1Þxðhi; tÞ, (5)

where ci ¼ (Fi/ri)
1/2 is the speed of wave propagation, ki ¼ EiSi (Si is the cross sectional area) in case of

longitudinal oscillations of a rod, ki ¼ GiIPi (IPi is the polar moment of inertia) in case of torsional oscillations
of a rod and ki ¼ 1 in case of a string.

2.2. Exact solution for N ¼ 3

We start with an analytical solution for a particular case with N ¼ 3 to illustrate the main idea of the
method, and afterwards will make a generalization for an arbitrary N.

To close statement of this problem, the following initial and boundary conditions can be imposed

uðx; 0Þ ¼ utðx; 0Þ ¼ 0, (6)

u1ð0; tÞ ¼ 0; u3ðl; tÞ ¼ sinðptÞ. (7)

Applying the Laplace transform results in the following system:

Uixx ¼
s

ci

� �2

Ui; hi�1oxohi; i ¼ 1; 2; 3, (8)

with the matching conditions

Uiðhi; sÞ ¼ Uiþ1ðhi; sÞ; kiUixðhi; sÞ ¼ kiþ1U ðiþ1Þxðhi; sÞ; i ¼ 1; 2, (9)

and the boundary conditions

U1ð0; sÞ ¼ 0; U3ðl; sÞ ¼ w; w ¼
p

p2 þ s2
. (10)
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The general solution of Eq. (8) is

Uiðx; sÞ ¼ Ai sinh
sx

ci

� �
þ Bi cosh

sx

ci

� �
. (11)

Accounting for matching and boundary conditions (9), (10) yields the solution in the imaginary space:

U1ðx; sÞ ¼ wk2k3 sinh
sx=c1

dðsÞ

� �
, (12)

U2ðx; sÞ ¼ w
k1k3 coshðsh1=c1Þ sinh½ðsðx� h1ÞÞ=c2� þ k2k3 sinhððsh1Þ=c1Þ cosh½sðx� h1Þ=c2�

dðsÞ
, (13)

U3ðx; sÞ ¼ wfk1k3 coshðsh1=c1Þ sinh½sðh2 � h1Þ=c2� cosh½sðx� h2Þ=c3�

þ k2k3 sinhðsh1=c1Þ cosh½sðh2 � h1Þ=c2� cosh½sðx� h2Þ=c3�

þ k1k2 coshðsh1=c1Þ cosh½sðh2 � h1Þ=c2� sinh½sðx� h2Þ=c3�

þ k22 sinhðsh1=c1Þ sinh½sðh2 � h1Þ=c2� sinh½sðx� h2Þ=c3�g=dðsÞ, (14)

where

ki ¼ ki=ci; and dðsÞ

¼ k1k3 coshðsh1=c1Þ sinh½sðh2 � h1Þ=c2� cosh½sðl � h2Þ=c3�

þ k2k3 sinhðsh1=c1Þ cosh½sðh2 � h1Þ=c2� cosh½sðl � h2Þ=c3�

þ k1k2 coshðsh1=c1Þ cosh½sðh2 � h1Þ=c2� sinh½sðl � h2Þ=c3�

þ k22 sinhðsh1=c1Þ sinh½sðh2 � h1Þ=c2� sinh½sðl � h2Þ=c3�.

It can be seen from Eqs. (12)–(14) that all Ui(x, s) have a common denominator E(s) of the form

EðsÞ ¼ wdðsÞ. (15)

The function E(s) has two zeros7 ip and a countable set of zeros given by transcendental equation d(s) ¼ 0.
All zeros of E(s) are simple poles of Ui, hence the inverse transform can be performed by integrating the
function (2p)–1Uie

st over the closed contour CR[[s�iR, s+iR] (CR is a semicircle of radius R and the line
[s�iR, s+iR] is chosen so as to lie to the right of all the poles) at R-N and applying Cauchy’s residue
theorem [6]. In order to find the natural frequencies it is unnecessary to perform an inverse Laplace transform.
Notice that poles 7 ip correspond to the angular frequency of the external force. But if the frequency of
external force coincides with a root sn of transcendental equation d(s) ¼ 0, then function Ui has pole of the
second order at s ¼ sn. Corresponding to this pole, Ui contains a resonance term [7]. Hence, consecutive roots
sn of the transcendental equation d(s) correspond to the natural frequencies. Introducing a new variable [8]
l ¼ is and using two trigonometric identities sin (ix) ¼ i � sinh x and cos (ix) ¼ cosh x, the equation d(s) ¼ 0
can be brought into its final form

� tan½lðh2 � h1Þ=c2�=k2 � tanðlh1=c1Þ=k1 � tan½lðl � h2Þ=c3�=k3
þ k2=ðk1k3Þ tanðlh1=c1Þ tan½lðh2 � h1Þ=c2� tan½lðl � h2Þ=c3� ¼ 0. (16)

The cases N ¼ 1 and 2 can be easily obtained from Eq. (16) by setting h1 ¼ h2 ¼ 0 and h1 ¼ h2 ¼ h,
c1 ¼ c2 ¼ cs, c3 ¼ c, respectively. For N ¼ 2 and ki ¼ 1, Eq. (16) transforms to the following transcendental
equation

cs tan
lh

cs

� �
þ c tan

lðl � hÞ

c

� �
¼ 0, (17)

which describes the natural frequencies of a string partially immersed in liquid.
Setting h ¼ 0 or l in Eq. (17) gives the normal modes for a fully immersed string.
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2.3. Generalization for an arbitrary N

Now the generalization for any N can be performed.
Similarly to the previous analysis, applying the Laplace transform to Eqs. (3)–(5), solving the system of N

algebraic equations while accounting for the matching conditions, the denominator d(s) of functions Ui (x, s)
can be found and, correspondingly, the transcendental equation:

X½N=2�
i¼1

ð�1Þi<2i�1ðNÞ ¼ 0, (18)

where RM (N) is the sum of CM
N ¼ N!=ððN �MÞ!M!Þ terms of the form ðPm

p¼1ki2p
=Pmþ1

p¼1 ki2p�1
Þ

(i1� i2�y� iM), where i1oi2 oyo iMpN, M ¼ 2m+1 is an odd number; the integer number ij ¼ n

substitutes for tan [l(hn�hn–1)/cn]; [p] is the roundoff function, where p is a real number; P0
p¼1ki2p

¼ 1.
For example, transcendental equations for N ¼ 5 reads

X5
i¼1

�ði=kiÞ þ 123
k2
k1k3
þ 124

k2
k1k4
þ 125

k2
k1k5
þ 134

k3
k1k4
þ 135

k3
k1k5
þ 145

k4
k1k5

þ 234
k3
k2k4
þ 235

k3
k2k5
þ 245

k4
k2k5
þ 345

k4
k3k5
� 12345

k2k4
k1k3k5

¼ 0.

From Eq. (18) it follows that in case of the N-steps function the transcendental equation comprises 2N�1

terms. The roots of Eq. (18) are the angular fundamental frequencies of the mechanical system with
N-piecewise constant properties.

This makes finding the roots of Eq. (18) difficult for higher N. To circumvent this problem and find out the
physical sense of the natural frequencies of such heterogeneous systems, it would be well to introduce an
effective wave velocity model.

2.4. An effective model for the normal modes

It is known that the normal modes frequencies of a string fixed at both ends can be found from the
condition l ¼ nln/2. Representing a wavelength through the velocity c of the wave propagation along the
string and the angular frequency on ¼ 2pfn, one arrives at the condition

on ¼
npc

l
; f n ¼

nc

2l
. (19)

An ‘‘effective’’ propagation velocity ceff can be introduced in such a way that the propagation time of a wave
over the string’s length with velocity ceff equals to the real time of a wave’s propagation:

l

ceff
¼
XN

i¼1

Dhi

ci

(20)

or

ceff ¼
XN

i¼1

Dhn

i

ci

 !�1
, (21)

where Dhn

i ¼ hn

i � hn

i�1; hn
¼ h=l. Substituting ceff for c in Eq. (19) results in

on eff ¼
npceff

l
; f n eff ¼

nceff

2l
. (22)

3. Experimental validation of the theory

To validate this theory, experiments on forced vibrations of a partially immersed fiber have been carried
out. An optical method utilizing a forward light scattering pattern [5] has been used to detect small (o1.0 mm)
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Fig. 1. Vibrational amplitude of partially immersed fiber versus external frequency for different depths of liquid solution (36% glycerol—

water solution).

Fig. 2. A block diagram of the device for measuring the vibrational amplitude by using forward light scattering pattern.
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amplitude vibrations of the fiber. A block diagram of the setup is shown in Fig. 1. It consists of a 10mW
He–Ne linearly polarized laser and a single mode optical fiber probe. One end of the optical fiber probe is fixed
to a bimorph piezoelectric transducer; other end is clamped and secured to the bottom of a container with
liquid. Light from a horizontally placed laser is incident normal to the optical fiber probe with density
r ¼ 2200 kg/m3 (diameters of the core and cladding are equal to 10 mm and 125 mm, respectively) and results in
a light pattern scattering from the fiber. The bimorph piezoelectric transducer is mounted on a three axis
translation stage which allows one to calibrate this device and also to adjust the tension of the optical fiber
probe. Maximum displacement responses of the fiber with respect to the driving frequencies are obtained by
setting the fiber in motion with the bimorph piezoelectric transducer driving at frequencies near the fiber’s
resonance. Required driving frequencies are supplied by using a function generator and an amplifier. The
displacement of the oscillating fiber is measured based on the observed intensity variation created by the fiber’s
displaced forward light scattering pattern. This intensity variation is detected by a PIN diode, converted to an
electrical signal, subsequently analyzed by using a dynamic signal analyzer, and the data stored in a general
purpose computer via a data acquisition system.
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Table 1

Experimental values (fexp1) of the resonance frequency for different depths of 36% water-glycerol solution and theoretical predictions of

the first mode (f1) according to Eq. (17)

Liquid depth, mm fn1, Hz fexp, Hz Cexp1

3 1842 1842 3.177

5 1841 1840 3.199

7 1837 1836 3.218

9 1830 1829 3.230

Cexp1 is the dimensionless experimental value of angular frequency (C1 ¼ o1l/ceff); the dimensionless effective angular frequencies is equal

to p. The density of solution rs ¼ 1085.42 kg/m3
, the tensile force F ¼ 1.11N, the speed of wave propagation over the fiber c ¼ 202.77m/s,

l ¼ 0.055m.

A.I. Fedorchenko et al. / Journal of Sound and Vibration 317 (2008) 490–495 495
Fig. 2 shows several measured resonance curves shifts as depth of the fiber probe in a liquid solution (36%
glycerol—water solution) increases. Eq. (22) allows one to give an a-priori explanation of the frequency
response observed in these experiments: if either immersion depth or density of liquid increases, the effective
velocity decreases and causes leftward resonance frequency shift.

Table 1 summarizes predictions of the first normal mode for a partially immersed fiber in 36% glycerol-
water solution for different depths. As is seen, theoretical predictions according to the analytical solution and
effective model agree qualitatively and quantitatively well with experiments.

4. Conclusions

Summarizing, a family of transcendental equations which describe the normal modes of a wide range of
mechanical systems with N-piecewise constant properties have been derived analytically. The transcendental
equations relate thickness of layers and their elastic moduli; it makes possible experimental measurement of
thin film thickness and elastic moduli. An effective model of the wave propagation in such systems gives an
a-priori qualitative explanation of the natural frequencies change and allows one to predict them quantitatively.
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